-
Notifications
You must be signed in to change notification settings - Fork 0
/
util.py
509 lines (427 loc) · 17.5 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
import os
import glob
import copy
import random
import pickle
import numpy as np
from plyfile import PlyData
import torch
from torch import nn
from torch.nn.modules.conv import _ConvNd
from torch.nn.modules.batchnorm import _BatchNorm
import torch.nn.init as initer
import torch.nn.functional as F
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def set_seed(seed=1):
print('Using random seed', seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
def get_lr(optimizer):
return optimizer.param_groups[0]['lr']
def adjust_lr(optimizer, new_lr):
for param_group in optimizer.param_groups:
param_group['lr'] = new_lr
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv2d') != -1:
nn.init.xavier_normal_(m.weight.data)
try:
nn.init.constant_(m.bias.data, 0.0)
except AttributeError:
pass
elif classname.find('Linear') != -1:
nn.init.xavier_normal_(m.weight.data)
try:
nn.init.constant_(m.bias.data, 0.0)
except AttributeError:
pass
def bn_momentum_adjust(m, momentum):
if isinstance(m, nn.BatchNorm2d) or \
isinstance(m, nn.BatchNorm1d):
m.momentum = momentum
def intersectionAndUnion(output, target, K, ignore_index=255):
# 'K' classes, output and target sizes are N or N * L or N * H * W, each value in range 0 to K - 1.
assert (output.ndim in [1, 2, 3])
assert output.shape == target.shape
output = output.reshape(output.size).copy()
target = target.reshape(target.size)
output[np.where(target == ignore_index)[0]] = 255
target[np.where(target == ignore_index)[0]] = 255
intersection = output[np.where(output == target)[0]]
area_intersection, _ = np.histogram(intersection, bins=np.arange(K+1))
area_output, _ = np.histogram(output, bins=np.arange(K+1))
area_target, _ = np.histogram(target, bins=np.arange(K+1))
area_union = area_output + area_target - area_intersection
return area_intersection, area_union, area_target
def calc_victim_value(class_value, label, victim_class):
values = []
for lbl in victim_class:
if label is None or (label == lbl).any():
values.append(class_value[lbl])
return np.mean(values)
def check_makedirs(dir_name):
if not os.path.exists(dir_name):
os.makedirs(dir_name)
def init_weights(model, conv='kaiming', batchnorm='normal', linear='kaiming', lstm='kaiming'):
"""
:param model: Pytorch Model which is nn.Module
:param conv: 'kaiming' or 'xavier'
:param batchnorm: 'normal' or 'constant'
:param linear: 'kaiming' or 'xavier'
:param lstm: 'kaiming' or 'xavier'
"""
for m in model.modules():
if isinstance(m, (_ConvNd)):
if conv == 'kaiming':
initer.kaiming_normal_(m.weight)
elif conv == 'xavier':
initer.xavier_normal_(m.weight)
else:
raise ValueError("init type of conv error.\n")
if m.bias is not None:
initer.constant_(m.bias, 0)
elif isinstance(m, _BatchNorm):
if batchnorm == 'normal':
initer.normal_(m.weight, 1.0, 0.02)
elif batchnorm == 'constant':
initer.constant_(m.weight, 1.0)
else:
raise ValueError("init type of batchnorm error.\n")
initer.constant_(m.bias, 0.0)
elif isinstance(m, nn.Linear):
if linear == 'kaiming':
initer.kaiming_normal_(m.weight)
elif linear == 'xavier':
initer.xavier_normal_(m.weight)
else:
raise ValueError("init type of linear error.\n")
if m.bias is not None:
initer.constant_(m.bias, 0)
elif isinstance(m, nn.LSTM):
for name, param in m.named_parameters():
if 'weight' in name:
if lstm == 'kaiming':
initer.kaiming_normal_(param)
elif lstm == 'xavier':
initer.xavier_normal_(param)
else:
raise ValueError("init type of lstm error.\n")
elif 'bias' in name:
initer.constant_(param, 0)
def convert_to_syncbn(model):
def recursive_set(cur_module, name, module):
if len(name.split('.')) > 1:
recursive_set(
getattr(cur_module, name[:name.find('.')]), name[name.find('.')+1:], module)
else:
setattr(cur_module, name, module)
from sync_bn import SynchronizedBatchNorm1d, SynchronizedBatchNorm2d, \
SynchronizedBatchNorm3d
for name, m in model.named_modules():
if isinstance(m, nn.BatchNorm1d):
recursive_set(model, name, SynchronizedBatchNorm1d(
m.num_features, m.eps, m.momentum, m.affine))
elif isinstance(m, nn.BatchNorm2d):
recursive_set(model, name, SynchronizedBatchNorm2d(
m.num_features, m.eps, m.momentum, m.affine))
elif isinstance(m, nn.BatchNorm3d):
recursive_set(model, name, SynchronizedBatchNorm3d(
m.num_features, m.eps, m.momentum, m.affine))
def lbl2rgb(label, names):
"""Convert label to rgb colors.
label: [N]
"""
from config import NAME2COLOR
if len(names) == 13:
colors = NAME2COLOR['S3DIS']
else:
colors = NAME2COLOR['ScanNet']
rgb = np.zeros((label.shape[0], 3))
uni_lbl = np.unique(label).astype(np.uint8)
for lbl in uni_lbl:
mask = (label == lbl)
rgb[mask] = np.tile(np.array(
colors[names[lbl]])[None, :], (mask.sum(), 1))
return rgb
def convert2vis(xyz, label, names):
"""Assign color to each point according to label."""
rgb = lbl2rgb(label, names) * 255.
data = np.concatenate([xyz, rgb], axis=1)
return data
def proc_pert(points, gt, pred, folder,
names, part=False, ignore_label=255):
"""Process and save files for visulization in perturbation attack."""
check_makedirs(folder)
lbl2cls = {i: names[i] for i in range(len(names))}
np.savetxt(os.path.join(folder, 'all_points.txt'), points, delimiter=';')
gt_seg = convert2vis(points[gt != ignore_label, :3],
gt[gt != ignore_label], names)
pred_seg = convert2vis(points[gt != ignore_label, :3],
pred[gt != ignore_label], names)
np.savetxt(os.path.join(folder, 'gt.txt'),
gt_seg, delimiter=';')
np.savetxt(os.path.join(folder, 'pred.txt'),
pred_seg, delimiter=';')
if part:
uni_lbl = np.unique(gt[gt != ignore_label]).astype(np.uint8)
for lbl in uni_lbl:
lbl = int(lbl)
mask = (gt == lbl)
sel_points = points[mask]
mask = (gt[gt != ignore_label] == lbl)
sel_seg = pred_seg[mask]
np.savetxt(
os.path.join(folder, '{}_{}_points.txt'.format(
lbl, lbl2cls[lbl])),
sel_points, delimiter=';')
np.savetxt(
os.path.join(folder, '{}_{}_pred.txt'.format(
lbl, lbl2cls[lbl])),
sel_seg, delimiter=';')
def proc_add(points, noise, gt, pred, noise_pred, folder,
names, part=False, ignore_label=255):
"""Process and save files for visulization in adding attack."""
check_makedirs(folder)
lbl2cls = {i: names[i] for i in range(len(names))}
np.savetxt(os.path.join(folder, 'all_points.txt'), points, delimiter=';')
np.savetxt(os.path.join(folder, 'noise_points.txt'), noise, delimiter=';')
gt_seg = convert2vis(points[gt != ignore_label, :3],
gt[gt != ignore_label], names)
pred_seg = convert2vis(points[gt != ignore_label, :3],
pred[gt != ignore_label], names)
noise_seg = convert2vis(noise[:, :3], noise_pred, names)
np.savetxt(os.path.join(folder, 'gt.txt'),
gt_seg, delimiter=';')
np.savetxt(os.path.join(folder, 'pred.txt'),
pred_seg, delimiter=';')
np.savetxt(os.path.join(folder, 'noise_pred.txt'),
noise_seg, delimiter=';')
if part:
uni_lbl = np.unique(gt[gt != ignore_label]).astype(np.uint8)
for lbl in uni_lbl:
lbl = int(lbl)
mask = (gt == lbl)
sel_points = points[mask]
mask = (gt[gt != ignore_label] == lbl)
sel_seg = pred_seg[mask]
np.savetxt(
os.path.join(folder, '{}_{}_points.txt'.format(
lbl, lbl2cls[lbl])),
sel_points, delimiter=';')
np.savetxt(
os.path.join(folder, '{}_{}_pred.txt'.format(
lbl, lbl2cls[lbl])),
sel_seg, delimiter=';')
def save_vis(pred_root, save_root, data_root):
from config import CLASS_NAMES
if 'S3DIS' in data_root: # save Area5 data
names = CLASS_NAMES['S3DIS']['other']
gt_save = load_pickle(
os.path.join(pred_root, 'gt_5.pickle'))['gt']
pred_save = load_pickle(
os.path.join(pred_root, 'pred_5.pickle'))['pred']
assert len(gt_save) == len(pred_save)
all_rooms = sorted(os.listdir(data_root))
all_rooms = [
room for room in all_rooms if 'Area_5' in room
]
assert len(gt_save) == len(all_rooms)
check_makedirs(save_root)
for i, room in enumerate(all_rooms):
points = np.load(os.path.join(data_root, room))[:, :6]
folder = os.path.join(save_root, room[:-4])
check_makedirs(folder)
proc_pert(points, gt_save[i], pred_save[i],
folder, names, part=True)
elif 'ScanNet' in data_root: # save val set data
names = CLASS_NAMES['ScanNet']['other']
gt_save = load_pickle(
os.path.join(pred_root, 'gt_val.pickle'))['gt']
pred_save = load_pickle(
os.path.join(pred_root, 'pred_val.pickle'))['pred']
assert len(gt_save) == len(pred_save)
data_file = os.path.join(
data_root, 'scannet_val_rgb21c_pointid.pickle')
file_pickle = open(data_file, 'rb')
xyz_all = pickle.load(file_pickle)
file_pickle.close()
assert len(xyz_all) == len(gt_save)
with open(os.path.join(
data_root, 'meta_data/scannetv2_val.txt')) as fl:
scene_id = fl.read().splitlines()
assert len(scene_id) == len(gt_save)
check_makedirs(save_root)
for i in range(len(gt_save)):
points = xyz_all[i][:, :6]
folder = os.path.join(save_root, scene_id[i])
check_makedirs(folder)
proc_pert(points, gt_save[i], pred_save[i],
folder, names, part=True)
def save_vis_mink(pred_root, save_root, data_root):
from config import CLASS_NAMES
def load_data(file_name):
plydata = PlyData.read(file_name)
data = plydata.elements[0].data
coords = np.array([data['x'], data['y'], data['z']],
dtype=np.float32).T
colors = np.array([data['red'], data['green'],
data['blue']], dtype=np.float32).T
return np.concatenate([coords, colors], axis=1)
if 'S3DIS' in data_root: # save Area5 data
names = CLASS_NAMES['S3DIS']['mink']
gt_save = load_pickle(
os.path.join(pred_root, 'gt_5.pickle'))['gt']
pred_save = load_pickle(
os.path.join(pred_root, 'pred_5.pickle'))['pred']
assert len(gt_save) == len(pred_save)
data_root = os.path.join(data_root, 'Area_5')
all_rooms = sorted(os.listdir(data_root))
assert len(all_rooms) == len(gt_save)
check_makedirs(save_root)
for i, room in enumerate(all_rooms):
data = os.path.join(data_root, room)
points = load_data(data)
folder = os.path.join(
save_root, 'Area_5_{}'.format(room[:-4]))
check_makedirs(folder)
proc_pert(points, gt_save[i], pred_save[i],
folder, names, part=True)
elif 'ScanNet' in data_root: # save val set
names = CLASS_NAMES['ScanNet']['mink']
gt_save = load_pickle(
os.path.join(pred_root, 'gt_val.pickle'))['gt']
pred_save = load_pickle(
os.path.join(pred_root, 'pred_val.pickle'))['pred']
assert len(gt_save) == len(pred_save)
data_root = os.path.join(data_root, 'train')
with open(os.path.join(
data_root, 'scannetv2_val.txt'), 'r') as f:
all_rooms = f.readlines()
all_rooms = [room[:-1] for room in all_rooms]
assert len(all_rooms) == len(gt_save)
check_makedirs(save_root)
for i, room in enumerate(all_rooms):
data = os.path.join(data_root, room)
points = load_data(data)
folder = os.path.join(save_root, room[:-4])
check_makedirs(folder)
proc_pert(points, gt_save[i], pred_save[i],
folder, names, part=True)
def save_vis_from_pickle(pkl_root, save_root=None, room_idx=52,
room_name='scene0354_00'):
names = [
'wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
'curtain', 'refrigerator', 'showercurtain', 'toilet', 'sink',
'bathtub', 'otherfurniture'
]
data = load_pickle(pkl_root)
points = data['data'][room_idx]
pred = data['pred'][room_idx]
gt = data['gt'][room_idx]
if save_root is None:
save_root = os.path.dirname(pkl_root)
save_folder = os.path.join(save_root, room_name)
proc_pert(points, gt, pred, save_folder, names, part=True)
def save_pickle(filename, dict_data):
with open(filename, 'wb') as handle:
pickle.dump(dict_data, handle,
protocol=pickle.HIGHEST_PROTOCOL)
def load_pickle(filename):
with open(filename, 'rb') as f:
data = pickle.load(f)
return data
def load_s3dis_instance(folder, name2cls, load_name=['chair']):
"""Load S3DIS room in a Inst Seg format.
Get each instance separately.
If load_name is None or [], return all instances.
Returns a list of [np.array of [N, 6], label]
"""
cls2name = {name2cls[name]: name for name in name2cls.keys()}
anno_path = os.path.join(folder, 'Annotations')
points_list = []
labels_list = []
idx = 0
files = glob.glob(os.path.join(anno_path, '*.txt'))
files.sort()
for f in files:
cls = os.path.basename(f).split('_')[0]
if cls not in name2cls.keys():
cls = 'clutter'
points = np.loadtxt(f) # [N, 6]
num = points.shape[0]
points_list.append(points)
labels_list.append((idx, idx + num, name2cls[cls]))
idx += num
# normalize points coords by minus min
data = np.concatenate(points_list, 0)
xyz_min = np.amin(data, axis=0)[0:3]
data[:, 0:3] -= xyz_min
# rearrange to separate instances
if load_name is None or not load_name:
load_name = list(name2cls.keys())
instances = [
[data[pair[0]:pair[1]], pair[2]] for pair in labels_list if
cls2name[pair[2]] in load_name
]
return instances
def cal_loss(pred, gold, smoothing=False, ignore_index=255):
''' Calculate cross entropy loss, apply label smoothing if needed. '''
gold = gold.contiguous().view(-1)
if smoothing:
eps = 0.2
n_class = pred.size(1)
one_hot = torch.zeros_like(pred).scatter(1, gold.view(-1, 1), 1)
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
log_prb = F.log_softmax(pred, dim=1)
loss = -(one_hot * log_prb).sum(dim=1).mean()
else:
loss = F.cross_entropy(
pred, gold, reduction='mean',
ignore_index=ignore_index)
return loss
class IOStream():
def __init__(self, path):
self.f = open(path, 'a')
def cprint(self, text):
print(text)
self.f.write(text+'\n')
self.f.flush()
def close(self):
self.f.close()
# # Example input shapes
# batch_size = 32
# num_points = 2048
# num_classes = 2
# # Create random prediction tensor with shape [batch_size, num_classes, num_points]
# pred = torch.randn(batch_size, num_classes, num_points)
# # Create target tensor with shape [batch_size, num_points] containing 0s and 1s
# gold = torch.randint(0, num_classes, (batch_size, num_points))
# print(f"Prediction shape: {pred.shape}") # Expected: [batch_size * num_points, num_classes]
# print(f"Target shape: {gold.shape}") # Expected: [batch_size * num_points]
# # Reshape pred to [batch_size * num_points, num_classes]
# pred = pred.permute(0, 2, 1).contiguous().view(-1, num_classes)
# # Reshape gold to [batch_size * num_points]
# gold = gold.view(-1)
# # Calculate cross-entropy loss
# loss = F.cross_entropy(pred, gold)
# print(f"Prediction shape: {pred.shape}") # Expected: [batch_size * num_points, num_classes]
# print(f"Target shape: {gold.shape}") # Expected: [batch_size * num_points]
# print(f"Loss: {loss.item()}")