-
Notifications
You must be signed in to change notification settings - Fork 204
/
predict.py
210 lines (171 loc) · 6.65 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Prediction interface for Cog ⚙️
# Reference: https://github.com/replicate/cog/blob/main/docs/python.md
import os
import tempfile
from copy import deepcopy
from pathlib import Path
import cog
import numpy as np
import torch
from PIL import Image
from torch import optim
from torch.nn import functional as F
from torchvision import transforms
from tqdm import tqdm
from e4e_projection import projection as e4e_projection
from model import Discriminator, Generator
from util import align_face
class Predictor(cog.Predictor):
def setup(self):
pass
@cog.input("input_face", type=Path, help="Photo of human face")
@cog.input(
"pretrained",
type=str,
default=None,
help="Identifier of pretrained style",
options=[
"art",
"arcane_multi",
"sketch_multi",
"arcane_jinx",
"arcane_caitlyn",
"jojo_yasuho",
"jojo",
"disney",
],
)
@cog.input("style_img_0", default=None, type=Path, help="Face style image (unused if pretrained style is set)")
@cog.input("style_img_1", default=None, type=Path, help="Face style image (optional)")
@cog.input("style_img_2", default=None, type=Path, help="Face style image (optional)")
@cog.input("style_img_3", default=None, type=Path, help="Face style image (optional)")
@cog.input(
"preserve_color",
default=False,
type=bool,
help="Preserve the colors of the original image",
)
@cog.input(
"num_iter", default=200, type=int, min=0, help="Number of finetuning steps (unused if pretrained style is set)"
)
@cog.input(
"alpha", default=1, type=float, min=0, max=1, help="Strength of finetuned style"
)
def predict(
self,
input_face,
pretrained,
style_img_0,
style_img_1,
style_img_2,
style_img_3,
preserve_color,
num_iter,
alpha,
):
device = "cuda" # 'cuda' or 'cpu'
latent_dim = 512
# Load original generator
original_generator = Generator(1024, latent_dim, 8, 2).to(device)
ckpt = torch.load(
"models/stylegan2-ffhq-config-f.pt",
map_location=lambda storage, loc: storage,
)
original_generator.load_state_dict(ckpt["g_ema"], strict=False)
# to be finetuned generator
generator = deepcopy(original_generator)
transform = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
# aligns and crops face
aligned_face = align_face(str(input_face))
my_w = e4e_projection(aligned_face, "input_face.pt", device).unsqueeze(0)
if pretrained is not None:
if (
preserve_color
and not (pretrained == "art")
and not (pretrained == "sketch_multi")
):
ckpt = f"{pretrained}_preserve_color.pt"
else:
ckpt = f"{pretrained}.pt"
ckpt = torch.load(
os.path.join("models", ckpt), map_location=lambda storage, loc: storage
)
generator.load_state_dict(ckpt["g"], strict=False)
with torch.no_grad():
generator.eval()
stylized_face = generator(my_w, input_is_latent=True)
else:
# finetune with new style images
targets = []
latents = []
style_imgs = [style_img_0, style_img_1, style_img_2, style_img_3]
# Remove None values
style_imgs = [i for i in style_imgs if i]
for ind, style_img in enumerate(style_imgs):
# crop and align the face
style_aligned = align_face(str(style_img))
out_path = f"style_aligned_{ind}.jpg"
style_aligned.save(str(out_path))
# GAN invert
latent = e4e_projection(style_aligned, f"style_img_{ind}.pt", device)
targets.append(transform(style_aligned).to(device))
latents.append(latent.to(device))
targets = torch.stack(targets, 0)
latents = torch.stack(latents, 0)
alpha = 1 - alpha
# load discriminator for perceptual loss
discriminator = Discriminator(1024, 2).eval().to(device)
ckpt = torch.load(
"models/stylegan2-ffhq-config-f.pt",
map_location=lambda storage, loc: storage,
)
discriminator.load_state_dict(ckpt["d"], strict=False)
g_optim = optim.Adam(generator.parameters(), lr=2e-3, betas=(0, 0.99))
# Which layers to swap for generating a family of plausible real images -> fake image
if preserve_color:
id_swap = [9, 11, 15, 16, 17]
else:
id_swap = list(range(7, generator.n_latent))
for idx in tqdm(range(num_iter)):
mean_w = (
generator.get_latent(
torch.randn([latents.size(0), latent_dim]).to(device)
)
.unsqueeze(1)
.repeat(1, generator.n_latent, 1)
)
in_latent = latents.clone()
in_latent[:, id_swap] = (
alpha * latents[:, id_swap] + (1 - alpha) * mean_w[:, id_swap]
)
img = generator(in_latent, input_is_latent=True)
with torch.no_grad():
real_feat = discriminator(targets)
fake_feat = discriminator(img)
loss = sum(
[F.l1_loss(a, b) for a, b in zip(fake_feat, real_feat)]
) / len(fake_feat)
g_optim.zero_grad()
loss.backward()
g_optim.step()
with torch.no_grad():
generator.eval()
stylized_face = generator(my_w, input_is_latent=True)
stylized_face = stylized_face.cpu()
np.save("stylized_face.npy", stylized_face)
stylized_face = 1 + stylized_face
stylized_face /= 2
stylized_face = stylized_face[0]
stylized_face = 255 * torch.clip(stylized_face, min=0, max=1)
stylized_face = stylized_face.byte()
stylized_face = stylized_face.permute(1, 2, 0).detach().numpy()
stylized_face = Image.fromarray(stylized_face, mode="RGB")
out_path = Path(tempfile.mkdtemp()) / "out.jpg"
stylized_face.save(str(out_path))
return out_path