forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_efficientnet.py
105 lines (89 loc) · 3.04 KB
/
train_efficientnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import traceback
import time
from multiprocessing import Process, Queue
import numpy as np
from tqdm import trange
from tinygrad.nn.state import get_parameters
from tinygrad.nn import optim
from tinygrad.helpers import getenv
from tinygrad.tensor import Tensor
from extra.datasets import fetch_cifar
from extra.models.efficientnet import EfficientNet
class TinyConvNet:
def __init__(self, classes=10):
conv = 3
inter_chan, out_chan = 8, 16 # for speed
self.c1 = Tensor.uniform(inter_chan,3,conv,conv)
self.c2 = Tensor.uniform(out_chan,inter_chan,conv,conv)
self.l1 = Tensor.uniform(out_chan*6*6, classes)
def forward(self, x):
x = x.conv2d(self.c1).relu().max_pool2d()
x = x.conv2d(self.c2).relu().max_pool2d()
x = x.reshape(shape=[x.shape[0], -1])
return x.dot(self.l1)
if __name__ == "__main__":
IMAGENET = getenv("IMAGENET")
classes = 1000 if IMAGENET else 10
TINY = getenv("TINY")
TRANSFER = getenv("TRANSFER")
if TINY:
model = TinyConvNet(classes)
elif TRANSFER:
model = EfficientNet(getenv("NUM", 0), classes, has_se=True)
model.load_from_pretrained()
else:
model = EfficientNet(getenv("NUM", 0), classes, has_se=False)
parameters = get_parameters(model)
print("parameter count", len(parameters))
optimizer = optim.Adam(parameters, lr=0.001)
BS, steps = getenv("BS", 64 if TINY else 16), getenv("STEPS", 2048)
print(f"training with batch size {BS} for {steps} steps")
if IMAGENET:
from extra.datasets.imagenet import fetch_batch
def loader(q):
while 1:
try:
q.put(fetch_batch(BS))
except Exception:
traceback.print_exc()
q = Queue(16)
for i in range(2):
p = Process(target=loader, args=(q,))
p.daemon = True
p.start()
else:
X_train, Y_train, _, _ = fetch_cifar()
X_train = X_train.reshape((-1, 3, 32, 32))
Y_train = Y_train.reshape((-1,))
with Tensor.train():
for i in (t := trange(steps)):
if IMAGENET:
X, Y = q.get(True)
else:
samp = np.random.randint(0, X_train.shape[0], size=(BS))
X, Y = X_train.numpy()[samp], Y_train.numpy()[samp]
st = time.time()
out = model.forward(Tensor(X.astype(np.float32), requires_grad=False))
fp_time = (time.time()-st)*1000.0
y = np.zeros((BS,classes), np.float32)
y[range(y.shape[0]),Y] = -classes
y = Tensor(y, requires_grad=False)
loss = out.log_softmax().mul(y).mean()
optimizer.zero_grad()
st = time.time()
loss.backward()
bp_time = (time.time()-st)*1000.0
st = time.time()
optimizer.step()
opt_time = (time.time()-st)*1000.0
st = time.time()
loss = loss.numpy()
cat = out.argmax(axis=1).numpy()
accuracy = (cat == Y).mean()
finish_time = (time.time()-st)*1000.0
# printing
t.set_description("loss %.2f accuracy %.2f -- %.2f + %.2f + %.2f + %.2f = %.2f" %
(loss, accuracy,
fp_time, bp_time, opt_time, finish_time,
fp_time + bp_time + opt_time + finish_time))
del out, y, loss