forked from andrejbauer/homotopy-type-theory-course
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexam.tex
205 lines (181 loc) · 8.28 KB
/
exam.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
\documentclass[12pt]{article}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{a4wide}
\usepackage{amsmath,amsthm,amssymb}
\usepackage{color}
\usepackage{times}
\usepackage{enumerate}
\usepackage{xypic}
\newcommand\RR{\mathbb{R}}
\newcommand\ZZ{\mathbb{Z}}
\newcommand\EEE{\mathcal{E}}
\newcommand\CCC{\mathcal{C}}
\newcommand\DDD{\mathcal{D}}
\newcommand{\booktitle}[1]{\textit{#1}}
\newcommand{\setof}[1]{\left\{#1\right\}}
\newcommand\lqs{\leqslant}
\newcommand\gqs{\geqslant}
\newcommand\id{\mathop{\mathrm{id}}\nolimits}
\newcommand\pr{\mathop{\mathrm{pr}}\nolimits}
\newcommand\bdsc{{\mathrm{bdSeq}}({\mathcal C})}
\newcommand\ctop{\underline{\mathrm{Top}}}
\newcommand\colim{\qopname\relax n{colim}}
\newcommand{\dsum}[1]{\Sigma (#1) \,.\,}
\newcommand{\dprod}[1]{\Pi (#1) \,.\,}
\newcommand{\univ}{\mathcal{U}}
\newcommand{\susp}[1]{\mathsf{Susp}(#1)}
\newcommand{\two}{\mathsf{2}}
\newcommand{\eqv}{\simeq}
{\theoremstyle{definition}
\newtheorem{problem}{Problem}}
\begin{document}
\title{Homotopy (Type) Theory take-home exam}
\date{May 31, 2019}
\author{}
\maketitle
For full credit solve \emph{at least 51 points} worth of problems.
%
As you are training to become a researcher, you are free to refer to constructions and
proofs in existing literature, namely peer-reviewed papers and monographs. References to
blog posts and other non-standard sources are allowed, but in those cases you need to
verify the veracity of the claims yourself. It is probably a good idea to verify your
sources even when they are of a reputable origin. In the end, you are responsible for your
solutions.
\section*{Part I: homotopy theory}
\begin{problem}[7 points]
Let $n\gqs 1$, $1\lqs k\lqs n-1$, and let $G_k(\RR^n)$ denote the set of $k$-planes in
$\RR^n$. Also, let $V_k(\RR^n)$ denote the set of (ordered) $k$-tuples of orthonormal
vectors in $\RR^n$. Topologize the latter by viewing it as a subset of $\RR^{n\times k}$
in the obvious way.
%
\begin{enumerate}[(a)]
\item Topologize $G_k(\RR^n)$ as a quotient space of $V_k(\RR^n)$.
\item Show that
$E_k^n=\setof{(\Lambda,x)\,\vert\,\Lambda\in
G_k(\RR^n),\,x\in\Lambda}\subset G_k(\RR^n)\times\RR^n$,
together with the obvious projection map, is a vector bundle of
rank $k$ over $G_k(\RR^n)$.
\item Let $S^2$ be the $2$-sphere and let $f\colon S^2\to G_2(\RR^3)$ assign to $\zeta\in S^2$
the plane perpendicular to $\zeta$. Show that $f$ is continuous and identify the pullback
bundle $f^*(E_2^3)$. You may want to consult Davis-Kirk \cite{d-k} for the latter.
\end{enumerate}
\end{problem}
\begin{problem}[7 points]
Suppose given $p_0\colon E_0\to B$ and $p_1\colon E_1\to B$ in the category of
topological spaces over $B$. A map $f\colon E_0\to E_1$ over $B$ is called a {\it fibre
homotopy equivalence} if there exist a map $g\colon E_1\to E_0$ over $B$ and
homotopies $gf\simeq\id_{E_0}$ and $fg\simeq\id_{E_1}$ over $B$. Here, $E_i\times[0,1]$
is a space over $B$ by virtue of $P_i=p_i\circ\pr_{E_i}$. Let $p\colon E\to B$ be a
fibration and let $h\colon X\times[0,1]\to B$ be a homotopy from $h_0$ to $h_1$. Using a
lifting function for $p$, construct an explicit fibre homotopy equivalence of pullbacks
$h_0^*(E)$ and $h_1^*(E)$ as spaces over $X$.
\end{problem}
\begin{problem}[7 points]
Look up the definition of a {\it diagram} in $\CCC$ with a given {\it shape} $\DDD$ and its colimit in Dwyer-Spalinski \cite{d-s}.
\begin{enumerate}[(a)]
\item Make sense of the colimit functor $\colim\CCC^\DDD\to\CCC$ for a finite (small) category $\CCC$
with finite (small) colimits and a finite (small) shape $\DDD$. (Define it and prove that it is a functor.)
\item Consider the diagrams $\DDD$ and $\EEE$,
%
\begin{equation*}
\DDD:
%
\vcenter{\xymatrix{
{\bullet} \ar[rr]
\ar[dd] & &
{\bullet} \ar[dd] \\
& & \\
{\bullet} \ar[rr] & &
{\bullet}
}}
\qquad\qquad
\EEE:
\vcenter{\xymatrix{
{\bullet} \ar[rr]
\ar[dd] & &
{\bullet} \ar[dd] \ar[ld] \\
& {\bullet} \ar[rd] & \\
{\bullet} \ar[rr] \ar[ur] & &
{\bullet}
}}
\end{equation*}
%
Employing the pushout, define a suitable map $\CCC^\DDD\to\CCC^\EEE$ and study its properties.
\end{enumerate}
\end{problem}
\begin{problem}[7 points]
Let $\CCC$ be a category. A bounded direct sequence in $\CCC$ is a diagram of objects and morphisms of $\CCC$ of the form
%
\begin{equation*}
\dots \xrightarrow{\xi_{-2}} X_{-1}
\xrightarrow{\xi_{-1}} X_0
\xrightarrow{\xi_0} X_1
\xrightarrow{\xi_1} X_2
\xrightarrow{\xi_2} X_3
\xrightarrow{\xi_3}
\dots
\end{equation*}
%
where for all small enough $i\in\ZZ$, the $\xi_i$ are identity morphisms. We denote such
a direct sequence simply by $\setof{(X_i,\xi_i)}$. A morphism
$f\colon\setof{(X_i,\xi_i)}\to\setof{(Y_i,\eta_i)}$ is a collection of morphisms
$f_i\colon X_i\to Y_i$ in $\CCC$ satisfying $f_{i+1}\xi_i=\eta_if_i$ for all $i$, such
that $f_i=f_{i-1}$ for all small enough $i$ (i.e. for all $i\lqs b$ where $b\in\ZZ$
depends on $f$). This defines a category of bounded direct sequences in $\CCC$, which we
denote $\bdsc$.
Suppose that $\CCC$ is a model category. We call $f\colon\setof{(X_i,\xi_i)}\to\setof{(Y_i,\eta_i)}$ a weak equivalence
(respectively a fibration) if all $f_i$ are weak equivalences (respectively fibrations) in $\CCC$. Next, we call $f$ a cofibration
if for all $i$, the natural morphism $Y_i\sqcup_{X_i}X_{i+1}\xrightarrow{\eta_i+f_{i+1}}Y_{i+1}$ is a cofibration in $\CCC$, and, moreover, $f_i$ is
a cofibration in $\CCC$ for all small enough $i$.
\begin{enumerate}[(a)]
\item Prove that $\bdsc$ is a model category.
\item Identify the fibrant and cofibrant objects in $\bdsc$.
\item Suppose that $\CCC$ has small colimits. Define a colimit functor $\colim\bdsc\to\CCC$ and prove that
it preserves cofibrations and trivial cofibrations. {\bf Hint.} Use adjoint functors.
\end{enumerate}
\end{problem}
\begin{problem}[7 points]
Let $\CCC$ be a pointed model category. For a cofibrant $X$, we defined an association
$[\Sigma X,Y]\to\pi_1^l(X,Y)=\pi_1^l(X,Y;0,0)$ which is a natural equivalence of
functors $[\Sigma X,\_]$ and $\pi_1^l(X,\_)$ on the category $\CCC_f$ (the full
subcategory of $\CCC$ of fibrant objects). See Theorem 2 of Quillen \cite{quillen} for a
proof. State the dual of the former and prove it. \textbf{Warning.} Mind the notation.
\end{problem}
\section*{Part II: homotopy type theory}
\begin{problem}[5 points]
Prove that the coproducts have the expected universal property:
%
\begin{equation*}
(A + B \to C) \eqv (A \to C) \times (B \to C).
\end{equation*}
\end{problem}
\begin{problem}[5 points]
Let $A$ be a type and $a : A$ a point. Prove that $\dsum{x : A} a =_A x$ is
contractible.
\end{problem}
\begin{problem}[5 points]
Prove that $\mathbb{N}$ is a set.
\end{problem}
\begin{problem}[5 points]
Show that $(\two \eqv \two) \eqv \two$.
\end{problem}
\begin{problem}[5 points]
Show that $S^1 \eqv \susp{\two}$, where $S^1$ is the circle and $\susp{\two}$ the
suspension of~$\two$.
\end{problem}
\begin{problem}[5 points]
Construct the \emph{double cover} of the circle as a dependent type, i.e.,
a dependent type $D : S^1 \to \univ$ such that $D(\mathsf{base}) \eqv \two$ and
$(\dsum{x : S^1} D(x)) \eqv S^1$.
\end{problem}
\begin{problem}[5 points]
How would you define the \emph{Möbius band} as a type?
\end{problem}
\begin{thebibliography}{00}
\bibitem{d-k} J.~F.~Davis, P.~Kirk, \booktitle{Lecture notes in algebraic topology.} Graduate Studies in Mathematics, 35. American Mathematical Society, Providence, RI, 2001.
\bibitem{d-s} W.~G.~Dwyer, J.~Spalinski, \booktitle{Homotopy theories and model categories.} Handbook of algebraic topology, 73\--126,
North-Holland, Amsterdam, 1995.
\bibitem{quillen} D.~G.~Quillen, \booktitle{Homotopical algebra.} Lecture Notes in Mathematics, No. 43. Springer-Verlag, Berlin-New York, 1967.
\end{thebibliography}
\end{document}