forked from pa-pa/AskSinPP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Radio.h
847 lines (732 loc) · 31.7 KB
/
Radio.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
//- -----------------------------------------------------------------------------------------------------------------------
// AskSin driver implementation
// 2013-08-03 <[email protected]> Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/
//- -----------------------------------------------------------------------------------------------------------------------
//- AskSin cc1101 functions -----------------------------------------------------------------------------------------------
//- with a lot of copy and paste from culfw firmware
//- -----------------------------------------------------------------------------------------------------------------------
//- -----------------------------------------------------------------------------------------------------------------------
// AskSin++
// 2016-10-31 papa Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/
// 2019-03-31 stan23 Creative Commons - http://creativecommons.org/licenses/by-nc-sa/3.0/de/
//- -----------------------------------------------------------------------------------------------------------------------
#ifndef _CC_H
#define _CC_H
#include "Message.h"
#include "AlarmClock.h"
#ifdef ARDUINO_ARCH_AVR
#include <util/delay.h>
typedef uint8_t BitOrder;
#endif
namespace as {
// CC1101 config register // Reset Description
#define CC1101_IOCFG2 0x00 // (0x29) GDO2 Output Pin Configuration
#define CC1101_IOCFG1 0x01 // (0x2E) GDO1 Output Pin Configuration
#define CC1101_IOCFG0 0x02 // (0x3F) GDO0 Output Pin Configuration
#define CC1101_FIFOTHR 0x03 // (0x07) RX FIFO and TX FIFO Thresholds
#define CC1101_SYNC1 0x04 // (0xD3) Sync Word, High Byte
#define CC1101_SYNC0 0x05 // (0x91) Sync Word, Low Byte
#define CC1101_PKTLEN 0x06 // (0xFF) Packet Length
#define CC1101_PKTCTRL1 0x07 // (0x04) Packet Automation Control
#define CC1101_PKTCTRL0 0x08 // (0x45) Packet Automation Control
#define CC1101_ADDR 0x09 // (0x00) Device Address
#define CC1101_CHANNR 0x0A // (0x00) Channel Number
#define CC1101_FSCTRL1 0x0B // (0x0F) Frequency Synthesizer Control
#define CC1101_FSCTRL0 0x0C // (0x00) Frequency Synthesizer Control
#define CC1101_FREQ2 0x0D // (0x1E) Frequency Control Word, High Byte
#define CC1101_FREQ1 0x0E // (0xC4) Frequency Control Word, Middle Byte
#define CC1101_FREQ0 0x0F // (0xEC) Frequency Control Word, Low Byte
#define CC1101_MDMCFG4 0x10 // (0x8C) Modem Configuration
#define CC1101_MDMCFG3 0x11 // (0x22) Modem Configuration
#define CC1101_MDMCFG2 0x12 // (0x02) Modem Configuration
#define CC1101_MDMCFG1 0x13 // (0x22) Modem Configuration
#define CC1101_MDMCFG0 0x14 // (0xF8) Modem Configuration
#define CC1101_DEVIATN 0x15 // (0x47) Modem Deviation Setting
#define CC1101_MCSM2 0x16 // (0x07) Main Radio Control State Machine Configuration
#define CC1101_MCSM1 0x17 // (0x30) Main Radio Control State Machine Configuration
#define CC1101_MCSM0 0x18 // (0x04) Main Radio Control State Machine Configuration
#define CC1101_FOCCFG 0x19 // (0x36) Frequency Offset Compensation Configuration
#define CC1101_BSCFG 0x1A // (0x6C) Bit Synchronization Configuration
#define CC1101_AGCCTRL2 0x1B // (0x03) AGC Control
#define CC1101_AGCCTRL1 0x1C // (0x40) AGC Control
#define CC1101_AGCCTRL0 0x1D // (0x91) AGC Control
#define CC1101_WOREVT1 0x1E // (0x87) High Byte Event0 Timeout
#define CC1101_WOREVT0 0x1F // (0x6B) Low Byte Event0 Timeout
#define CC1101_WORCTRL 0x20 // (0xF8) Wake On Radio Control
#define CC1101_FREND1 0x21 // (0x56) Front End RX Configuration
#define CC1101_FREND0 0x22 // (0x10) Front End RX Configuration
#define CC1101_FSCAL3 0x23 // (0xA9) Frequency Synthesizer Calibration
#define CC1101_FSCAL2 0x24 // (0x0A) Frequency Synthesizer Calibration
#define CC1101_FSCAL1 0x25 // (0x20) Frequency Synthesizer Calibration
#define CC1101_FSCAL0 0x26 // (0x0D) Frequency Synthesizer Calibration
#define CC1101_RCCTRL1 0x27 // (0x41) RC Oscillator Configuration
#define CC1101_RCCTRL2 0x28 // (0x00) RC Oscillator Configuration
#define CC1101_FSTEST 0x29 // (0x59) Frequency Synthesizer Calibration Control
#define CC1101_PTEST 0x2A // (0x7F) Production Test
#define CC1101_AGCTEST 0x2B // (0x3F) AGC Test
#define CC1101_TEST2 0x2C // (0x88) Various Test Settings
#define CC1101_TEST1 0x2D // (0x31) Various Test Settings
#define CC1101_TEST0 0x2E // (0x0B) Various Test Settings
#define CC1101_PARTNUM 0x30 // (0x00) Readonly: Chip ID
#define CC1101_VERSION 0x31 // (0x04) Readonly: Chip ID
#define CC1101_FREQEST 0x32 // (0x00) Readonly: Frequency Offset Estimate from Demodulator
#define CC1101_LQI 0x33 // (0x00) Readonly: Demodulator Estimate for Link Quality
#define CC1101_RSSI 0x34 // (0x00) Readonly: Received Signal Strength Indication
#define CC1101_MARCSTATE 0x35 // (0x00) Readonly: Main Radio Control State Machine State
#define CC1101_WORTIME1 0x36 // (0x00) Readonly: High Byte of WOR Time
#define CC1101_WORTIME0 0x37 // (0x00) Readonly: Low Byte of WOR Time
#define CC1101_PKTSTATUS 0x38 // (0x00) Readonly: Current GDOx Status and Packet Status
#define CC1101_VCO_VC_DAC 0x39 // (0x00) Readonly: Current Setting from PLL Calibration Module
#define CC1101_TXBYTES 0x3A // (0x00) Readonly: Underflow and Number of Bytes
#define CC1101_RXBYTES 0x3B // (0x00) Readonly: Overflow and Number of Bytes
#define CC1101_RCCTRL1_STATUS 0x3C // (0x00) Readonly: Last RC Oscillator Calibration Result
#define CC1101_RCCTRL0_STATUS 0x3D // (0x00) Readonly: Last RC Oscillator Calibration Result
#define CC1101_PATABLE 0x3E // PATABLE address
#define CC1101_TXFIFO 0x3F // TX FIFO address
#define CC1101_RXFIFO 0x3F // RX FIFO address
#define CC1101_PA_TABLE0 0x40 // (0x00) PA table, entry 0
#define CC1101_PA_TABLE1 0x41 // (0x00) PA table, entry 1
#define CC1101_PA_TABLE2 0x42 // (0x00) PA table, entry 2
#define CC1101_PA_TABLE3 0x43 // (0x00) PA table, entry 3
#define CC1101_PA_TABLE4 0x44 // (0x00) PA table, entry 4
#define CC1101_PA_TABLE5 0x45 // (0x00) PA table, entry 5
#define CC1101_PA_TABLE6 0x46 // (0x00) PA table, entry 6
#define CC1101_PA_TABLE7 0x47 // (0x00) PA table, entry 7
// some register definitions for TRX868 communication
#define READ_SINGLE 0x80 // type of transfers
#define READ_BURST 0xC0
#define WRITE_BURST 0x40
#define CC1101_CONFIG 0x80 // type of register
#define CC1101_STATUS 0xC0
#define CC1101_SRES 0x30 // reset CC1101 chip
#define CC1101_SFSTXON 0x31 // enable and calibrate frequency synthesizer (if MCSM0.FS_AUTOCAL=1). if in RX (with CCA): Go to a wait state where only the synthesizer is running (for quick RX / TX turnaround).
#define CC1101_SXOFF 0x32 // turn off crystal oscillator
#define CC1101_SCAL 0x33 // calibrate frequency synthesizer and turn it off. SCAL can be strobed from IDLE mode without setting manual calibration mode (MCSM0.FS_AUTOCAL=0)
#define CC1101_SRX 0x34 // enable RX. perform calibration first if coming from IDLE and MCSM0.FS_AUTOCAL=1
#define CC1101_STX 0x35 // in IDLE state: enable TX. perform calibration first if MCSM0.FS_AUTOCAL=1. if in RX state and CCA is enabled: only go to TX if channel is clear
#define CC1101_SIDLE 0x36 // exit RX / TX, turn off frequency synthesizer and exit Wake-On-Radio mode if applicable
#define CC1101_SWOR 0x38 // start automatic RX polling sequence (Wake-on-Radio) as described in Section 19.5 if WORCTRL.RC_PD=0
#define CC1101_SPWD 0x39 // enter power down mode when CSn goes high
#define CC1101_SFRX 0x3A // flush the RX FIFO buffer. only issue SFRX in IDLE or RXFIFO_OVERFLOW states
#define CC1101_SFTX 0x3B // flush the TX FIFO buffer. only issue SFTX in IDLE or TXFIFO_UNDERFLOW states
#define CC1101_SWORRST 0x3C // reset real time clock to Event1 value
#define CC1101_SNOP 0x3D // no operation. may be used to get access to the chip status byte
#define MARCSTATE_SLEEP 0x00
#define MARCSTATE_IDLE 0x01
#define MARCSTATE_XOFF 0x02
#define MARCSTATE_VCOON_MC 0x03
#define MARCSTATE_REGON_MC 0x04
#define MARCSTATE_MANCAL 0x05
#define MARCSTATE_VCOON 0x06
#define MARCSTATE_REGON 0x07
#define MARCSTATE_STARTCAL 0x08
#define MARCSTATE_BWBOOST 0x09
#define MARCSTATE_FS_LOCK 0x0A
#define MARCSTATE_IFADCON 0x0B
#define MARCSTATE_ENDCAL 0x0C
#define MARCSTATE_RX 0x0D
#define MARCSTATE_RX_END 0x0E
#define MARCSTATE_RX_RST 0x0F
#define MARCSTATE_TXRX_SWITCH 0x10
#define MARCSTATE_RXFIFO_OFLOW 0x11
#define MARCSTATE_FSTXON 0x12
#define MARCSTATE_TX 0x13
#define MARCSTATE_TX_END 0x14
#define MARCSTATE_RXTX_SWITCH 0x15
#define MARCSTATE_TXFIFO_UFLOW 0x16
#define PA_LowPower 0x03 // PATABLE values
#define PA_Normal 0x50 // PATABLE values
#define PA_MaxPower 0xC0
#ifdef ARDUINO_ARCH_AVR
template <uint8_t CS,uint8_t MOSI,uint8_t MISO,uint8_t SCLK, class PINTYPE=ArduinoPins>
class AvrSPI {
public:
uint8_t send (uint8_t data) {
SPDR = data; // send byte
while (!(SPSR & _BV(SPIF))); // wait until transfer finished
return SPDR;
}
void waitMiso () {
while(PINTYPE::getState(MISO));
}
void init () {
PINTYPE::setOutput(CS);
PINTYPE::setOutput(MOSI);
PINTYPE::setInput(MISO);
PINTYPE::setOutput(SCLK);
// SPI enable, master, speed = CLK/4
SPCR = _BV(SPE) | _BV(MSTR);
PINTYPE::setHigh(CS);
// Set SCLK = 1 and SI = 0, to avoid potential problems with pin control mode
PINTYPE::setHigh(SCLK);
PINTYPE::setLow(MOSI);
}
void select () {
PINTYPE::setLow(CS);
}
void deselect () {
PINTYPE::setHigh(CS);
}
void ping () {
select(); // wake up the communication module
waitMiso();
deselect();
}
uint8_t strobe(uint8_t cmd) {
select(); // select CC1101
waitMiso(); // wait until MISO goes low
uint8_t ret = send(cmd); // send strobe command
deselect(); // deselect CC1101
return ret;
}
void readBurst(uint8_t * buf, uint8_t regAddr, uint8_t len) {
select(); // select CC1101
waitMiso(); // wait until MISO goes low
send(regAddr | READ_BURST); // send register address
for(uint8_t i=0 ; i<len ; i++) {
buf[i] = send(0x00); // read result byte by byte
//dbg << i << ":" << buf[i] << '\n';
}
deselect(); // deselect CC1101
}
void writeBurst(uint8_t regAddr, uint8_t* buf, uint8_t len) {
select(); // select CC1101
waitMiso(); // wait until MISO goes low
send(regAddr | WRITE_BURST); // send register address
for(uint8_t i=0 ; i<len ; i++)
send(buf[i]); // send value
deselect(); // deselect CC1101
}
uint8_t readReg(uint8_t regAddr, uint8_t regType) {
select(); // select CC1101
waitMiso(); // wait until MISO goes low
send(regAddr | regType); // send register address
uint8_t val = send(0x00); // read result
deselect(); // deselect CC1101
return val;
}
void writeReg(uint8_t regAddr, uint8_t val) {
select(); // select CC1101
waitMiso(); // wait until MISO goes low
send(regAddr); // send register address
send(val); // send value
deselect(); // deselect CC1101
}
};
#endif
#ifdef SPI_MODE0
template <uint8_t CS,uint32_t CLOCK=2000000, BitOrder BITORDER=MSBFIRST, uint8_t MODE=SPI_MODE0>
class LibSPI {
public:
LibSPI () {}
void init () {
pinMode(CS,OUTPUT);
SPI.begin();
}
void select () {
digitalWrite(CS,LOW);
}
void deselect () {
digitalWrite(CS,HIGH);
}
void ping () {
SPI.beginTransaction(SPISettings(CLOCK,BITORDER,MODE));
select(); // wake up the communication module
SPI.transfer(0); // ????
deselect();
SPI.endTransaction();
}
void waitMiso () {
_delay_us(10);
}
uint8_t send (uint8_t data) {
SPI.beginTransaction(SPISettings(CLOCK,BITORDER,MODE));
uint8_t ret = SPI.transfer(data);
SPI.endTransaction();
return ret;
}
uint8_t strobe(uint8_t cmd) {
SPI.beginTransaction(SPISettings(CLOCK,BITORDER,MODE));
select(); // select CC1101
uint8_t ret = SPI.transfer(cmd);
deselect(); // deselect CC1101
SPI.endTransaction();
return ret;
}
void readBurst(uint8_t * buf, uint8_t regAddr, uint8_t len) {
SPI.beginTransaction(SPISettings(CLOCK,BITORDER,MODE));
select(); // select CC1101
SPI.transfer(regAddr | READ_BURST); // send register address
for(uint8_t i=0 ; i<len ; i++) {
buf[i] = SPI.transfer(0x00); // read result byte by byte
//dbg << i << ":" << buf[i] << '\n';
}
deselect(); // deselect CC1101
SPI.endTransaction();
}
void writeBurst(uint8_t regAddr, uint8_t* buf, uint8_t len) {
SPI.beginTransaction(SPISettings(CLOCK,BITORDER,MODE));
select(); // select CC1101
SPI.transfer(regAddr | WRITE_BURST); // send register address
for(uint8_t i=0 ; i<len ; i++)
SPI.transfer(buf[i]); // send value
deselect(); // deselect CC1101
SPI.endTransaction();
}
uint8_t readReg(uint8_t regAddr, uint8_t regType) {
SPI.beginTransaction(SPISettings(CLOCK,BITORDER,MODE));
select(); // select CC1101
SPI.transfer(regAddr | regType); // send register address
uint8_t val = SPI.transfer(0x00); // read result
deselect(); // deselect CC1101
SPI.endTransaction();
return val;
}
void writeReg(uint8_t regAddr, uint8_t val) {
SPI.beginTransaction(SPISettings(CLOCK,BITORDER,MODE));
select(); // select CC1101
SPI.transfer(regAddr); // send register address
SPI.transfer(val); // send value
deselect(); // deselect CC1101
SPI.endTransaction();
}
};
#endif
extern void* __gb_radio;
class NoRadio {
public:
NoRadio () {}
bool detectBurst () { return false; }
void disable () {};
void enable () {}
void flushrx() {}
uint8_t getGDO0 () { return 0; }
void init () {}
bool isIdle () { return true; }
uint8_t read (__attribute__ ((unused)) Message& msg) { return 0; }
uint8_t reset () { return 0; }
uint8_t rssi () { return 0; }
void setIdle () {}
void setSendTimeout (__attribute__ ((unused)) uint16_t timeout) {}
void waitTimeout (__attribute__ ((unused)) uint16_t timeout) {}
void wakeup () {}
void initReg(__attribute__ ((unused)) uint8_t val0, __attribute__ ((unused)) uint8_t val1) {}
bool write (__attribute__ ((unused)) const Message& msg, __attribute__ ((unused)) uint8_t burst) { return false; }
};
template <class SPIType>
class CC1101 {
protected:
SPIType spi;
uint8_t rss; // signal strength
public:
CC1101 () : rss(0) {}
void setIdle () {
//DPRINTLN("CC enter powerdown");
uint8_t cnt = 0xff;
while(cnt-- && (spi.strobe(CC1101_SIDLE) & 0x70) != 0) {
_delay_us(10);
}
spi.strobe(CC1101_SFRX);
#ifdef USE_WOR
// init
spi.writeReg(CC1101_PKTCTRL1, 0x4C); // preamble quality estimator threshold=2
spi.writeReg(CC1101_MCSM2, 0x1c); // RX_TIME_RSSI=1, RX_TIME_QUAL=1, RX_TIME=4
//start
spi.strobe(CC1101_SWORRST);
spi.strobe(CC1101_SWOR);
#else
spi.strobe(CC1101_SPWD); // enter power down state
#endif
}
void wakeup (bool flush) {
spi.ping();
if( flush==true ) {
flushrx();
}
#ifdef USE_WOR
// ToDo: is this the right position?
spi.writeReg(CC1101_PKTCTRL1, 0x0C); // preamble quality estimator threshold=0
spi.writeReg(CC1101_MCSM2, 0x07); // RX_TIME_RSSI=0, RX_TIME_QUAL=0, RX_TIME=7
#endif
spi.strobe(CC1101_SRX);
}
uint8_t reset() {
// Strobe CSn low / high
spi.select();
// Automatic POR
// If the chip has had sufficient time for the crystal oscillator to stabilize after the power-on-reset the SO pin
// will go low immediately after taking CSn low. If CSn is taken low before reset is completed the
// SO pin will first go high, indicating that the crystal oscillator is not stabilized, before going low
spi.waitMiso();
spi.deselect();
// Hold CSn high for at least 40μs relative to pulling CSn low
_delay_us(50);
// Pull CSn low and wait for SO to go low (CHIP_RDYn).
spi.select();
spi.waitMiso();
// Issue the SRES strobe on the SI line
uint8_t ret = spi.send(CC1101_SRES);
// When SO goes low again, reset is complete and the chip is in the IDLE state.
spi.waitMiso();
spi.deselect();
return ret;
}
void init () {
spi.init(); // init the hardware to get access to the RF modul
reset();
// define init settings for CC1101
static const uint8_t initVal[] PROGMEM = {
/*register value reset explanation of delta to reset value */
CC1101_IOCFG2, 0x2E, // 0x29 high impedance tri state (pin not used)
//CC1101_IOCFG2, 0x24, // 0x29 Debug: WOR_EVT0
//CC1101_IOCFG1, 0x2E, // 0x2E high impedance tri state (pin not used)
//CC1101_IOCFG1, 0x25, // 0x2E Debug: WOR_EVT1
//CC1101_IOCFG1, 0x0E, // 0x2E Debug: Carrier sense
//CC1101_IOCFG1, 0x0F, // 0x2E Debug: CRC_OK
CC1101_IOCFG0, 0x06, // 0x3F Asserts when sync word has been sent / received, and de-asserts at the end of the packet. In RX, the pin will also deassert when a packet is discarded due to address or maximum length filtering or when the radio enters RXFIFO_OVERFLOW state. In TX the pin will de-assert if the TX FIFO underflows.
CC1101_FIFOTHR, 0x0D, // 0x07 TX FIFO = 9, RX FIFO = 56 byte
CC1101_SYNC1, 0xE9, // 0xD3 Sync word MSB
CC1101_SYNC0, 0xCA, // 0x91 Sync word LSB
//CC1101_PKTLEN, 0xFF, // 0xFF
CC1101_PKTCTRL1, 0x0C, // 0x04 CRC auto flush = 1, append status = 1,
//CC1101_PKTCTRL0, 0x45, // 0x45
//CC1101_ADDR, 0x00, // 0x00
//CC1101_CHANNR, 0x00, // 0x00
CC1101_FSCTRL1, 0x06, // 0x0F frequency synthesizer control
//CC1101_FSCTRL0, 0x00, // 0x00
// 868.299866 MHz - if other values are found in EEPROM, these are overwritten later
CC1101_FREQ2, 0x21, // 0x1E
CC1101_FREQ1, 0x65, // 0xC4
CC1101_FREQ0, 0x6A, // 0xEC
CC1101_MDMCFG4, 0xC8, // 0x8C channel bandwidth
CC1101_MDMCFG3, 0x93, // 0x22 symbol data rate
CC1101_MDMCFG2, 0x03, // 0x02 30 of 32 bits of sync word need to match
//CC1101_MDMCFG1, 0x22, // 0x22
//CC1101_MDMCFG0, 0xF8, // 0xF8
CC1101_DEVIATN, 0x34, // 0x47 devaition = 19.042969 kHz
//CC1101_MCSM2, 0x07, // 0x07
CC1101_MCSM1, 0x03, // 0x30 always clear channel indication, RX after TX
CC1101_MCSM0, 0x18, // 0x04 auto cal when going from IDLE to RX/TX, XOSC stable count = 64
CC1101_FOCCFG, 0x16, // 0x36 don't freeze freq offset compensation
//CC1101_BSCFG, 0x6C, // 0x6C
CC1101_AGCCTRL2, 0x43, // 0x03 forbit highst gain setting for DVGA
//CC1101_AGCCTRL1, 0x40, // 0x40
//CC1101_AGCCTRL0, 0x91, // 0x91
CC1101_WOREVT1, 0x2f, // 0x87 see next line
CC1101_WOREVT0, 0x65, // 0x6B t_Event0 = 350ms
CC1101_WORCTRL, 0x78, // 0xF8 RC_PD=0
//CC1101_FREND1, 0x56, // 0x56
//CC1101_FREND0, 0x10, // 0x10
CC1101_FSCAL3, 0xE9, // 0xA9 charge pump calib stage
CC1101_FSCAL2, 0x2A, // 0x0A high VCO
CC1101_FSCAL1, 0x1F, // 0x20 freq synthesizer calib result
CC1101_FSCAL0, 0x11, // 0x0D freq synthesizer calib control
//CC1101_RCCTRL1, 0x41, // 0x41
//CC1101_RCCTRL0, 0x00, // 0x00
//CC1101_FSTEST, 0x59, // 0x59
//CC1101_PTEST, 0x7f, // 0x7f
//CC1101_AGCTEST, 0x3f, // 0x3f
//CC1101_TEST2, 0x88, // 0x88
//CC1101_TEST1, 0x31, // 0x31
//CC1101_TEST0, 0x0b, // 0x0b
CC1101_PATABLE, 0x03, // NA
};
for (uint8_t i=0; i<sizeof(initVal); i+=2) { // write init value to TRX868
initReg(pgm_read_byte(&initVal[i]), pgm_read_byte(&initVal[i+1]));
}
// Settings that ELV sets
DPRINT(F("CC Version: ")); DHEXLN(spi.readReg(CC1101_VERSION, CC1101_STATUS));
spi.strobe(CC1101_SCAL); // calibrate frequency synthesizer and turn it off
_delay_ms(23);
initReg(CC1101_PATABLE, PA_MaxPower); // configure PATABLE
DPRINTLN(F(" - ready"));
}
void initReg (uint8_t regAddr, uint8_t val, uint8_t retries=3) {
spi.writeReg(regAddr, val);
uint8_t val_read = spi.readReg(regAddr, CC1101_CONFIG);
if( val_read != val ) {
if( retries > 0 ) {
initReg(regAddr, val, --retries);
_delay_ms(1);
}
else {
DPRINT(F("Error at ")); DHEX(regAddr);
DPRINT(F(" expected: ")); DHEX(val); DPRINT(F(" read: ")); DHEXLN(val_read);
}
}
}
uint8_t rssi () const {
return rss;
}
void flushrx () {
spi.strobe(CC1101_SIDLE);
spi.strobe(CC1101_SNOP);
spi.strobe(CC1101_SFRX);
}
bool detectBurst () {
uint8_t state = spi.readReg(CC1101_PKTSTATUS, CC1101_STATUS);
// DHEXLN(state);
return (state & 0x01<<6) == (0x01<<6);
}
protected:
uint8_t sndData(uint8_t *buf, uint8_t size, uint8_t burst) {
// Going from RX to TX does not work if there was a reception less than 0.5
// sec ago. Due to CCA? Using IDLE helps to shorten this period(?)
spi.strobe(CC1101_SIDLE); // go to idle mode
spi.strobe(CC1101_SFTX ); // flush TX buffer
uint8_t i=200;
do {
spi.strobe(CC1101_STX);
_delay_us(100);
if( --i == 0 ) {
// can not enter TX state - reset fifo
spi.strobe(CC1101_SIDLE );
spi.strobe(CC1101_SFTX );
spi.strobe(CC1101_SNOP );
// back to RX mode
do { spi.strobe(CC1101_SRX);
} while (spi.readReg(CC1101_MARCSTATE, CC1101_STATUS) != MARCSTATE_RX);
return false;
}
}
while(spi.readReg(CC1101_MARCSTATE, CC1101_STATUS) != MARCSTATE_TX);
_delay_ms(10);
if (burst) { // BURST-bit set?
_delay_ms(350); // according to ELV, devices get activated every 300ms, so send burst for 360ms
}
spi.writeReg(CC1101_TXFIFO, size);
spi.writeBurst(CC1101_TXFIFO, buf, size); // write in TX FIFO
for(uint8_t i = 0; i < 200; i++) { // after sending out all bytes the chip should go automatically in RX mode
if( spi.readReg(CC1101_MARCSTATE, CC1101_STATUS) == MARCSTATE_RX)
break; //now in RX mode, good
_delay_us(100);
}
return true;
}
uint8_t rcvData(uint8_t *buf, uint8_t size) {
//DPRINTLN(" rcvData");
uint8_t packetBytes = 0;
uint8_t rxBytes = 0;
uint8_t fifoBytes = spi.readReg(CC1101_RXBYTES, CC1101_STATUS); // how many bytes are in the buffer
//DPRINT(" RX FIFO: ");DHEXLN(fifoBytes);
// overflow detected - flush the FIFO
if( fifoBytes > 0 && (fifoBytes & 0x80) != 0x80 ) {
packetBytes = spi.readReg(CC1101_RXFIFO, CC1101_CONFIG); // read packet length
//DPRINT(" Start Packet: ");DHEXLN(packetBytes);
// check that packet fits into the buffer
if (packetBytes <= size) {
spi.readBurst(buf, CC1101_RXFIFO, packetBytes); // read data packet
uint8_t rsshex = spi.readReg(CC1101_RXFIFO, CC1101_CONFIG); // read RSSI
rss = -1 * ((((int16_t)rsshex-((int16_t)rsshex >= 128 ? 256 : 0))/2)-74);
uint8_t val = spi.readReg(CC1101_RXFIFO, CC1101_CONFIG); // read LQI and CRC_OK
// lqi = val & 0x7F;
if( (val & 0x80) == 0x80 ) { // check crc_ok
// DPRINTLN("CRC OK");
rxBytes = packetBytes;
}
else {
DPRINTLN(F("CRC Failed"));
}
}
else {
DPRINT(F("Packet too big: "));DDECLN(packetBytes);
}
}
//DPRINT(F("-> "));
//DHEXLN(buf,rxBytes);
spi.strobe(CC1101_SFRX);
_delay_us(190);
flushrx();
spi.strobe(CC1101_SRX);
//DHEXLN(spi.readReg(CC1101_MARCSTATE, CC1101_STATUS));
return rxBytes; // return number of byte in buffer
}
};
template <class SPIType ,uint8_t GDO0,int SENDDELAY=100,class HWRADIO=CC1101<SPIType> >
class Radio : public HWRADIO {
static void isr () {
((Radio<SPIType,GDO0,SENDDELAY,HWRADIO>*)__gb_radio)->handleInt();
}
class MinSendTimeout : public Alarm {
volatile bool wait;
public:
MinSendTimeout () : Alarm(0), wait(false) { async(true); }
virtual ~MinSendTimeout () {}
void waitTimeout () {
// wait until time out over
while( wait==true ) {
// if( sysclock.runwait() == false ) {
_delay_ms(1);
// }
}
if( SENDDELAY > 0) {
set(millis2ticks(100));
// signal new wait cycle
wait = true;
// add to system clock
sysclock.add(*this);
}
}
void setTimeout (uint16_t millis=100) {
// cancel possible old timeout
sysclock.cancel(*this);
// set to 100ms
set(millis2ticks(millis));
// signal new wait cycle
wait = true;
// add to system clock
sysclock.add(*this);
}
virtual void trigger(__attribute__ ((unused)) AlarmClock& clock) {
// signal wait cycle over
wait = false;
}
} timeout;
public:
// this will delay next send by given millis
void setSendTimeout(uint16_t millis) {
timeout.setTimeout(millis);
}
// use the radio timer to wait given millis
void waitTimeout (uint16_t millis) {
timeout.setTimeout(millis);
timeout.waitTimeout();
}
private:
volatile uint8_t intread;
volatile uint8_t sending;
volatile bool idle;
Message buffer;
public: //---------------------------------------------------------------------------------------------------------
Radio () : intread(0), sending(0), idle(false) {}
void init () {
// ensure ISR if off before we start to init CC1101
// OTA boot loader may leave it on
disable();
__gb_radio = this;
DPRINT(F("CC init"));
pinMode(GDO0,INPUT);
DPRINTLN(F("1"));
HWRADIO::init();
}
void setIdle () {
if( idle == false ) {
HWRADIO::setIdle();
idle = true;
}
}
void wakeup (bool flush=true) {
if( idle == true ) {
HWRADIO::wakeup(flush);
idle = false;
}
}
bool isIdle () {
return idle;
}
void handleInt () {
if( sending == 0 ) {
// DPRINT(" * "); DPRINTLN(millis());
intread = 1;
}
}
bool detectBurst () {
if( isIdle() == true ) {
wakeup();
// let radio some time to get carrier signal
_delay_ms(3);
}
return HWRADIO::detectBurst();
}
uint8_t getGDO0 () {
return digitalRead(GDO0);
}
void enable () {
#ifdef EnableInterrupt_h
if( digitalPinToInterrupt(GDO0) == NOT_AN_INTERRUPT )
enableInterrupt(GDO0,isr,FALLING);
else
#endif
attachInterrupt(digitalPinToInterrupt(GDO0),isr,FALLING);
}
void disable () {
#ifdef EnableInterrupt_h
if( digitalPinToInterrupt(GDO0) == NOT_AN_INTERRUPT )
disableInterrupt(GDO0);
else
#endif
detachInterrupt(digitalPinToInterrupt(GDO0));
}
// read the message form the internal buffer, if any
uint8_t read (Message& msg) {
if( intread == 0 )
return 0;
intread = 0;
uint8_t len = this->rcvData(buffer.buffer(),buffer.buffersize());
if( len > 0 ) {
buffer.length(len);
// decode the message
buffer.decode();
// copy buffer to message
memcpy(msg.buffer(),buffer.buffer(),len);
}
msg.length(len);
// reset buffer
buffer.clear();
wakeup(false);
return msg.length();
}
// try to read a message - not longer than timeout millis
uint8_t read (Message& msg, uint32_t timeout) {
uint8_t num = 0;
uint32_t time=0;
do {
num = read(msg);
if( num == 0 ) {
_delay_ms(50); // wait 50ms
time += 50;
}
}
while( num == 0 && time < timeout );
return num;
}
// simple send the message
bool write (const Message& msg, uint8_t burst) {
memcpy(buffer.buffer(),msg.buffer(),msg.length());
buffer.length(msg.length());
buffer.encode();
return sndData(buffer.buffer(),buffer.length(),burst);
}
/*
bool readAck (const Message& msg) {
if( intread == 0 )
return false;
intread = 0;
idle = false;
bool ack=false;
uint8_t len = this->rcvData(buffer.buffer(),buffer.buffersize());
if( len > 0 ) {
buffer.length(len);
// decode the message
buffer.decode();
ack = buffer.isAck() &&
(buffer.from() == msg.to()) &&
(buffer.to() == msg.from()) &&
(buffer.count() == msg.count());
// reset buffer
buffer.clear();
}
return ack;
}
*/
uint8_t sndData(uint8_t *buf, uint8_t size, uint8_t burst) {
timeout.waitTimeout();
this->wakeup();
sending = 1;
uint8_t result = HWRADIO::sndData(buf,size,burst);
sending = 0;
return result;
}
};
}
#endif