Skip to content

Latest commit

 

History

History
1172 lines (1015 loc) · 30.4 KB

01_hyperparameters_tuning.md

File metadata and controls

1172 lines (1015 loc) · 30.4 KB

Hyper-parameter tuning

This script calculates for each model the best set of parameters for the random forest

library(tidyverse)
library(feather)

The script evaluate_rf.R is a function performing a cross-validation with a random forest and returning a set of performance measures

source("evaluate_rf.R")

Instead get_file_list.R loads the list of the target files with a set of metadata for each of them

source("get_file_list.R")
file_list <- get_file_list()
## Parsed with column specification:
## cols(
##   area_name = col_character(),
##   country = col_character(),
##   source = col_character(),
##   active = col_double(),
##   filename = col_character()
## )
## Joining, by = c("area_name", "country", "source", "active", "filename")
print(head(file_list))
## # A tibble: 6 x 10
##   area_name country source  active filename    max   q95 median   avg   nas
##   <chr>     <chr>   <chr>    <dbl> <chr>     <dbl> <dbl>  <dbl> <dbl> <int>
## 1 AT        AT      ror          1 AT_ror.… 11419. 4604  2.75e3 2846.     0
## 2 AT        AT      solar        1 AT_sola…   886   468  1.30e1  115.     0
## 3 AT        AT      wind_o…      1 AT_wind…  2662  1527  2.60e2  439.     0
## 4 BE        BE      solar        1 BE_sola…  2620. 1595. 5.47e0  335.     0
## 5 BG        BG      ror          1 BG_ror.…   367   333  1.44e2  167.     0
## 6 BG        BG      solar        1 BG_sola…   856   658  3.00e0  150.     0

The target data is in BASE_PATH and the NUTS_LEVEL sets the level of spatial aggregation for the predictors (meteorological data from ERA-NUTS)

BASE_PATH <- "ts_prod/"
NUTS_LEVEL <- "NUTS0"

res will contain all the hyper-parameters

res <- NULL

For each target file the algorithm will test a set of hyper-parameters calculating the error

for (index in seq(1, nrow(file_list))) {
  region <- file_list$country[index]
  message(region)

  #' Load the meteorological predictors
  e5 <- sprintf("ERA5-NUTS-2015-2018/%s-%s.feather", region, NUTS_LEVEL) %>%
    read_feather()
  #' Load the target data
  ts_prod <- paste0(BASE_PATH, file_list$filename[index]) %>%
    read_feather()

  #' Use for the target column in `ts_prod` the name `Generation`
  if ("Value" %in% colnames(ts_prod)) {
    ts_prod <- ts_prod %>%
      rename(Generation = Value)
  }

  #' In the modelling omit all the target values where the generation
  #' is below the 10th percentile. 
  THRES <- quantile(ts_prod$Generation, 0.1, na.rm = TRUE)

  full <- inner_join(e5, ts_prod,
    by = c("time" = "Datetime")
  ) %>%
    select(-contains("Type")) %>%
    select(-contains("Name")) %>%
    select(-contains("Area")) %>%
    select(-contains("region")) %>%
    filter(!is.na(Generation)) %>%
    filter(Generation > THRES) %>%
    select(-time) %>%
    select(-starts_with("CS_")) %>%
    select(-starts_with("ssrdc_")) %>%
    rename(y = Generation)
  
  print(head(full))

  #' Set the list of the hyper-parameters to explore. See the
  #' the randomForest documentation for more information
  if (nrow(full) > 0) {
    NT <- c(50, 100, 200)
    MNODES <- 100
    MTRY <- unique(
      round(
        ncol(full) *
          c(0.1, 0.2, 0.33, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)
      )
    )
    #' For each combination evaluate the randomForest (without cross-validation)
    #' thus with `K` set to 1 and append the output to the results 
    for (nt in NT) {
      for (mnodes in MNODES) {
        for (mtry in MTRY) {
          e <- evaluate_rf(full,
            K = 1,
            nt = nt,
            mnodes = mnodes,
            mtry = mtry,
            assess_importance = FALSE
          )

          to_append <- tibble(
            filename = file_list$filename[index],
            nt = nt, mnodes = mnodes,
            mtry = mtry,
            oob_cor = e$single$cor,
            oob_nmae = e$single$mae / mean(e$target)
          )
          
          if (is.null(res)) {
            res <- to_append
          } else {
            res <- rbind(res, to_append)
          }
        }
      }
    }
  }
}
## AT
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  5     33.2 -1.06 0.970  2.06  49.1 1623.
## 2  4.99   2.5 -1.53 0.920  1.99  48.9 1744 
## 3  4.98   0   -2.12 0.920  1.86  48.8 1809.
## 4  4.99   0   -2.43 0.990  2.08  48.8 1810.
## 5  4.98   0   -2.62 1      2.16  48.8 1813.
## 6  4.97   0   -2.68 0.980  2.09  48.9 1770.
## AT
## # A tibble: 6 x 7
##      ro    ssrd    t2m  ws10 ws100    sd     y
##   <dbl>   <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  4.98   0.100 -5.26   1.32  2.68  50.3     2
## 2  4.99  21.2   -4.64   1.28  2.59  50.3    10
## 3  4.99  72.9   -3.89   1.24  2.49  49.9    21
## 4  4.99 117.    -2.43   1.19  2.13  50.1    32
## 5  5    137.    -1.51   1.19  2.16  49.7    37
## 6  5    136.    -0.970  1.23  2.29  49.4    35
## AT
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  4.71     0 -6.07  1.10  2.06  49.3    70
## 2  4.71     0 -6.14  1.10  2.12  49.3    64
## 3  4.70     0 -6.08  1.17  2.21  49.4    65
## 4  4.70     0 -5.87  1.18  2.28  50.0    64
## 5  4.70     0 -5.78  1.21  2.40  50.3    64
## 6  4.70     0 -5.65  1.27  2.57  50.3    84
## BE
## # A tibble: 6 x 7
##      ro    ssrd    t2m  ws10 ws100    sd      y
##   <dbl>   <dbl>  <dbl> <dbl> <dbl> <dbl>  <dbl>
## 1 0.940   0     -0.580  4.79  7.91  1.77   0.04
## 2 0.940   0.800 -0.380  5.16  8.36  1.74  92.7 
## 3 0.940  31.3    0.190  4.98  7.93  1.76 375.  
## 4 0.940  93.3    1.08   4.60  7.83  1.73 740.  
## 5 0.950 153.     1.97   4.86  7.48  1.73 938.  
## 6 0.950 192.     2.75   4.97  7.55  1.76 849.
## BG
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.290  45.6  16.0 0.920  2.17     0    59
## 2 0.290 198.   18.0 1.18   2.06     0    73
## 3 0.290 379.   20.5 1.67   2.22     0    72
## 4 0.270 665.   25.7 1.87   2.40     0    59
## 5 0.25  752.   29.0 1.73   2.20     0    63
## 6 0.25  707.   29.5 1.59   2        0    64
## BG
## # A tibble: 6 x 7
##      ro    ssrd    t2m  ws10 ws100    sd     y
##   <dbl>   <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  2.80   0.600 -12.0   2.17  4.21  16.6    52
## 2  2.60  58.5   -11.6   2.24  4.07  16.7   234
## 3  2.61 186.     -9.5   2.38  4.06  16.6   445
## 4  2.60 304.     -8.58  2.59  4.05  16.5   576
## 5  2.61 385      -6.40  2.74  3.83  16.3   599
## 6  2.60 408.     -5.82  3.05  4.28  16.1   588
## BG
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  2.80     0 -11.5  2.95  5.16  16.0   472
## 2  2.79     0 -11.8  2.96  5.26  16.6   479
## 3  2.79     0 -12.2  2.94  5.29  17.0   465
## 4  2.80     0 -12.3  2.71  5.06  16.5   460
## 5  2.80     0 -12.4  2.5   4.64  16.6   468
## 6  2.79     0 -12.7  2.29  4.32  16.6   460
## CH
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  3.45     0 -8.25 0.790  1.88  66.5  0.03
## 2  3.46     0 -8.56 0.75   1.80  66.8  0.05
## 3  3.46     0 -8.80 0.660  1.87  65.7  0.07
## 4  3.45     0 -8.83 0.580  1.80  64.6  0.07
## 5  3.45     0 -8.84 0.460  1.55  64.5  0.07
## 6  3.44     0 -8.74 0.420  1.43  64.8  0.07
## CZ
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  1.5      0 -2.40  1.97  3.93  8.73  95.9
## 2  1.5      0 -2.22  1.96  3.93  8.52  95.9
## 3  1.51     0 -2.02  1.97  3.95  8.48  96.0
## 4  1.54     0 -1.78  1.93  3.94  9.06  96  
## 5  1.56     0 -1.60  1.92  3.97  9.15  96  
## 6  1.61     0 -1.43  1.93  4.02  9.15  90.3
## CZ
## # A tibble: 6 x 7
##      ro  ssrd     t2m  ws10 ws100    sd     y
##   <dbl> <dbl>   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  1.60  0    -1.20    1.91  4.05  9.20   3.9
## 2  1.53  0    -0.880   1.93  4.13  9.22   7.3
## 3  1.58  8.10 -0.470   2     4.24  9.25  21  
## 4  1.59 31.8  -0.0900  2.04  4.18  8.53  36.6
## 5  1.63 55.7   0.290   2.05  4.12  8.22  70.9
## 6  1.68 76.7   0.740   2.08  4.08  7.70 108.
## CZ
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  1.5      0 -2.40  1.97  3.93  8.73  28.5
## 2  1.5      0 -2.22  1.96  3.93  8.52  26.9
## 3  1.51     0 -2.02  1.97  3.95  8.48  42.4
## 4  1.54     0 -1.78  1.93  3.94  9.06  55.5
## 5  1.56     0 -1.60  1.92  3.97  9.15  56.5
## 6  1.61     0 -1.43  1.93  4.02  9.15  58.7
## DE
## # A tibble: 6 x 7
##      ro   ssrd   t2m  ws10 ws100    sd     y
##   <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  11.0   0    0.340  2.59  4.73  8.68    27
## 2  11.0   5.10 0.360  2.73  4.96  8.54   267
## 3  11.0  47.2  0.700  2.91  5.10  8.21   804
## 4  11.1 105.   1.31   2.86  5.05  8.35  1512
## 5  11.4 154.   1.98   2.99  5.01  8.27  1892
## 6  11.7 183.   2.43   3.21  5.21  8.52  1580
## DE
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  7.24     0  2.26  1.96  4.07 0.670  1424
## 2  7.25     0  2.18  1.95  4.05 0.180  1413
## 3  7.26     0  2.14  1.93  3.99 0.420  1535
## 4  7.24     0  2.11  1.90  3.90 0.540  1655
## 5  7.23     0  2.07  1.95  3.95 0.450  1628
## 6  7.30     0  2     1.94  3.90 0.420  1463
## DE
## # A tibble: 6 x 7
##      ro   ssrd   t2m  ws10 ws100    sd     y
##   <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  11.0   0    0.340  2.59  4.73  8.68    10
## 2  11.0   5.10 0.360  2.73  4.96  8.54   272
## 3  11.0  47.2  0.700  2.91  5.10  8.21   773
## 4  11.1 105.   1.31   2.86  5.05  8.35  1057
## 5  11.4 154.   1.98   2.99  5.01  8.27  1379
## 6  11.7 183.   2.43   3.21  5.21  8.52  1089
## DE
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  11.3     0 1.21   2.54  4.75  9.48   862
## 2  11.2     0 1.12   2.51  4.69  9.48   794
## 3  11.2     0 0.920  2.43  4.52  9.34   826
## 4  11.1     0 0.810  2.37  4.36  9.02   852
## 5  11.1     0 0.660  2.42  4.41  8.87   800
## 6  11.1     0 0.5    2.46  4.49  8.89   949
## DE
## # A tibble: 6 x 7
##      ro   ssrd   t2m  ws10 ws100    sd     y
##   <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  11.0   0    0.340  2.59  4.73  8.68    11
## 2  11.0   5.10 0.360  2.73  4.96  8.54   174
## 3  11.0  47.2  0.700  2.91  5.10  8.21   426
## 4  11.1 105.   1.31   2.86  5.05  8.35   658
## 5  11.4 154.   1.98   2.99  5.01  8.27   762
## 6  11.7 183.   2.43   3.21  5.21  8.52   711
## DE
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  11.3     0 1.21   2.54  4.75  9.48  3415
## 2  11.2     0 1.12   2.51  4.69  9.48  3508
## 3  11.2     0 0.920  2.43  4.52  9.34  3724
## 4  11.1     0 0.810  2.37  4.36  9.02  3973
## 5  11.1     0 0.660  2.42  4.41  8.87  4198
## 6  11.1     0 0.5    2.46  4.49  8.89  4490
## DE
## # A tibble: 6 x 7
##      ro   ssrd   t2m  ws10 ws100    sd     y
##   <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  11.0   0    0.340  2.59  4.73  8.68     5
## 2  11.0   5.10 0.360  2.73  4.96  8.54    60
## 3  11.0  47.2  0.700  2.91  5.10  8.21   113
## 4  11.1 105.   1.31   2.86  5.05  8.35   137
## 5  11.4 154.   1.98   2.99  5.01  8.27   166
## 6  11.7 183.   2.43   3.21  5.21  8.52   120
## DE
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  11.3     0 1.21   2.54  4.75  9.48     5
## 2  11.2     0 1.12   2.51  4.69  9.48     7
## 3  11.2     0 0.920  2.43  4.52  9.34     8
## 4  11.1     0 0.810  2.37  4.36  9.02    11
## 5  11.1     0 0.660  2.42  4.41  8.87     6
## 6  11.1     0 0.390  2.53  4.61  9.15     6
## DK
## # A tibble: 6 x 7
##      ro   ssrd   t2m  ws10 ws100     sd     y
##   <dbl>  <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl>
## 1   1.5  0.200  6.61  8.42  12.9 0.0500     1
## 2   1.5  8.90   6.68  8.49  12.9 0.0400     2
## 3   1.5 24.2    6.68  8.32  12.7 0.0600     4
## 4   1.5 36.7    6.70  8.49  12.9 0.0600     5
## 5   1.5 34.3    6.65  8.64  13.2 0.0500     4
## 6   1.5 31.7    6.68  8.56  13.1 0.0400     1
## DK
## # A tibble: 6 x 7
##      ro   ssrd   t2m  ws10 ws100     sd     y
##   <dbl>  <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl>
## 1   1.5  0.200  6.61  8.42  12.9 0.0500     1
## 2   1.5  8.90   6.68  8.49  12.9 0.0400     4
## 3   1.5 24.2    6.68  8.32  12.7 0.0600     4
## 4   1.5 36.7    6.70  8.49  12.9 0.0600     3
## 5   1.5 34.3    6.65  8.64  13.2 0.0500     2
## 6   1.5 31.7    6.68  8.56  13.1 0.0400     1
## DK
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  1.40     0  5.53  6.25  9.84 0.730 1488.
## 2  1.40     0  5.75  6.53 10.2  0.730 1448.
## 3  1.40     0  5.88  6.61 10.4  0.730 1549.
## 4  1.40     0  6.05  6.81 10.6  0.460 1710.
## 5  1.40     0  6.23  7.37 11.5  0.210 2078.
## 6  1.41     0  6.45  7.23 11.3  0.130 2244.
## EE
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.450     0  2.70  4.16  7.73 16.4   46.5
## 2 0.470     0  2.69  4.14  7.64 16.3   46.1
## 3 0.5       0  2.56  4.09  7.52 16.1   51.1
## 4 0.510     0  2.55  4.06  7.43 11.8   56.1
## 5 0.470     0  2.5   4.19  7.60 10.4   52.9
## 6 0.460     0  2.42  4.44  7.95  9.83  68
## ES
## # A tibble: 6 x 7
##      ro  ssrd    t2m  ws10 ws100    sd     y
##   <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  4.88     0  0.840  1.20  2.84 0.550  1009
## 2  4.90     0  0.590  1.15  2.71 0.550   973
## 3  4.90     0 -0.110  1.13  2.62 0.550   949
## 4  4.87     0 -0.350  1.09  2.52 0.550   953
## 5  4.88     0 -0.320  1.07  2.5  0.550   952
## 6  4.88     0 -0.550  1.01  2.38 0.550   961
## ES
## # A tibble: 6 x 7
##      ro  ssrd    t2m  ws10 ws100    sd     y
##   <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  4.88     0  0.840  1.20  2.84 0.550    50
## 2  4.90     0  0.590  1.15  2.71 0.550    50
## 3  4.90     0 -0.110  1.13  2.62 0.550    50
## 4  4.87     0 -0.350  1.09  2.52 0.550    42
## 5  4.88     0 -0.320  1.07  2.5  0.550    34
## 6  4.88     0 -0.550  1.01  2.38 0.550    34
## ES
## # A tibble: 6 x 7
##      ro  ssrd    t2m  ws10 ws100    sd     y
##   <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  4.88     0  0.840  1.20  2.84 0.550  5890
## 2  4.90     0  0.590  1.15  2.71 0.550  5461
## 3  4.90     0 -0.110  1.13  2.62 0.550  5238
## 4  4.87     0 -0.350  1.09  2.52 0.550  4935
## 5  4.88     0 -0.320  1.07  2.5  0.550  4618
## 6  4.88     0 -0.550  1.01  2.38 0.550  4397
## FI
## # A tibble: 6 x 7
##      ro   ssrd   t2m  ws10 ws100    sd     y
##   <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  9.5  19.4   1.55   3.70  7.19  44.8  909.
## 2  9.44 11.9   1.51   3.58  6.96  44.8  996 
## 3  9.35  2.80  1.41   3.46  6.76  44.8  986.
## 4  9.29  0.100 1.11   3.38  6.59  44.8  998.
## 5  9.39  0     0.890  3.28  6.43  44.7 1020.
## 6  9.56  0     0.75   3.21  6.28  44.7 1000.
## FI
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  9.90     0 0.610  3.07  6.20  45.0  208.
## 2  9.84     0 0.640  3.14  6.32  45.1  250.
## 3  9.78     0 0.780  3.20  6.41  45.1  264.
## 4  9.75     0 0.940  3.26  6.53  44.7  274.
## 5  9.74     0 1      3.33  6.61  44.7  287.
## 6  9.74     0 1.20   3.41  6.75  44.8  264.
## FR
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  12.1     0 -2.22 0.430 0.880  2.51  4229
## 2  12.1     0 -2.36 0.340 0.730  2.51  4007
## 3  12.1     0 -2.49 0.340 0.690  2.49  3787
## 4  12.1     0 -2.80 0.480 0.880  2.52  3654
## 5  12.1     0 -2.93 0.540 0.970  2.59  3594
## 6  12.1     0 -3.16 0.550 1      2.69  3416
## FR
## # A tibble: 6 x 7
##      ro   ssrd    t2m  ws10 ws100    sd     y
##   <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  11.9   0    -3.19  0.430 0.880  2.77    59
## 2  11.9   6.90 -3.01  0.590 0.950  2.80   385
## 3  11.9  75.2  -1.42  0.870 1.30   2.76  1053
## 4  12.0 174.    0.580 0.860 1.51   2.66  1635
## 5  12.1 251.    2.17  0.890 1.5    2.63  1883
## 6  12.5 294     3.45  0.950 1.47   2.61  1857
## FR
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  12.1     0 -2.22 0.430 0.880  2.51  1383
## 2  12.1     0 -2.36 0.340 0.730  2.51  1464
## 3  12.1     0 -2.49 0.340 0.690  2.49  1543
## 4  12.1     0 -2.80 0.480 0.880  2.52  1579
## 5  12.1     0 -2.93 0.540 0.970  2.59  1482
## 6  12.1     0 -3.16 0.550 1      2.69  1387
## GB
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100     sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl>
## 1  25.2   2    9.07  7.34  11.7 0.110     14
## 2  26.7  12.2  9.34  7.70  12.2 0.120     63
## 3  26.5  27.4  9.59  8.06  12.7 0.110     54
## 4  29.8  36.4  9.88  8.46  13.3 0.1000    46
## 5  25.6  37.2 10.2   8.83  13.8 0.0900    37
## 6  23.5  29.4 10.5   9.05  14.2 0.0800    28
## GB
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  20.0     0  7.83  7.05  11.5 0.310  1087
## 2  20.5     0  8.01  7.02  11.5 0.360  1065
## 3  21.0     0  8.15  6.93  11.3 0.310   973
## 4  20.4     0  8.34  6.81  11.1 0.230   968
## 5  20.4     0  8.56  6.61  10.8 0.190   960
## 6  20.8     0  8.72  6.57  10.7 0.170   977
## GR
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  2.85   0   0.410  4.19  6.47  4.05    10
## 2  4.18   1   0.270  4.11  6.41  3.89    48
## 3  6.66  44.9 0.380  4.09  6.20  3.78   207
## 4  6.75 136.  1.29   4.14  6.02  3.68   400
## 5  5.70 228.  1.68   4.30  6.05  3.70   546
## 6  3.98 295.  2.85   4.08  5.57  4.09   585
## GR
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  2.58     0 1.55   4.17  6.42  5.49   557
## 2  2.45     0 1.43   4.20  6.51  5.65   555
## 3  3.10     0 0.980  4.15  6.43  5.79   557
## 4  3.16     0 0.800  4.12  6.37  4.81   559
## 5  2.85     0 0.670  4.17  6.42  4.32   597
## 6  2.85     0 0.410  4.19  6.47  4.05   608
## HU
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  1.33     0 -8.16  1.97  3.47  3.60    14
## 2  1.33     0 -7.82  2.06  3.79  3.54    15
## 3  1.33     0 -7.47  2.12  4.04  3.5     11
## 4  1.33     0 -7.31  2.16  4.17  3.19     9
## 5  1.33     0 -7.21  2.18  4.22  3.22     6
## 6  1.33     0 -7.06  2.16  4.15  3.25     5
## IE
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  6.47     0  9.43  6.26  10.4     0  132.
## 2  6.49     0  9.40  6.45  10.7     0  132.
## 3  6.58     0  9.47  6.63  11       0  132.
## 4  6.78     0  9.60  6.47  10.8     0  131.
## 5  7.25     0  9.59  6.63  11.0     0  134.
## 6  8.61     0  9.72  7.11  11.7     0  132.
## IE
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  5.99     0  5.48  8.99  14.1     0  1580
## 2  6.06     0  5.16  8.79  13.8     0  1586
## 3  5.98     0  4.94  8.63  13.5     0  1549
## 4  6.02     0  4.66  8.45  13.2     0  1577
## 5  5.95     0  4.62  8.20  12.9     0  1499
## 6  5.96     0  4.48  7.68  12.2     0  1423
## IT
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  6.62     0  9.59 0.520 0.900 0.890  2792
## 2  6.62     0  9.24 0.420 0.730 0.890  2562
## 3  6.62     0  8.94 0.410 0.760 0.890  2128
## 4  6.62     0  8.78 0.350 0.680 0.890  2079
## 5  6.62     0  8.30 0.350 0.690 0.890  2127
## 6  6.61     0  8.47 0.320 0.650 0.870  2080
## IT
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  11.1   0    13.9  1.31  2.44  1.68    97
## 2  10.8  15.4  13.9  1.28  2.36  1.68   901
## 3  12.5  74.2  14.2  1.30  2.31  1.68  2046
## 4  12.2 153.   15.2  1.29  2.20  1.66  2817
## 5  14.8 229.   15.7  1.34  2.18  1.64  3005
## 6  20.1 285.   16.6  1.44  2.19  1.59  3101
## IT
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  6.62     0  9.59 0.520 0.900 0.890   530
## 2  6.62     0  9.24 0.420 0.730 0.890   438
## 3  3.80     0  3.05 0.360 0.960 1.33    486
## 4  4.11     0  3.13 0.380 1.05  1.23    560
## 5  4.64     0  3.32 0.410 1.12  1.19    569
## 6  5.31     0  3.29 0.460 1.19  1.17    587
## LT
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.450     0 0.710  7.40  11.9  2.09    52
## 2 0.450     0 0.660  7.31  11.8  2.28    49
## 3 0.460     0 0.680  7.18  11.6  2.42    38
## 4 0.460     0 0.670  7.01  11.3  2.49    58
## 5 0.460     0 0.620  6.91  11.2  2.55    45
## 6 0.460     0 0.630  6.89  11.2  2.61    37
## LT
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.450     0 0.710  7.40  11.9  2.09   263
## 2 0.450     0 0.660  7.31  11.8  2.28   256
## 3 0.460     0 0.680  7.18  11.6  2.42   247
## 4 0.460     0 0.670  7.01  11.3  2.49   238
## 5 0.460     0 0.620  6.91  11.2  2.55   236
## 6 0.460     0 0.630  6.89  11.2  2.61   228
## LV
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100     sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl>
## 1  2.11 312.   7.5   2.95  3.99 0.0400   750
## 2  2.10 241.   7.05  3.19  4.46 0.0400   761
## 3  2.10 163.   6.67  3.19  5.04 0.0400   754
## 4  2.09  73.9  6.40  3.28  5.86 0.0400   752
## 5  2.09  11.7  3.33  3.48  6.69 0.0400   937
## 6  2.09   0    2.82  3.76  7.23 0.0400   727
## NL
## # A tibble: 6 x 7
##      ro    ssrd   t2m  ws10 ws100    sd     y
##   <dbl>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.680   0.300  2.02  6.05  10.1 0.180    31
## 2 0.680  33.2    2.32  6.32  10.0 0.170   125
## 3 0.680  81.5    2.91  6.29  10.4 0.170   247
## 4 0.690 122.     3.59  6.36  10.7 0.160   313
## 5 0.690 139.     4.23  6.49  10.1 0.160   283
## 6 0.690 140.     4.59  6.19  10.4 0.130   179
## NL
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.590     0  2.39  5.48  9.54 0.410  1306
## 2 0.600     0  2.23  5.59  9.67 0.330  1302
## 3 0.600     0  2.14  5.62  9.74 0.280  1331
## 4 0.600     0  2.04  5.63  9.79 0.240  1206
## 5 0.600     0  2.01  5.31  9.33 0.220  1262
## 6 0.600     0  1.86  5.93 10.1  0.200  1568
## NO
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  34.4     0  1.79  2.58  5.04  68.2 1238.
## 2  35.3     0  1.85  2.59  5.06  68.2 1230.
## 3  35.0     0  1.88  2.62  5.09  68.3 1232.
## 4  34.0     0  1.86  2.68  5.16  66.7 1234.
## 5  35.5     0  1.82  2.71  5.26  66.6 1228.
## 6  34.8     0  1.86  2.73  5.31  66.8 1223.
## NO
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  34.4     0  1.79  2.58  5.04  68.2  498.
## 2  35.3     0  1.85  2.59  5.06  68.2  479.
## 3  35.0     0  1.88  2.62  5.09  68.3  423.
## 4  34.0     0  1.86  2.68  5.16  66.7  408.
## 5  35.5     0  1.82  2.71  5.26  66.6  416.
## 6  34.8     0  1.86  2.73  5.31  66.8  379.
## PL
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  2.07     0 0.740  4.88  8.90  2.65  173.
## 2  2.07     0 0.770  5.05  9.20  4.92  173.
## 3  2.07     0 0.780  5.22  9.48  4.90  173.
## 4  2.08     0 0.900  5.45  9.84  4.89  173.
## 5  2.13     0 1.10   5.75 10.3   2.64  173.
## 6  2.25     0 1.34   6.04 10.7   2.01  173.
## PL
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  2.94     0 0.200  4.25  7.54  4.44 1440.
## 2  2.91     0 0.240  4.26  7.53  4.44 1444.
## 3  2.93     0 0.470  4.33  7.61  4.43 1509.
## 4  2.94     0 0.610  4.38  7.67  3.86 1548.
## 5  2.92     0 0.740  4.36  7.64  3.70 1619.
## 6  2.89     0 0.910  4.36  7.64  3.63 1660.
## PT
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  1.53     0  3.31  1.88  3.57     0  967.
## 2  1.53     0  2.92  1.88  3.53     0  568.
## 3  1.53     0  2.36  1.89  3.60     0  392.
## 4  1.53     0  2.20  1.90  3.63     0  404.
## 5  1.53     0  1.91  1.93  3.70     0  410.
## 6  1.52     0  1.56  1.92  3.73     0  569.
## PT
## # A tibble: 6 x 7
##      ro    ssrd   t2m  ws10 ws100    sd     y
##   <dbl>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  1.71   0      1.46  1.92  3.87     0   0.3
## 2  1.70   0.200  1.83  1.89  3.80     0  50.9
## 3  1.70  64.4    2.76  1.96  3.70     0 177  
## 4  1.71 212      8.16  1.99  3.74     0 253  
## 5  1.70 347.     9.80  1.66  2.94     0 279. 
## 6  1.70 438     11.1   1.60  2.32     0 290.
## PT
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  1.53     0  3.31  1.88  3.57     0  513.
## 2  1.53     0  2.92  1.88  3.53     0  551 
## 3  1.53     0  2.36  1.89  3.60     0  596.
## 4  1.53     0  2.20  1.90  3.63     0  706.
## 5  1.53     0  1.91  1.93  3.70     0  720.
## 6  1.52     0  1.56  1.92  3.73     0  765.
## RO
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  2.75     0 -5.28  2.30  4.86  19.3  655.
## 2  2.75     0 -5.56  2.33  4.95  19.1  823.
## 3  2.75     0 -6.34  2.35  5.01  19.1  780.
## 4  2.77     0 -6.56  2.38  5.08  19.7  733.
## 5  2.77     0 -6.60  2.40  5.16  19.8  737.
## 6  2.77     0 -6.84  2.44  5.29  19.8  869.
## RO
## # A tibble: 6 x 7
##      ro    ssrd    t2m  ws10 ws100    sd     y
##   <dbl>   <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  2.77   0.100 -2.17   3.88  7.47  19.3  19.6
## 2  2.77  29     -2.06   4.09  7.55  19.3  92.2
## 3  2.77 110.    -1.80   4.25  7.43  19.3 173. 
## 4  2.77 196.    -1.53   4.5   7.36  19.4 226. 
## 5  2.77 257.    -0.340  4.77  7.44  19.6 251. 
## 6  2.78 290.    -0.230  4.94  7.65  19.6 274.
## RO
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  2.73     0 -1.79  3.54  7.23  18.8  872.
## 2  2.73     0 -2.19  3.45  7.07  18.8  753.
## 3  2.73     0 -3.10  3.37  6.92  18.8  553.
## 4  2.76     0 -3.24  3.39  6.95  18.9  463.
## 5  2.76     0 -3.41  3.45  7.03  18.9  488.
## 6  2.76     0 -3.44  3.59  7.19  19.3  622.
## RS
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100     sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl>
## 1 0.75    0   -3.84 0.790  1.5  0.120    421
## 2 0.760   0   -4.02 1.14   2    0.1000   540
## 3 0.75    0   -4.27 1.16   2.05 0.1000   626
## 4 0.75    0   -4.13 1.26   2.20 0.0900  1008
## 5 0.75   18.2 -4.12 1.37   2.27 0.0900  1224
## 6 0.75   93   -2.90 1.49   2.21 0.0900  1202
## SE
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  14.3     0 -6.24  2.31  4.31  35.3  2366
## 2  14.3     0 -6.47  2.11  3.96  33.2  2203
## 3  14.3     0 -6.75  1.93  3.65  33.2  2083
## 4  14.3     0 -7.03  1.79  3.43  33.3  1930
## 5  14.3     0 -7.14  1.65  3.23  35.5  1830
## 6  14.3     0 -7.28  1.52  3     35.8  1691
## SI
## # A tibble: 6 x 7
##      ro    ssrd    t2m  ws10 ws100    sd     y
##   <dbl>   <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  1.76   0     -12.8  0.760 1.64   20.9  242.
## 2  1.75   0     -11.9  0.610 0.930  20.2  199.
## 3  1.75   0     -11.6  0.600 0.860  20.0  227.
## 4  1.94   0.800 -10.5  0.560 0.770  19.9  316.
## 5  1.94  43.5    -9.57 0.520 0.710  19.9  454 
## 6  1.94 100.     -7.45 0.360 0.590  19.6  469.
## SI
## # A tibble: 6 x 7
##      ro    ssrd    t2m  ws10 ws100    sd     y
##   <dbl>   <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  1.94   0.800 -10.5  0.560 0.770  19.9  1.33
## 2  1.94  43.5    -9.57 0.520 0.710  19.9  4.97
## 3  1.94 100.     -7.45 0.360 0.590  19.6  8.23
## 4  1.94 126.     -4.33 0.590 1.02   19.3 11.4 
## 5  1.94 151.     -3.27 0.720 1.22   18.9 11.7 
## 6  1.93 157.     -2.51 0.480 0.890  18.6  9.84
## SK
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.770     0 -6.37 1.09   1.64  3.02  277.
## 2 0.770     0 -6.24 1.03   1.53  3.02  278.
## 3 0.770     0 -6.01 1.01   1.5   3.02  278.
## 4 0.770     0 -5.81 0.950  1.45  3.21  278.
## 5 0.770     0 -5.67 0.840  1.35  3.32  280.
## 6 0.770     0 -5.76 0.680  1.20  3.33  280.
## SK
## # A tibble: 6 x 7
##      ro  ssrd   t2m  ws10 ws100    sd     y
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.770     0 -6.37 1.09   1.64  3.02   3.8
## 2 0.770     0 -6.24 1.03   1.53  3.02   3.8
## 3 0.770     0 -6.01 1.01   1.5   3.02   3.8
## 4 0.770     0 -5.81 0.950  1.45  3.21   3.8
## 5 0.770     0 -5.67 0.840  1.35  3.32   3.8
## 6 0.770     0 -5.76 0.680  1.20  3.33   3.8
print(head(res))
## # A tibble: 6 x 6
##   filename          nt mnodes  mtry oob_cor oob_nmae
##   <chr>          <dbl>  <dbl> <dbl>   <dbl>    <dbl>
## 1 AT_ror.feather    50    100     1   0.669    0.187
## 2 AT_ror.feather    50    100     2   0.705    0.172
## 3 AT_ror.feather    50    100     3   0.717    0.167
## 4 AT_ror.feather    50    100     4   0.717    0.166
## 5 AT_ror.feather    50    100     5   0.719    0.165
## 6 AT_ror.feather    50    100     6   0.715    0.165
write_rds(res, sprintf("hyperparams-%s.rds", NUTS_LEVEL))