forked from capnproto/go-capnp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
message.go
951 lines (860 loc) · 25.9 KB
/
message.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
package capnp
import (
"bufio"
"encoding/binary"
"fmt"
"io"
"sync"
"sync/atomic"
"capnproto.org/go/capnp/v3/packed"
)
// Security limits. Matches C++ implementation.
const (
defaultTraverseLimit = 64 << 20 // 64 MiB
defaultDepthLimit = 64
maxStreamSegments = 512
defaultDecodeLimit = 64 << 20 // 64 MiB
)
const maxDepth = ^uint(0)
// A Message is a tree of Cap'n Proto objects, split into one or more
// segments of contiguous memory. The only required field is Arena.
// A Message is safe to read from multiple goroutines.
type Message struct {
// rlimit must be first so that it is 64-bit aligned.
// See sync/atomic docs.
rlimit uint64
rlimitInit sync.Once
Arena Arena
// CapTable is the indexed list of the clients referenced in the
// message. Capability pointers inside the message will use this table
// to map pointers to Clients. The table is usually populated by the
// RPC system.
//
// See https://capnproto.org/encoding.html#capabilities-interfaces for
// more details on the capability table.
CapTable []Client
// TraverseLimit limits how many total bytes of data are allowed to be
// traversed while reading. Traversal is counted when a Struct or
// List is obtained. This means that calling a getter for the same
// sub-struct multiple times will cause it to be double-counted. Once
// the traversal limit is reached, pointer accessors will report
// errors. See https://capnproto.org/encoding.html#amplification-attack
// for more details on this security measure.
//
// If not set, this defaults to 64 MiB.
TraverseLimit uint64
// DepthLimit limits how deeply-nested a message structure can be.
// If not set, this defaults to 64.
DepthLimit uint
// mu protects the following fields:
mu sync.Mutex
segs map[SegmentID]*Segment
firstSeg Segment // Preallocated first segment. msg is non-nil once initialized.
}
// NewMessage creates a message with a new root and returns the first
// segment. It is an error to call NewMessage on an arena with data in it.
func NewMessage(arena Arena) (msg *Message, first *Segment, err error) {
msg = &Message{Arena: arena}
switch arena.NumSegments() {
case 0:
first, err = msg.allocSegment(wordSize)
if err != nil {
return nil, nil, annotatef(err, "new message")
}
case 1:
first, err = msg.Segment(0)
if err != nil {
return nil, nil, annotatef(err, "new message")
}
if len(first.data) > 0 {
return nil, nil, errorf("new message: arena not empty")
}
default:
return nil, nil, errorf("new message: arena not empty")
}
if first.ID() != 0 {
return nil, nil, errorf("new message: arena allocated first segment with non-zero ID")
}
seg, _, err := alloc(first, wordSize) // allocate root
if err != nil {
return nil, nil, annotatef(err, "new message")
}
if seg != first {
return nil, nil, errorf("new message: arena allocated first word outside first segment")
}
return msg, first, nil
}
// NewSingleSegmentMessage(b) is equivalent to NewMessage(SingleSegment(b)), except
// that it panics instead of returning an error. This can only happen if the passed
// slice contains data, so the caller is responsible for ensuring that it has a length
// of zero.
func NewSingleSegmentMessage(b []byte) (msg *Message, first *Segment) {
msg, first, err := NewMessage(SingleSegment(b))
if err != nil {
panic(err)
}
return msg, first
}
// Analogous to NewSingleSegmentMessage, but using MutliSegment.
func NewMultiSegmentMessage(b [][]byte) (msg *Message, first *Segment) {
msg, first, err := NewMessage(MultiSegment(b))
if err != nil {
panic(err)
}
return msg, first
}
// Reset resets a message to use a different arena, allowing a single
// Message to be reused for reading multiple messages. This invalidates
// any existing pointers in the Message, so use with caution. All
// clients in the message's capability table will be released.
func (m *Message) Reset(arena Arena) {
m.mu.Lock()
m.segs = nil
m.firstSeg = Segment{}
m.mu.Unlock()
m.Arena = arena
for _, c := range m.CapTable {
c.Release()
}
m.CapTable = nil
m.rlimitInit.Do(func() {})
m.initReadLimit()
}
func (m *Message) initReadLimit() {
if m.TraverseLimit == 0 {
atomic.StoreUint64(&m.rlimit, defaultTraverseLimit)
return
}
atomic.StoreUint64(&m.rlimit, m.TraverseLimit)
}
// canRead reports whether the amount of bytes can be stored safely.
func (m *Message) canRead(sz Size) bool {
m.rlimitInit.Do(m.initReadLimit)
for {
curr := atomic.LoadUint64(&m.rlimit)
ok := curr >= uint64(sz)
var new uint64
if ok {
new = curr - uint64(sz)
} else {
new = 0
}
if atomic.CompareAndSwapUint64(&m.rlimit, curr, new) {
return ok
}
}
}
// ResetReadLimit sets the number of bytes allowed to be read from this message.
func (m *Message) ResetReadLimit(limit uint64) {
m.rlimitInit.Do(func() {})
atomic.StoreUint64(&m.rlimit, limit)
}
// Unread increases the read limit by sz.
func (m *Message) Unread(sz Size) {
m.rlimitInit.Do(m.initReadLimit)
atomic.AddUint64(&m.rlimit, uint64(sz))
}
// Root returns the pointer to the message's root object.
func (m *Message) Root() (Ptr, error) {
s, err := m.Segment(0)
if err != nil {
return Ptr{}, annotatef(err, "read root")
}
p, err := s.root().At(0)
if err != nil {
return Ptr{}, annotatef(err, "read root")
}
return p, nil
}
// SetRoot sets the message's root object to p.
func (m *Message) SetRoot(p Ptr) error {
s, err := m.Segment(0)
if err != nil {
return annotatef(err, "set root")
}
if err := s.root().Set(0, p); err != nil {
return annotatef(err, "set root")
}
return nil
}
// AddCap appends a capability to the message's capability table and
// returns its ID. It "steals" c's reference: the Message will release
// the client when calling Reset.
func (m *Message) AddCap(c Client) CapabilityID {
n := CapabilityID(len(m.CapTable))
m.CapTable = append(m.CapTable, c)
return n
}
// Compute the total size of the message in bytes, when serialized as
// a stream. This is the same as the length of the slice returned by
// m.Marshal()
func (m *Message) TotalSize() (uint64, error) {
nsegs := uint64(m.NumSegments())
totalSize := (nsegs/2 + 1) * 8
for i := uint64(0); i < nsegs; i++ {
seg, err := m.Segment(SegmentID(i))
if err != nil {
return 0, err
}
totalSize += uint64(len(seg.Data()))
}
return totalSize, nil
}
func (m *Message) depthLimit() uint {
if m.DepthLimit != 0 {
return m.DepthLimit
}
return defaultDepthLimit
}
// NumSegments returns the number of segments in the message.
func (m *Message) NumSegments() int64 {
return int64(m.Arena.NumSegments())
}
// Segment returns the segment with the given ID.
func (m *Message) Segment(id SegmentID) (*Segment, error) {
if int64(id) >= m.Arena.NumSegments() {
return nil, errorf("segment %d: out of bounds", id)
}
m.mu.Lock()
seg, err := m.segment(id)
m.mu.Unlock()
return seg, err
}
// segment returns the segment with the given ID, with no bounds
// checking. The caller must be holding m.mu.
func (m *Message) segment(id SegmentID) (*Segment, error) {
if m.segs == nil && id == 0 && m.firstSeg.msg != nil {
return &m.firstSeg, nil
}
if s := m.segs[id]; s != nil {
return s, nil
}
if len(m.segs) == maxInt {
return nil, errorf("segment %d: number of loaded segments exceeds int", id)
}
data, err := m.Arena.Data(id)
if err != nil {
return nil, errorf("load segment %d: %v", id, err)
}
s := m.setSegment(id, data)
return s, nil
}
// setSegment creates or updates the Segment with the given ID.
// The caller must be holding m.mu.
func (m *Message) setSegment(id SegmentID, data []byte) *Segment {
if m.segs == nil {
if id == 0 {
m.firstSeg = Segment{
id: id,
msg: m,
data: data,
}
return &m.firstSeg
}
m.segs = make(map[SegmentID]*Segment)
if m.firstSeg.msg != nil {
m.segs[0] = &m.firstSeg
}
} else if seg := m.segs[id]; seg != nil {
seg.data = data
return seg
}
seg := &Segment{
id: id,
msg: m,
data: data,
}
m.segs[id] = seg
return seg
}
// allocSegment creates or resizes an existing segment such that
// cap(seg.Data) - len(seg.Data) >= sz. The caller must not be holding
// onto m.mu.
func (m *Message) allocSegment(sz Size) (*Segment, error) {
if sz > maxAllocSize() {
return nil, errorf("allocation: too large")
}
m.mu.Lock()
if len(m.segs) == maxInt {
m.mu.Unlock()
return nil, errorf("allocation: number of loaded segments exceeds int")
}
if m.segs == nil && m.firstSeg.msg != nil {
// Transition from sole segment to segment map.
m.segs = make(map[SegmentID]*Segment)
m.segs[0] = &m.firstSeg
}
id, data, err := m.Arena.Allocate(sz, m.segs)
if err != nil {
m.mu.Unlock()
return nil, errorf("allocation: %v", err)
}
seg := m.setSegment(id, data)
m.mu.Unlock()
return seg, nil
}
// alloc allocates sz zero-filled bytes. It prefers using s, but may
// use a different segment in the same message if there's not sufficient
// capacity.
func alloc(s *Segment, sz Size) (*Segment, address, error) {
if sz > maxAllocSize() {
return nil, 0, errorf("allocation: too large")
}
sz = sz.padToWord()
if !hasCapacity(s.data, sz) {
var err error
s, err = s.msg.allocSegment(sz)
if err != nil {
return nil, 0, err
}
}
addr := address(len(s.data))
end, ok := addr.addSize(sz)
if !ok {
return nil, 0, errorf("allocation: address overflow")
}
space := s.data[len(s.data):end]
s.data = s.data[:end]
for i := range space {
space[i] = 0
}
return s, addr, nil
}
func (m *Message) WriteTo(w io.Writer) (int64, error) {
wc := &writeCounter{Writer: w}
err := NewEncoder(wc).Encode(m)
return wc.N, err
}
type writeCounter struct {
N int64
io.Writer
}
func (wc *writeCounter) Write(b []byte) (n int, err error) {
n, err = wc.Writer.Write(b)
wc.N += int64(n)
return
}
// An Arena loads and allocates segments for a Message.
type Arena interface {
// NumSegments returns the number of segments in the arena.
// This must not be larger than 1<<32.
NumSegments() int64
// Data loads the data for the segment with the given ID. IDs are in
// the range [0, NumSegments()).
// must be tightly packed in the range [0, NumSegments()).
Data(id SegmentID) ([]byte, error)
// Allocate selects a segment to place a new object in, creating a
// segment or growing the capacity of a previously loaded segment if
// necessary. If Allocate does not return an error, then the
// difference of the capacity and the length of the returned slice
// must be at least minsz. segs is a map of segments keyed by ID
// using arrays returned by the Data method (although the length of
// these slices may have changed by previous allocations). Allocate
// must not modify segs.
//
// If Allocate creates a new segment, the ID must be one larger than
// the last segment's ID or zero if it is the first segment.
//
// If Allocate returns an previously loaded segment's ID, then the
// arena is responsible for preserving the existing data in the
// returned byte slice.
Allocate(minsz Size, segs map[SegmentID]*Segment) (SegmentID, []byte, error)
}
// SingleSegmentArena is an Arena implementation that stores message data
// in a continguous slice. Allocation is performed by first allocating a
// new slice and copying existing data. SingleSegment arena does not fail
// unless the caller attempts to access another segment.
type SingleSegmentArena []byte
// SingleSegment constructs a SingleSegmentArena from b. b MAY be nil.
// Callers MAY use b to populate the segment for reading, or to reserve
// memory of a specific size.
func SingleSegment(b []byte) *SingleSegmentArena {
return (*SingleSegmentArena)(&b)
}
func (ssa SingleSegmentArena) NumSegments() int64 {
return 1
}
func (ssa SingleSegmentArena) Data(id SegmentID) ([]byte, error) {
if id != 0 {
return nil, errorf("segment %d requested in single segment arena", id)
}
return ssa, nil
}
func (ssa *SingleSegmentArena) Allocate(sz Size, segs map[SegmentID]*Segment) (SegmentID, []byte, error) {
data := []byte(*ssa)
if segs[0] != nil {
data = segs[0].data
}
if len(data)%int(wordSize) != 0 {
return 0, nil, errorf("segment size is not a multiple of word size")
}
if hasCapacity(data, sz) {
return 0, data, nil
}
inc, err := nextAlloc(int64(len(data)), int64(maxAllocSize()), sz)
if err != nil {
return 0, nil, err
}
buf := make([]byte, len(data), cap(data)+inc)
copy(buf, data)
*ssa = buf
return 0, *ssa, nil
}
func (ssa SingleSegmentArena) String() string {
return fmt.Sprintf("single-segment arena [len=%d cap=%d]", len(ssa), cap(ssa))
}
type roSingleSegment []byte
func (ss roSingleSegment) NumSegments() int64 {
return 1
}
func (ss roSingleSegment) Data(id SegmentID) ([]byte, error) {
if id != 0 {
return nil, errorf("segment %d requested in single segment arena", id)
}
return ss, nil
}
func (ss roSingleSegment) Allocate(sz Size, segs map[SegmentID]*Segment) (SegmentID, []byte, error) {
return 0, nil, errorf("arena is read-only")
}
func (ss roSingleSegment) String() string {
return fmt.Sprintf("read-only single-segment arena [len=%d]", len(ss))
}
// MultiSegment is an arena that stores object data across multiple []byte
// buffers, allocating new buffers of exponentially-increasing size when
// full. This avoids the potentially-expensive slice copying of SingleSegment.
type MultiSegmentArena [][]byte
// MultiSegment returns a new arena that allocates new segments when
// they are full. b MAY be nil. Callers MAY use b to populate the
// buffer for reading or to reserve memory of a specific size.
func MultiSegment(b [][]byte) *MultiSegmentArena {
return (*MultiSegmentArena)(&b)
}
// demuxArena slices b into a multi-segment arena. It assumes that
// len(data) >= hdr.totalSize().
func demuxArena(hdr streamHeader, data []byte) (Arena, error) {
maxSeg := hdr.maxSegment()
if int64(maxSeg) > int64(maxInt-1) {
return nil, errorf("number of segments overflows int")
}
segs := make([][]byte, int(maxSeg+1))
for i := range segs {
sz, err := hdr.segmentSize(SegmentID(i))
if err != nil {
return nil, err
}
segs[i], data = data[:sz:sz], data[sz:]
}
return MultiSegment(segs), nil
}
func (msa *MultiSegmentArena) NumSegments() int64 {
return int64(len(*msa))
}
func (msa *MultiSegmentArena) Data(id SegmentID) ([]byte, error) {
if int64(id) >= int64(len(*msa)) {
return nil, errorf("segment %d requested (arena only has %d segments)", id, len(*msa))
}
return (*msa)[id], nil
}
func (msa *MultiSegmentArena) Allocate(sz Size, segs map[SegmentID]*Segment) (SegmentID, []byte, error) {
var total int64
for i, data := range *msa {
id := SegmentID(i)
if s := segs[id]; s != nil {
data = s.data
}
if hasCapacity(data, sz) {
return id, data, nil
}
total += int64(cap(data))
if total < 0 {
// Overflow.
return 0, nil, errorf("alloc %d bytes: message too large", sz)
}
}
n, err := nextAlloc(total, 1<<63-1, sz)
if err != nil {
return 0, nil, err
}
buf := make([]byte, 0, n)
id := SegmentID(len(*msa))
*msa = append(*msa, buf)
return id, buf, nil
}
func (msa *MultiSegmentArena) String() string {
return fmt.Sprintf("multi-segment arena [%d segments]", len(*msa))
}
// nextAlloc computes how much more space to allocate given the number
// of bytes allocated in the entire message and the requested number of
// bytes. It will always return a multiple of wordSize. max must be a
// multiple of wordSize. The sum of curr and the returned size will
// always be less than max.
func nextAlloc(curr, max int64, req Size) (int, error) {
if req == 0 {
return 0, nil
}
if req > maxAllocSize() {
return 0, errorf("alloc %v: too large", req)
}
padreq := req.padToWord()
want := curr + int64(padreq)
if want <= curr || want > max {
return 0, errorf("alloc %v: message size overflow", req)
}
new := curr
double := new + new
switch {
case want < 1024:
next := (1024 - curr + 7) &^ 7
if next < curr {
return int((curr + 7) &^ 7), nil
}
return int(next), nil
case want > double:
return int(padreq), nil
default:
for 0 < new && new < want {
new += new / 4
}
if new <= 0 {
return int(padreq), nil
}
delta := new - curr
if delta > int64(maxAllocSize()) {
return int(maxAllocSize()), nil
}
return int((delta + 7) &^ 7), nil
}
}
// A Decoder represents a framer that deserializes a particular Cap'n
// Proto input stream.
type Decoder struct {
r io.Reader
wordbuf [wordSize]byte
hdrbuf []byte
reuse bool
buf []byte
msg Message
arena roSingleSegment
// Maximum number of bytes that can be read per call to Decode.
// If not set, a reasonable default is used.
MaxMessageSize uint64
}
// NewDecoder creates a new Cap'n Proto framer that reads from r.
// The returned decoder will only read as much data as necessary to
// decode the message.
func NewDecoder(r io.Reader) *Decoder {
return &Decoder{r: r}
}
// NewPackedDecoder creates a new Cap'n Proto framer that reads from a
// packed stream r. The returned decoder may read more data than
// necessary from r.
func NewPackedDecoder(r io.Reader) *Decoder {
return NewDecoder(packed.NewReader(bufio.NewReader(r)))
}
// Decode reads a message from the decoder stream. The error is io.EOF
// only if no bytes were read.
func (d *Decoder) Decode() (*Message, error) {
maxSize := d.MaxMessageSize
if maxSize == 0 {
maxSize = defaultDecodeLimit
} else if maxSize < uint64(len(d.wordbuf)) {
return nil, errorf("decode: max message size is smaller than header size")
}
// Read first word (number of segments and first segment size).
// For single-segment messages, this will be sufficient.
if _, err := io.ReadFull(d.r, d.wordbuf[:]); err == io.EOF {
return nil, io.EOF
} else if err != nil {
return nil, errorf("decode: read header: %v", err)
}
maxSeg := SegmentID(binary.LittleEndian.Uint32(d.wordbuf[:]))
if maxSeg > maxStreamSegments {
return nil, errorf("decode: too many segments to decode")
}
// Read the rest of the header if more than one segment.
var hdr streamHeader
if maxSeg == 0 {
hdr = streamHeader{d.wordbuf[:]}
} else {
hdrSize := streamHeaderSize(maxSeg)
if hdrSize > maxSize || hdrSize > uint64(maxInt) {
return nil, errorf("decode: message too large")
}
d.hdrbuf = resizeSlice(d.hdrbuf, int(hdrSize))
copy(d.hdrbuf, d.wordbuf[:])
if _, err := io.ReadFull(d.r, d.hdrbuf[len(d.wordbuf):]); err != nil {
return nil, errorf("decode: read header: %v", err)
}
hdr = streamHeader{d.hdrbuf}
}
total, err := hdr.totalSize()
if err != nil {
return nil, annotatef(err, "decode")
}
// TODO(someday): if total size is greater than can fit in one buffer,
// attempt to allocate buffer per segment.
if total > maxSize-uint64(len(hdr.b)) || total > uint64(maxInt) {
return nil, errorf("decode: message too large")
}
// Read segments.
if !d.reuse {
buf := make([]byte, int(total))
if _, err := io.ReadFull(d.r, buf); err != nil {
return nil, errorf("decode: read segments: %v", err)
}
arena, err := demuxArena(hdr, buf)
if err != nil {
return nil, annotatef(err, "decode")
}
return &Message{Arena: arena}, nil
}
d.buf = resizeSlice(d.buf, int(total))
if _, err := io.ReadFull(d.r, d.buf); err != nil {
return nil, errorf("decode: read segments: %v", err)
}
var arena Arena
if maxSeg == 0 {
d.arena = d.buf[:len(d.buf):len(d.buf)]
arena = &d.arena
} else {
var err error
arena, err = demuxArena(hdr, d.buf)
if err != nil {
return nil, annotatef(err, "decode")
}
}
d.msg.Reset(arena)
return &d.msg, nil
}
func resizeSlice(b []byte, size int) []byte {
if cap(b) < size {
return make([]byte, size)
}
return b[:size]
}
// ReuseBuffer causes the decoder to reuse its buffer on subsequent decodes.
// The decoder may return messages that cannot handle allocations.
func (d *Decoder) ReuseBuffer() {
d.reuse = true
}
// Unmarshal reads an unpacked serialized stream into a message. No
// copying is performed, so the objects in the returned message read
// directly from data.
func Unmarshal(data []byte) (*Message, error) {
if len(data) == 0 {
return nil, io.EOF
}
if len(data) < int(wordSize) {
return nil, errorf("unmarshal: short header section")
}
maxSeg := SegmentID(binary.LittleEndian.Uint32(data))
hdrSize := streamHeaderSize(maxSeg)
if uint64(len(data)) < hdrSize {
return nil, errorf("unmarshal: short header section")
}
hdr := streamHeader{data[:hdrSize]}
data = data[hdrSize:]
if total, err := hdr.totalSize(); err != nil {
return nil, annotatef(err, "unmarshal")
} else if total > uint64(len(data)) {
return nil, errorf("unmarshal: short data section")
}
arena, err := demuxArena(hdr, data)
if err != nil {
return nil, annotatef(err, "unmarshal")
}
return &Message{Arena: arena}, nil
}
// UnmarshalPacked reads a packed serialized stream into a message.
func UnmarshalPacked(data []byte) (*Message, error) {
if len(data) == 0 {
return nil, io.EOF
}
data, err := packed.Unpack(nil, data)
if err != nil {
return nil, errorf("unmarshal: %v", err)
}
return Unmarshal(data)
}
// MustUnmarshalRoot reads an unpacked serialized stream and returns
// its root pointer. If there is any error, it panics.
func MustUnmarshalRoot(data []byte) Ptr {
msg, err := Unmarshal(data)
if err != nil {
panic(err)
}
p, err := msg.Root()
if err != nil {
panic(err)
}
return p
}
// An Encoder represents a framer for serializing a particular Cap'n
// Proto stream.
type Encoder struct {
w io.Writer
hdrbuf []byte
bufs [][]byte
}
// NewEncoder creates a new Cap'n Proto framer that writes to w.
func NewEncoder(w io.Writer) *Encoder {
return &Encoder{w: w}
}
// NewPackedEncoder creates a new Cap'n Proto framer that writes to a
// packed stream w.
func NewPackedEncoder(w io.Writer) *Encoder {
return NewEncoder(&packed.Writer{Writer: w})
}
// Encode writes a message to the encoder stream.
func (e *Encoder) Encode(m *Message) error {
nsegs := m.NumSegments()
if nsegs == 0 {
return errorf("encode: message has no segments")
}
e.bufs = append(e.bufs[:0], nil) // first element is placeholder for header
maxSeg := SegmentID(nsegs - 1)
hdrSize := streamHeaderSize(maxSeg)
if hdrSize > uint64(maxInt) {
return errorf("encode: header size overflows int")
}
e.hdrbuf = resizeSlice(e.hdrbuf, int(hdrSize))
e.hdrbuf = appendUint32(e.hdrbuf[:0], uint32(maxSeg))
for i := int64(0); i < nsegs; i++ {
s, err := m.Segment(SegmentID(i))
if err != nil {
return annotatef(err, "encode")
}
n := len(s.data)
if int64(n) > int64(maxSegmentSize) {
return errorf("encode: segment %d too large", i)
}
e.hdrbuf = appendUint32(e.hdrbuf, uint32(Size(n)/wordSize))
e.bufs = append(e.bufs, s.data)
}
if len(e.hdrbuf)%int(wordSize) != 0 {
e.hdrbuf = appendUint32(e.hdrbuf, 0)
}
e.bufs[0] = e.hdrbuf
if err := e.write(e.bufs); err != nil {
return errorf("encode: %v", err)
}
return nil
}
// Marshal concatenates the segments in the message into a single byte
// slice including framing.
func (m *Message) Marshal() ([]byte, error) {
// Compute buffer size.
nsegs := m.NumSegments()
if nsegs == 0 {
return nil, errorf("marshal: message has no segments")
}
hdrSize := streamHeaderSize(SegmentID(nsegs - 1))
if hdrSize > uint64(maxInt) {
return nil, errorf("marshal: header size overflows int")
}
var dataSize uint64
m.mu.Lock()
for i := int64(0); i < nsegs; i++ {
s, err := m.segment(SegmentID(i))
if err != nil {
m.mu.Unlock()
return nil, annotatef(err, "marshal")
}
n := uint64(len(s.data))
if n%uint64(wordSize) != 0 {
m.mu.Unlock()
return nil, errorf("marshal: segment %d not word-aligned", i)
}
if n > uint64(maxSegmentSize) {
m.mu.Unlock()
return nil, errorf("marshal: segment %d too large", i)
}
dataSize += n
if dataSize > uint64(maxInt) {
m.mu.Unlock()
return nil, errorf("marshal: message size overflows int")
}
}
total := hdrSize + dataSize
if total > uint64(maxInt) {
m.mu.Unlock()
return nil, errorf("marshal: message size overflows int")
}
// Fill buffer.
buf := make([]byte, int(hdrSize), int(total))
binary.LittleEndian.PutUint32(buf, uint32(nsegs-1))
for i := int64(0); i < nsegs; i++ {
s, err := m.segment(SegmentID(i))
if err != nil {
m.mu.Unlock()
return nil, annotatef(err, "marshal")
}
if len(s.data)%int(wordSize) != 0 {
m.mu.Unlock()
return nil, errorf("marshal: segment %d not word-aligned", i)
}
binary.LittleEndian.PutUint32(buf[int(i+1)*4:], uint32(len(s.data)/int(wordSize)))
buf = append(buf, s.data...)
}
m.mu.Unlock()
return buf, nil
}
// MarshalPacked marshals the message in packed form.
func (m *Message) MarshalPacked() ([]byte, error) {
data, err := m.Marshal()
if err != nil {
return nil, err
}
buf := make([]byte, 0, len(data))
buf = packed.Pack(buf, data)
return buf, nil
}
// streamHeaderSize returns the size of the header, given the lower 32
// bits of the first word of the header (the number of segments minus
// one).
func streamHeaderSize(maxSeg SegmentID) uint64 {
return ((uint64(maxSeg)+2)*4 + 7) &^ 7
}
// appendUint32 appends a uint32 to a byte slice and returns the
// new slice.
func appendUint32(b []byte, v uint32) []byte {
b = append(b, 0, 0, 0, 0)
binary.LittleEndian.PutUint32(b[len(b)-4:], v)
return b
}
// streamHeader holds the framing words at the beginning of a serialized
// Cap'n Proto message.
type streamHeader struct {
b []byte
}
// maxSegment returns the number of segments in the message minus one.
func (h streamHeader) maxSegment() SegmentID {
return SegmentID(binary.LittleEndian.Uint32(h.b))
}
// segmentSize returns the size of segment i, returning an error if the
// segment overflows maxSegmentSize.
func (h streamHeader) segmentSize(i SegmentID) (Size, error) {
s := binary.LittleEndian.Uint32(h.b[4+i*4:])
sz, ok := wordSize.times(int32(s))
if !ok {
return 0, errorf("segment %d: overflow size", i)
}
return sz, nil
}
// totalSize returns the sum of all the segment sizes. The sum will
// be in the range [0, 0xfffffff800000000].
func (h streamHeader) totalSize() (uint64, error) {
var sum uint64
for i := uint64(0); i <= uint64(h.maxSegment()); i++ {
x, err := h.segmentSize(SegmentID(i))
if err != nil {
return sum, err
}
sum += uint64(x)
}
return sum, nil
}
func hasCapacity(b []byte, sz Size) bool {
return sz <= Size(cap(b)-len(b))
}
const maxInt = int(^uint(0) >> 1)