forked from ArashPartow/exprtk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
exprtk_simple_example_22.cpp
144 lines (122 loc) · 5.67 KB
/
exprtk_simple_example_22.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/*
**************************************************************
* C++ Mathematical Expression Toolkit Library *
* *
* Simple Example 22 *
* Author: Arash Partow (1999-2024) *
* URL: https://www.partow.net/programming/exprtk/index.html *
* *
* Copyright notice: *
* Free use of the Mathematical Expression Toolkit Library is *
* permitted under the guidelines and in accordance with the *
* most current version of the MIT License. *
* https://www.opensource.org/licenses/MIT *
* SPDX-License-Identifier: MIT *
* *
**************************************************************
*/
#include <cstdio>
#include <string>
#include "exprtk.hpp"
template <typename T>
void compute_implied_volatility()
{
typedef exprtk::symbol_table<T> symbol_table_t;
typedef exprtk::expression<T> expression_t;
typedef exprtk::parser<T> parser_t;
typedef exprtk::function_compositor<T> compositor_t;
typedef typename compositor_t::function function_t;
const std::string implied_volatility_program =
" const var epsilon := 0.0000001; "
" const var max_iters := 1000; "
" "
" var v := 0.5; /* Initial volatility guess */ "
" var itr := 0; "
" "
" while ((itr += 1) <= max_iters) "
" { "
" var price := "
" switch "
" { "
" case callput_flag == 'call' : bsm_call(s, k, r, t, v); "
" case callput_flag == 'put' : bsm_put (s, k, r, t, v); "
" }; "
" "
" var price_diff := price - target_price; "
" "
" if (abs(price_diff) <= epsilon) "
" { "
" break; "
" }; "
" "
" v -= price_diff / vega(s, k, r, t, v); "
" }; "
" "
" itr <= max_iters ? v : null; ";
T s = T( 100.00); // Spot / Stock / Underlying / Base price
T k = T( 110.00); // Strike price
T t = T( 2.22); // Years to maturity
T r = T( 0.05); // Risk free rate
T target_price = T( 0.00);
std::string callput_flag;
symbol_table_t symbol_table(symbol_table_t::e_immutable);
symbol_table.add_variable("s",s);
symbol_table.add_variable("k",k);
symbol_table.add_variable("t",t);
symbol_table.add_variable("r",r);
symbol_table.add_stringvar("callput_flag",callput_flag);
symbol_table.add_variable ("target_price",target_price);
symbol_table.add_pi();
compositor_t compositor(symbol_table);
compositor.add(
function_t("bsm_call")
.vars("s", "k", "r", "t", "v")
.expression
(
" var d1 := (log(s / k) + (r + v^2 / 2) * t) / (v * sqrt(t)); "
" var d2 := d1 - v * sqrt(t); "
" s * ncdf(d1) - k * exp(-r * t) * ncdf(d2); "
));
compositor.add(
function_t("bsm_put")
.vars("s", "k", "r", "t", "v")
.expression
(
" var d1 := (log(s / k) + (r + v^2 / 2) * t) / (v * sqrt(t)); "
" var d2 := d1 - v * sqrt(t); "
" k * exp(-r * t) * ncdf(-d2) - s * ncdf(-d1); "
));
compositor.add(
function_t("vega")
.vars("s", "k", "r", "t", "v")
.expression
(
" var d1 := (log(s / k) + (r + v^2 / 2) * t) / (v * sqrt(t)); "
" s * sqrt(t) * exp(-d1^2 / 2) / sqrt(2pi); "
));
expression_t expression;
expression.register_symbol_table(symbol_table);
parser_t parser;
parser.compile(implied_volatility_program,expression);
{
callput_flag = "call";
target_price = T(18.339502);
const T implied_vol = expression.value();
printf("Call Option(s: %5.3f, k: %5.3f, t: %5.3f, r: %5.3f) "
"@ $%8.6f Implied volatility = %10.8f\n",
s, k, t, r, target_price, implied_vol);
}
{
callput_flag = "put";
target_price = T(16.782764);
const T implied_vol = expression.value();
printf("Put Option(s: %5.3f, k: %5.3f, t: %5.3f, r: %5.3f) "
"@ $%8.6f Implied volatility = %10.8f\n",
s, k, t, r, target_price, implied_vol);
}
}
int main()
{
compute_implied_volatility<double>();
return 0;
}