forked from Quickblink/verML
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathStrong_Convexity.thy
424 lines (376 loc) · 18.7 KB
/
Strong_Convexity.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
\<^marker>\<open>creator Ralitsa Dardjonova\<close>
theory Strong_Convexity
imports Main "HOL-Analysis.Analysis" "HOL-Analysis.Convex"
begin
paragraph \<open>Summary\<close>
text \<open>In this theory we define strong convexity over euclidean space similar
to the definition of convexity already in Isabelle. Some lemmas about
strong convexity are proven as in
@{cite UnderstandingML}.\<close>
paragraph \<open>Main Definitions\<close>
text \<open>Definition of strong convexity of a function over a set
in euclidean space\<close>
paragraph \<open>Main Theorems\<close>
text \<open>
\<^item> \<open>convex_on_if_strong_convex_on\<close> A function is convex if it is strongly convex
\<^item> \<open>sq_norm_strong_convex\<close>k * |w|^2 is a 2*k strong convex function
\<^item> \<open>strong_convex_sum\<close> sum of a convex and strong convex function is a strong
convex function
\<^item> \<open>strongly_convex_min\<close> For k-strongly convex f and u minimizer of f we have:
f(w) - f(u) >= k/2*|w - u|^2 for every w.
\<close>
text\<open>Definition of strong convexity as defined in UN. The definition follows the
same style as the definition of convexity that already exists in Isabelle\<close>
definition strong_convex_on :: "'a::euclidean_space set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> bool"
where "strong_convex_on S f k \<longleftrightarrow>
(\<forall>x\<in>S. \<forall>y\<in>S. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow>
f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y - (k/2) * u * v * norm(x-y) * norm(x-y) )"
lemma strong_convex_onI:
assumes
"\<And>x y u v. x\<in>S \<Longrightarrow> y\<in>S \<Longrightarrow> u\<ge>0 \<Longrightarrow> v\<ge>0 \<Longrightarrow> u + v = 1 \<Longrightarrow>
f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y - (k/2) * u * v * norm(x-y) * norm(x-y)"
shows "strong_convex_on S f k"
using assms
unfolding strong_convex_on_def
by blast
text\<open>Every strong convex function is a convex function\<close>
lemma convex_on_if_strong_convex_on:
assumes k_pos: "k \<ge> 0"
assumes strong_convex: "strong_convex_on S f k"
shows " convex_on S f"
proof -
have 1:" (\<forall>x\<in>S. \<forall>y\<in>S. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow>
f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y - (k/2) * u * v * norm(x-y) * norm(x-y) )"
unfolding strong_convex_on_def using strong_convex
by (simp add: strong_convex_on_def)
have "\<forall>x\<in>S. \<forall>y\<in>S. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> (k/2) * u * v * norm(x-y) * norm(x-y) \<ge> 0"
using k_pos by simp
then have "\<forall>x\<in>S. \<forall>y\<in>S. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow>
u * f x + v * f y - (k/2) * u * v * norm(x-y) * norm(x-y) \<le>
u * f x + v * f y " by auto
then have "(\<forall>x\<in>S. \<forall>y\<in>S. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow>
f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)" using 1 by smt
then show "convex_on S f" by (simp add: convex_on_def)
qed
lemma sq_norm_sum : "norm (x+y)^2 = norm x ^ 2 + 2 *\<^sub>R (x \<bullet> y) + norm y ^ 2"
for x y :: "'a::euclidean_space"
by (smt inner_commute inner_left_distrib power2_norm_eq_inner scaleR_2)
lemma sq_norm_diff[simp]: "norm (x - y)^2 = norm x ^ 2 - 2 *\<^sub>R (x \<bullet> y) + norm y ^ 2"
for x y :: "'a::euclidean_space"
using sq_norm_sum
by (simp add: inner_commute inner_diff_right power2_norm_eq_inner)
lemma sq_norm_scalar: "norm (u *\<^sub>R x)^2 = u^2 * norm(x)^2"
proof -
have "abs(u)^2 = u^2" by simp
then show "norm (u *\<^sub>R x)^2 = u^2 * norm(x)^2"
using norm_scaleR power2_eq_square
by (simp add: power_mult_distrib)
qed
lemma sq_norm_strong_convex: "strong_convex_on S (\<lambda> w. k * norm(w) * norm(w)) (2*k)"
for S :: "'a::euclidean_space set"
proof (rule strong_convex_onI)
let ?f = "(\<lambda> w. k * norm(w) * norm(w))"
show "\<And> x y u v. x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> 0 \<le> u \<Longrightarrow> 0 \<le> v \<Longrightarrow> u + v = 1 \<Longrightarrow>
?f (u *\<^sub>R x + v *\<^sub>R y) \<le>
u * ?f x + v * ?f y - (2*k/2) * u * v * norm(x-y) * norm(x-y)"
proof -
fix x assume"x\<in>S"
fix y assume"y\<in>S"
fix u assume"(u::real) \<ge> 0"
fix v assume"(v::real) \<ge> 0"
assume "u+v = 1"
then show " ?f (u *\<^sub>R x + v *\<^sub>R y) \<le>
u * ?f x + v * ?f y - (2*k/2) * u * v * norm(x-y) * norm(x-y)"
proof -
have "?f (u *\<^sub>R x + v *\<^sub>R y) = k * (norm (u *\<^sub>R x + v *\<^sub>R y))^2"
by (simp add: power2_eq_square)
also have "k * (norm (u *\<^sub>R x + v *\<^sub>R y))^2 =
k * (norm (u *\<^sub>R x)^2 + (2 * u * v) * (x \<bullet> y) + norm (v *\<^sub>R y)^2)"
by (simp add: sq_norm_sum)
also have " \<dots> = k * (u^2 * norm (x)^2 + (2 * u * v) * (x \<bullet> y) + v^2 * norm (y)^2)"
using sq_norm_scalar by metis
also have "\<dots> = k * u * norm(x)^2 + (2 * k * u * v) * (x \<bullet> y) + k* v * norm (y)^2
- k * u * v * norm(x)^2 - k * u * v * norm(y)^2"
using `u+v = 1` by algebra
also have "\<dots> = k * u * norm(x)^2 + k* v * norm (y)^2
- (k * u * v) * (norm(x)^2 - 2 * (x \<bullet> y) + norm(y)^2)"
using distrib_left sq_norm_diff by argo
also have "\<dots> = k * u * norm(x)^2 + k * v * norm (y)^2 - (k * u * v) * norm(x - y)^2"
by simp
finally have "?f (u *\<^sub>R x + v *\<^sub>R y) =
u * ?f x + v * ?f y - (2 * k/2) * u * v * norm(x-y) * norm(x-y)"
by (simp add: power2_eq_square)
then show ?thesis by linarith
qed
qed
qed
instantiation "fun" :: (type, plus) plus
begin
definition fun_plus_def: "A + B = (\<lambda>x. A x + B x)"
lemma minus_apply [simp, code]: "(A + B) x = A x + B x"
by (simp add: fun_plus_def)
instance ..
end
instantiation "fun" :: (ab_semigroup_add, ab_semigroup_add) ab_semigroup_add
begin
instance proof
fix x y z :: "'a => 'b"
show "x + y + z = x + (y + z)"
unfolding fun_plus_def
by (simp add: add.assoc)
next
fix x y :: "'a => 'b"
show "x + y = y + x"
unfolding fun_plus_def
by (simp add: add.commute)
qed
end
instantiation "fun" :: (comm_monoid_add, comm_monoid_add) comm_monoid_add
begin
definition zero_fun_def: "0 == (\<lambda>x. 0)"
instance proof
fix a :: "'a => 'b"
show "0 + a = a"
unfolding zero_fun_def fun_plus_def by simp
qed
end
lemma convex_fun_add:
assumes "convex_on S f" "convex_on S g"
shows "convex_on S (f + g)"
proof -
have "(f + g) = (\<lambda> x. f x + g x)" using fun_plus_def by auto
moreover have "convex_on S (\<lambda>x. f x + g x)" using assms convex_on_add by auto
ultimately show "convex_on S (f + g)" by auto
qed
text\<open>Sum of a convex and strong convex function is a strong convex function
with the same parameter. The proof follows the proof in UN lemma 13.5(2).\<close>
lemma strong_convex_sum:
assumes "strong_convex_on S f k" "convex_on S g"
shows "strong_convex_on S (f + g) k"
proof (rule strong_convex_onI)
show "\<And> x y u v. x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> 0 \<le> u \<Longrightarrow>0 \<le> v \<Longrightarrow> u + v = 1 \<Longrightarrow>
(f+g) (u *\<^sub>R x + v *\<^sub>R y) \<le>
u * (f+g) x + v * (f+g) y - (k/2) * u * v * norm(x-y) * norm(x-y)"
proof -
fix x assume"x\<in>S"
fix y assume"y\<in>S"
fix u assume"(u::real) \<ge> 0"
fix v assume"(v::real) \<ge> 0"
assume "u+v = 1"
then show "(f+g) (u *\<^sub>R x + v *\<^sub>R y) \<le>
u * (f+g) x + v * (f+g) y - (k/2) * u * v * norm(x-y) * norm(x-y)"
proof -
have 1: "f (u *\<^sub>R x + v *\<^sub>R y) \<le>
u * f x + v * f y - (k/2) * u * v * norm(x-y) * norm(x-y)"
using \<open>0 \<le> u\<close> \<open>0 \<le> v\<close> \<open>u + v = 1\<close> \<open>x \<in> S\<close> \<open>y \<in> S\<close> `strong_convex_on S f k`
unfolding strong_convex_on_def by blast
have 2: " g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * g x + v * g y"
using \<open>0 \<le> u\<close> \<open>0 \<le> v\<close> \<open>u + v = 1\<close> \<open>x \<in> S\<close> \<open>y \<in> S\<close> `convex_on S g `
unfolding convex_on_def by blast
have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le>
u * f x + v * f y - (k/2) * u * v * norm(x-y) * norm(x-y) +
u * g x + v * g y "
using 1 2 by linarith
then show ?thesis by (simp add: distrib_left)
qed
qed
qed
lemma func_norm_negative:
assumes "(l::real)<0"
assumes "\<forall>x. norm (f x - l) < -l"
shows "\<forall>x. f x < 0"
proof (rule ccontr)
assume "\<not> (\<forall>x. f x < 0)"
then show False using assms(2) real_norm_def by smt
qed
lemma LIM_fun_less_zero:
fixes a :: "'b::euclidean_space" and l :: "real"
assumes "f \<midarrow>a\<rightarrow> l" "l < 0" "\<exists>r>0. \<forall>x. x \<noteq> a \<and> norm(a - x) < r"
shows "f x < 0"
proof -
have "\<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> a \<and> norm(a - x) < r \<longrightarrow> norm (f x - l)< -l)"
using LIM_D[of f l a "-l"] assms
by (simp add: norm_minus_commute)
then obtain r where "0 < r" "(\<forall>x. x \<noteq> a \<and> norm(a - x) < r \<longrightarrow> norm (f x - l)< -l)" by auto
then have "(\<forall>x. x \<noteq> a \<and> norm(a - x) < r \<longrightarrow> f x < 0)"
using `l<0` func_norm_negative by auto
then show ?thesis
using \<open>0 < r\<close> assms by blast
qed
lemma metric_LIM_le:
fixes a :: "real"
assumes "f \<midarrow>a\<rightarrow> (l::real)"
assumes "a\<ge>0"
and "\<forall>x>a. f x \<ge> 0"
shows " l \<ge> 0"
proof (rule ccontr)
assume "\<not> (l \<ge> 0)"
then have " l < 0" by simp
then have " \<exists>r>0. \<forall>x. x \<noteq> a \<and> norm(a - x) < r \<longrightarrow> f x < 0"
using assms(1) Limits.LIM_fun_less_zero by auto
then have "\<exists>r>0. \<forall>x>a. x \<noteq> a \<and> norm(a - x) < r \<longrightarrow> f x < 0 \<and> f x \<ge> 0"
using assms(3) by blast
then have "\<exists>r>0. \<forall>x>a. norm(a - x) \<ge> r" by force
then obtain r where "r>0" and " \<forall>x>a. norm(a - x) \<ge> r" by auto
then have 1: "\<forall>x>a. norm(a - x) \<ge> r" by auto
have "\<exists>k. k>0 \<and> k <r "
using `r>0` by (simp add: dense)
then obtain k where "k>0" and "k < r" by auto
then have "\<exists> x. x>a \<and> x-a = k" by smt
then have "\<exists> x>a. norm(a-x) < r \<and> norm(a - x) \<ge> r"
using `k<r`1 by auto
then show False by linarith
qed
lemma metric_LIM_le_zero:
fixes a :: "real"
assumes "f \<midarrow>a\<rightarrow> (l::real)"
assumes "a\<ge>0"
and "\<exists>r>0. \<forall>x>a. norm(a-x) < r \<longrightarrow> f x \<ge> 0"
shows " l \<ge> 0"
proof (rule ccontr)
assume "\<not> (l \<ge> 0)"
then have " l < 0" by simp
then have " \<exists>r>0. \<forall>x. x \<noteq> a \<and> norm(a - x) < r \<longrightarrow> f x < 0"
using assms(1) Limits.LIM_fun_less_zero by auto
then obtain r where "r>0" and 1: "\<forall>x>a. norm(a - x) < r \<longrightarrow> f x < 0" by auto
obtain r1 where "r1>0" and 2: "\<forall>x>a. norm(a-x) < r1 \<longrightarrow> f x \<ge> 0"
using assms(3) by auto
let ?min_r = "min r1 r"
have 3: " r \<ge> ?min_r " by auto
have 4: " r1 \<ge> ?min_r " by auto
have "?min_r>0" using `r>0` `r1>0` by auto
then have 5: "\<forall>x>a. norm(a - x) < ?min_r \<longrightarrow> f x < 0"
using 1 3 by auto
then have "\<forall>x>a. norm(a - x) < ?min_r \<longrightarrow> f x \<ge> 0"
using 2 4 by auto
then have "\<forall>x>a. norm(a - x) < ?min_r \<longrightarrow> f x < 0 \<and> f x \<ge> 0"
using 5 by blast
then have 6: "\<forall>x>a. norm(a - x) \<ge> ?min_r" by force
then have "\<exists>k. k>0 \<and> k <?min_r "
using `?min_r>0` dense by blast
then obtain k where "k>0" and "k < ?min_r" by auto
then have "\<exists> x. x>a \<and> x-a = k" by smt
then have "\<exists> x>a. norm(a-x) < ?min_r \<and> norm(a - x) \<ge> ?min_r"
using `k<?min_r` 6 by auto
then show False using LIM_fun_less_zero
by linarith
qed
lemma norm_mult_const:
assumes "x > 0" " dist t 0 < r/x"
shows "norm(t) * x < r"
using assms nonzero_mult_div_cancel_right
mult_less_le_imp_less[of "norm t" "r/x" "x" "x"] by auto
lemma real_collapse [simp]: "(1 - u) * a * b + (-1) * a * b = - u * a * b"
for a :: "real"
by (simp add: algebra_simps)
lemma real_left_commute: "a * b * x = b * a * x"
for a :: real
by (simp add: mult.commute)
text\<open>The proof of this lemma partially follows the proof of lemma 13.5 (3).
However it was easier to prove that the limit of the difference of the two sides
is greater than 0.\<close>
lemma strongly_convex_min:
assumes "strong_convex_on S f k"
assumes "x \<in> S"
assumes "\<forall>y\<in>S. (f x \<le> f y)"
assumes "w \<in> S"
assumes "convex S"
shows "f w - f x \<ge> (k/2)*norm(w - x)^2"
proof (cases "w = x")
case True
then show ?thesis by auto
next
case False
then show ?thesis
proof(cases "k = 0")
case True
then show ?thesis using assms(3) assms(4) by auto
next
case False
then show ?thesis
proof -
have "(\<forall>x\<in>S. \<forall>y\<in>S. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow>
f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y - (k/2) * u * v * norm(x-y)^2)"
using assms(1) unfolding strong_convex_on_def
by (simp add: power2_eq_square mult.commute mult.left_commute)
then have f_convex:" \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow>
f (u *\<^sub>R w + v *\<^sub>R x) \<le> u * f w + v * f x - (k/2) * u * v * norm(w-x)^2"
using assms(2) assms(4) by blast
have "\<forall>u>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow>
(f (u *\<^sub>R w + (1-u) *\<^sub>R x) - f x )/u \<le> f w - f x - (k/2) * (1-u) * norm(w-x)^2"
proof(rule)+
fix u assume "(u::real) > 0"
fix v assume "(v::real) \<ge> 0"
assume "u + v = 1"
then show "(f (u *\<^sub>R w + (1-u) *\<^sub>R x) - f x )/u \<le> f w - f x - (k/2) * (1-u) * norm(w-x)^2"
proof -
have "f (u *\<^sub>R w + (1-u) *\<^sub>R x)
\<le> u * f w + (1-u) * f x - (k/2) * u * (1-u) * norm(w-x)^2" using `u + v = 1` f_convex
\<open>0 < u\<close> \<open>0 \<le> v\<close> by auto
then have " f (u *\<^sub>R w + (1-u) *\<^sub>R x)/u \<le>
(u * f w + (1-u) * f x - (k/2) * u * (1-u) * norm(w-x)^2)/u" using `u>0`
by (meson divide_right_mono less_eq_real_def)
then have " f (u *\<^sub>R w + (1-u) *\<^sub>R x)/u \<le>
(u * f w)/u + ((1-u) * f x)/u - ((k/2) * u * (1-u) * norm(w-x)^2)/u"
by (simp add: add_divide_distrib diff_divide_distrib)
then have " f (u *\<^sub>R w + (1-u) *\<^sub>R x)/u \<le>
f w + ((1-u) / u)* f x - (k/2) * (1-u) * norm(w-x)^2"
using \<open>0 < u\<close> add_divide_distrib diff_divide_distrib by auto
then have " f (u *\<^sub>R w + (1-u) *\<^sub>R x)/u \<le>
f w + (1/u)* f x + (-u/u)*f x - (k/2) * (1-u) * norm(w-x)^2"
by (simp add: diff_divide_distrib Groups.mult_ac(2) add_diff_eq right_diff_distrib')
then have " f (u *\<^sub>R w + (1-u) *\<^sub>R x)/u - (1/u)* f x \<le>
f w - f x - (k/2) * (1-u) * norm(w-x)^2"
using diff_divide_distrib Groups.mult_ac(2) add_diff_eq right_diff_distrib' `u>0`
by force
then show ?thesis
by (simp add: diff_divide_distrib)
qed
qed
then have 1:"\<forall>u>0. u <= 1 \<longrightarrow>
(\<lambda> t. (f (t *\<^sub>R w + (1-t) *\<^sub>R x) - f x )/t) u \<le>
(\<lambda> t. f w - f x - (k/2) * (1-t) * norm(w-x)^2) u" by smt
have "\<forall>u>0. u <= 1 \<longrightarrow> u *\<^sub>R w + (1 - u) *\<^sub>R x \<in> S "
using assms(2) assms(4) assms(5) by (simp add: convex_def)
then have "\<forall>u>0. u <= 1 \<longrightarrow>
(\<lambda> t. (f (t *\<^sub>R w + (1-t) *\<^sub>R x) - f x )/t) u \<ge> 0" using assms(3)
assms(2) assms(4) by auto
then have 11 : "\<forall>u>0. u <= 1 \<longrightarrow>
0 \<le> (\<lambda> t. f w - f x - (k/2) * (1-t) * norm(w-x)^2) u" using 1 by fastforce
let ?f = "(\<lambda> t. f w - f x - (k/2) * (1-t) * norm(w-x)^2)"
let ?L = "(f w - f x - (k/2) * norm(w-x)^2)"
have "\<forall>t. dist (?f t) ?L = norm(?f t - ?L)"
using dist_norm by blast
then have 2: "\<forall>t. norm(?f t - ?L) =
norm( (k/2) * (1-t) * norm(w-x)^2 + (-1)* (k/2) * norm(w-x)^2)" by auto
then have 3: "\<forall>t. norm(?f t - ?L) = norm(t*(k/2) * norm(w-x)^2)"
using "2" real_left_commute real_collapse real_left_commute
by (metis (no_types, hide_lams) mult_minus_left norm_minus_cancel)
then have "\<forall>t. norm(t*(k/2) * norm(w-x)^2) = norm(t) * norm(k/2) * norm(w-x)^2"
using norm_ge_zero norm_mult power2_eq_square real_norm_def
by smt
then have 5:"\<forall>t. norm(?f t - ?L) = norm(t) * norm(w-x)^2 * norm((k/2))" using 3 by simp
have 55: "norm(w-x)^2 * norm((k/2)) > 0" using `w \<noteq> x` `k \<noteq> 0`
by (metis divide_eq_0_iff divide_less_eq norm_zero right_minus_eq
zero_less_norm_iff zero_less_power2 zero_neq_numeral)
then have "\<forall>r. \<forall>t. t \<noteq> 0 \<and> dist t 0 < ( r/(norm(w-x)^2 * norm(k/2))) \<longrightarrow>
norm(t) * norm(w-x)^2 * norm((k/2)) < r"
by (simp add: norm_mult_const mult.assoc)
then have 6: "\<forall>r. \<forall>t. t \<noteq> 0 \<and> dist t 0 < ( r/(norm(w-x)^2 * norm(k/2))) \<longrightarrow>
dist (?f t) ?L < r" using 5 dist_norm by metis
then have "\<forall>r>0. (r/(norm(w-x)^2 * norm(k/2))) > 0"
using divide_pos_pos 55 by blast
then have "\<forall>r > 0. \<exists>S > 0. \<forall>t. t \<noteq> 0 \<and> dist t 0 < S \<longrightarrow>
dist (?f t) ?L < r" using 6 by auto
then have 7:" ?f \<midarrow>0\<rightarrow> ?L" unfolding LIM_def by auto
then have "\<forall>u>0. u <= 1 \<longrightarrow> 0 \<le> ?f u" using 11 by simp
then have "\<exists>r>0. \<forall>u>0. u \<le> r \<longrightarrow> 0 \<le> ?f u" using zero_less_one by blast
then have "\<exists>r>0.\<forall>u>0. norm (0 -u) < r \<longrightarrow> 0 \<le> ?f u" by auto
then have "?L \<ge> 0" using metric_LIM_le_zero using 7 by blast
then show ?thesis by auto
qed
qed
qed
lemma strong_conv_if_eq: " f = g \<Longrightarrow> strong_convex_on S f k \<Longrightarrow> strong_convex_on S g k"
using HOL.subst by auto
end