-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_transnet_stream.py
268 lines (240 loc) · 11.1 KB
/
test_transnet_stream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import sys
import cv2
import pickle
import torch
import argparse
from glob import glob
from tqdm import tqdm
import numpy as np
import pandas as pd
from time import time
import albumentations as A
from model.resnet import ResNet
from model.mstcn import MultiStageModel
from model.transformer import Transformer
from utils.parser import ParserUse
from torch.utils.data import DataLoader
from dataset.esd import VideoSample
phase_dict = {}
phase_dict_key = ['idle', 'marking', 'injection', 'dissection']
for i in range(len(phase_dict_key)):
phase_dict[phase_dict_key[i]] = i
label_dict = {}
phase_dict_key = ['idle', 'marking', 'injection', 'dissection']
for i, phase in enumerate(phase_dict_key):
label_dict[i] = phase
class PhaseSeg(object):
"""
The class performs generic object detection on a video file.
It uses yolo5 pretrained model to make inferences and opencv2 to manage frames.
Included Features:
1. Reading and writing of video file using Opencv2
2. Using pretrained model to make inferences on frames.
3. Use the inferences to plot boxes on objects along with labels.
Upcoming Features:
"""
def __init__(self, input_file, hypers, out_file=None, label_file=None, quiet=False, arg=None):
"""
:param input_file: provide youtube url which will act as input for the model.
:param out_file: name of a existing file, or a new file in which to write the output.
:return: void
"""
self.input_file = input_file
self.hypers = hypers
self.arg = arg
self.model = self.load_model()
self.out_file = os.path.join("./results", os.path.basename(input_file)) if out_file is None else out_file
self.frame_feature_cache = None
self.frame_cache_len = 2 ** (self.arg.mstcn_layers + 1) - 1
self.temporal_feature_cache = None
self.label2phase_dict = label_dict
self.aug = A.Compose([
A.Resize(250, 250),
A.CenterCrop(224, 224),
A.Normalize()
])
self.label_file = label_file
self.quiet = quiet
if label_file is not None:
self.labels = self.get_labels()
else:
self.labels = None
def get_video_from_file(self):
"""
Function creates a streaming object to read the video from the file frame by frame.
:param self: class object
:return: OpenCV object to stream video frame by frame.
"""
cap = cv2.VideoCapture(self.input_file)
assert cap is not None
return cap
def get_labels(self):
assert self.label_file, "Label file {} does not exit".format(self.label_file)
phase_label = pd.read_csv(self.label_file, header=None, sep="[ ]{1,}|\t", engine="python")
if len(phase_label.columns) == 5:
phase_label.columns = ["Frame", "Phase", "#1", "#2", "#3"]
elif len(phase_label.columns) == 2:
phase_label.columns = ["Frame", "Phase"]
else:
raise ValueError("The header of label file cannot be matched")
phase_label = phase_label.astype({"Frame": int, "Phase": str})
phase_label = phase_label.replace({"Phase": phase_dict})
phase_labels = phase_label["Phase"].tolist()
return phase_labels
def save_preds(self, preds):
pd_label = pd.DataFrame({"Frame": list(range(1, len(preds) + 1, 1)), "Phase": preds})
pd_label = pd_label.astype({"Frame": "int", "Phase": "str"})
save_file = self.out_file.replace(".avi", ".txt")
print(save_file)
pd_label.to_csv(save_file, index=False, header=None, sep="\t")
def load_model(self):
"""
Function loads the yolo5 model from PyTorch Hub.
"""
self.resnet = ResNet(out_channels=self.hypers.out_classes, has_fc=False)
paras = torch.load(self.hypers.resnet_model)["model"]
paras = {k: v for k, v in paras.items() if "fc" not in k}
paras = {k: v for k, v in paras.items() if "embed" not in k}
self.resnet.load_state_dict(paras, strict=True)
self.resnet.cuda()
self.resnet.eval()
self.fusion = MultiStageModel(mstcn_stages=self.hypers.mstcn_stages, mstcn_layers=self.hypers.mstcn_layers,
mstcn_f_maps=self.hypers.mstcn_f_maps, mstcn_f_dim=self.hypers.mstcn_f_dim,
out_features=self.hypers.out_classes, mstcn_causal_conv=True, is_train=False)
paras = torch.load(self.hypers.fusion_model)
self.fusion.load_state_dict(paras)
self.fusion.cuda()
self.fusion.eval()
self.transformer = Transformer(self.hypers.mstcn_f_maps, self.hypers.mstcn_f_dim, self.hypers.out_classes, self.hypers.trans_seq, d_model=self.hypers.mstcn_f_maps)
paras = torch.load(self.hypers.trans_model)
self.transformer.load_state_dict(paras)
self.transformer.cuda()
self.transformer.eval()
def cache_frame_features(self, feature):
if self.frame_feature_cache is None:
self.frame_feature_cache = feature
elif self.frame_feature_cache.shape[0] > self.frame_cache_len:
self.frame_feature_cache = torch.cat([self.frame_feature_cache[1:], feature], dim=0)
else:
self.frame_feature_cache = torch.cat([self.frame_feature_cache, feature], dim=0)
return self.frame_feature_cache
def seg_frame(self, frame):
"""
function scores each frame of the video and returns results.
:param frame: frame to be infered.
:return: labels and coordinates of objects found.
"""
frame = self.aug(image=frame)["image"]
with torch.no_grad():
frame = np.expand_dims(np.transpose(frame, [2, 0, 1]), axis=0)
frame = torch.tensor(frame).cuda()
frame_feature = self.resnet(frame)
# print(frame_feature.size())
cat_frame_feature = self.cache_frame_features(frame_feature).unsqueeze(0)
temporal_feature = self.fusion(cat_frame_feature.transpose(1, 2))
# Temporal feature: [1, 5, 512], Frame feature:[1, 512, 2048]
pred = self.transformer(temporal_feature.detach(), cat_frame_feature)[-1].cpu().numpy()
return self.label2phase_dict[np.argmax(pred, axis=0)]
def plot_boxes(self, results, frame):
"""
plots boxes and labels on frame.
:param results: inferences made by model
:param frame: frame on which to make the plots
:return: new frame with boxes and labels plotted.
"""
labels, cord = results
n = len(labels)
x_shape, y_shape = frame.shape[1], frame.shape[0]
for i in range(n):
row = cord[i]
x1, y1, x2, y2 = int(row[0]*x_shape), int(row[1]*y_shape), int(row[2]*x_shape), int(row[3]*y_shape)
bgr = (0, 0, 255)
cv2.rectangle(frame, (x1, y1), (x2, y2), bgr, 1)
label = f"{int(row[4]*100)}"
cv2.putText(frame, label, (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 1)
cv2.putText(frame, f"Total Targets: {n}", (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.1, (0, 255, 0), 1)
return frame
def add_text(self, fc, results, fps, frame):
cv2.putText(frame, "Frame:{:>6d}".format(fc), (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
cv2.putText(frame, "Phase:{:>15s}".format(results), (30, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
cv2.putText(frame, "FPS:{:>8.2f}".format(fps), (30, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
return frame
def __call__(self):
player = self.get_video_from_file() # create streaming service for application
assert player.isOpened()
x_shape = int(player.get(cv2.CAP_PROP_FRAME_WIDTH))
y_shape = int(player.get(cv2.CAP_PROP_FRAME_HEIGHT))
four_cc = cv2.VideoWriter_fourcc(*"XVID")
out = cv2.VideoWriter(self.out_file, four_cc, 8, (x_shape, y_shape), True)
tfcc = 0
preds = []
while True:
tfcc += 1
start_time = time()
ret, frame = player.read()
if not ret:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = self.seg_frame(frame)
preds.append(results)
end_time = time()
if tfcc % 10 == 1:
fps = 1/np.round(end_time - start_time, 3)
print("{:10.5f}".format(fps))
frame = self.add_text(tfcc, results, fps, frame)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
out.write(frame)
if not self.quiet:
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
player.release()
self.save_preds(preds)
cv2.destroyAllWindows()
if __name__ == "__main__":
parse = argparse.ArgumentParser()
parse.add_argument("-f", required=False, default=None, type=str, help="Target video to be processed")
parse.add_argument("-d", default=None, type=str, help="File to save processed video")
parse.add_argument("-q", default=False, action='store_true', help="Display video")
parse.add_argument("--cfg", default="train", type=str)
cfg = parse.parse_args()
cfg = ParserUse(cfg.cfg, "stream").add_args(cfg)
if cfg.f is None:
videos = sorted(glob("/research/dept8/rshr/jfcao/Dataset/ESD_new_data/mini_avi/*.avi"))
for case_idx in cfg.test_names:
print(videos[case_idx])
cfg.f = videos[case_idx]
phase_seg = PhaseSeg(cfg.f, cfg, cfg.d, quiet=cfg.q, arg=cfg)
phase_seg()
else:
phase_seg = PhaseSeg(cfg.f, cfg, cfg.d, quiet=cfg.q, arg=cfg)
#
# with open(cfg.data_file, "rb") as f:
# data_dict = pickle.load(f)
# with open(cfg.emb_file, "rb") as f:
# emb_dict = pickle.load(f)
#
# test_data = VideoSample(data_dict=data_dict, data_idxs=cfg.test_names, data_features=emb_dict, is_train=False, get_name=True)
# test_loader = DataLoader(test_data, batch_size=1, shuffle=False, num_workers=0, drop_last=False)
#
# import os
# import pandas as pd
# from sklearn import metrics
# with torch.no_grad():
# for data in tqdm(test_loader, desc="Predicting"):
# img_featrues0, img_names = data[0].cuda(non_blocking=True), data[1]
# img_featrues = torch.transpose(img_featrues0, 1, 2)
# features = phase_seg.fusion(img_featrues)[-1].squeeze(1) # Shifted predictions for all frames
# p_classes = phase_seg.transformer(features.detach(), img_featrues0).squeeze()
# preds = torch.argmax(p_classes, dim=-1).cpu().numpy().tolist()
#
# gt_label_file = os.path.join(cfg.label_dir, os.path.basename(img_names[0][0].split("-")[0]) + ".txt")
# gt_label = pd.read_csv(gt_label_file, header=None, sep="\t", names=["Frame", "Phase"], index_col=False)
# gt_label = gt_label.replace({"Phase": phase_dict})
# gt_label = gt_label["Phase"].tolist()
# acc = metrics.accuracy_score(gt_label, preds)
#
# print(set(preds))
# print("Accuracy: ", acc)
# break