forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_train_efficientnet.py
executable file
·66 lines (58 loc) · 2.2 KB
/
benchmark_train_efficientnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#!/usr/bin/env python3
import gc
import time
from tqdm import trange
from extra.models.efficientnet import EfficientNet
from tinygrad.nn.state import get_parameters
from tinygrad.nn import optim
from tinygrad import Tensor, GlobalCounters
from tinygrad.helpers import getenv
from tinygrad.jit import CacheCollector
def tensors_allocated():
return sum(isinstance(x, Tensor) for x in gc.get_objects())
NUM = getenv("NUM", 2)
BS = getenv("BS", 8)
CNT = getenv("CNT", 10)
BACKWARD = getenv("BACKWARD", 0)
TRAINING = getenv("TRAINING", 1)
ADAM = getenv("ADAM", 0)
CLCACHE = getenv("CLCACHE", 0)
if __name__ == "__main__":
print(f"NUM:{NUM} BS:{BS} CNT:{CNT}")
model = EfficientNet(NUM, classes=1000, has_se=False, track_running_stats=False)
parameters = get_parameters(model)
for p in parameters: p.realize()
if ADAM: optimizer = optim.Adam(parameters, lr=0.001)
else: optimizer = optim.SGD(parameters, lr=0.001)
Tensor.training = TRAINING
Tensor.no_grad = not BACKWARD
for i in trange(CNT):
GlobalCounters.reset()
cpy = time.monotonic()
x_train = Tensor.randn(BS, 3, 224, 224, requires_grad=False).realize()
y_train = Tensor.randn(BS, 1000, requires_grad=False).realize()
# TODO: replace with TinyJit
if i < 3 or not CLCACHE:
st = time.monotonic()
out = model.forward(x_train)
loss = out.log_softmax().mul(y_train).mean()
if i == 2 and CLCACHE: CacheCollector.start()
if BACKWARD:
optimizer.zero_grad()
loss.backward()
optimizer.step()
mt = time.monotonic()
loss.realize()
for p in parameters:
p.realize()
et = time.monotonic()
else:
st = mt = time.monotonic()
for prg, args in cl_cache: prg(*args)
et = time.monotonic()
if i == 2 and CLCACHE:
cl_cache = CacheCollector.finish()
mem_used = GlobalCounters.mem_used
loss_cpu = loss.detach().numpy()
cl = time.monotonic()
print(f"{(st-cpy)*1000.0:7.2f} ms cpy, {(cl-st)*1000.0:7.2f} ms run, {(mt-st)*1000.0:7.2f} ms build, {(et-mt)*1000.0:7.2f} ms realize, {(cl-et)*1000.0:7.2f} ms CL, {loss_cpu:7.2f} loss, {tensors_allocated():4d} tensors, {mem_used/1e9:.2f} GB used, {GlobalCounters.global_ops*1e-9/(cl-st):9.2f} GFLOPS")