-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_models.py
44 lines (34 loc) · 1.21 KB
/
generate_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
"""
Helper script to generate dummy models that can be used to test the solution.
The script fits different models on a random data.
"""
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.neural_network import MLPRegressor
from model import TrainedModel
def run():
input_data = pd.read_csv('data/input.csv')
input_features = ['age', 'sex', 'bmi', 'bp', 's1', 's2',
's3', 's4', 's5', 's6']
X = input_data[input_features]
y = input_data['target']
# Train LinearRegression and save it as TrainedModel
model = LinearRegression()
model.fit(X, y)
metadata = {
"name": "Linear Regression",
"version": "1"
}
trained_model = TrainedModel(model=model, metadata=metadata)
trained_model.save("data/linear_regression.bin")
# Train NeuralNetwork Regressor and save it as TrainedModel
model = MLPRegressor(max_iter=1000, hidden_layer_sizes=(100, 50,))
model.fit(X, y)
metadata = {
"name": "Neural Network Regression",
"version": "1"
}
trained_model = TrainedModel(model=model, metadata=metadata)
trained_model.save("data/neural_network_regression.bin")
if __name__ == "__main__":
run()