forked from ethereum/go-verkle
-
Notifications
You must be signed in to change notification settings - Fork 1
/
conversion.go
226 lines (200 loc) · 6.73 KB
/
conversion.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
package verkle
import (
"bytes"
"context"
"fmt"
"runtime"
"sort"
"github.com/crate-crypto/go-ipa/banderwagon"
"golang.org/x/sync/errgroup"
)
// BatchNewLeafNodeData is a struct that contains the data needed to create a new leaf node.
type BatchNewLeafNodeData struct {
Stem []byte
Values map[byte][]byte
}
// BatchNewLeafNode creates a new leaf node from the given data. It optimizes LeafNode creation
// by batching expensive cryptography operations. It returns the LeafNodes sorted by stem.
func BatchNewLeafNode(nodesValues []BatchNewLeafNodeData) ([]LeafNode, error) {
cfg := GetConfig()
ret := make([]LeafNode, len(nodesValues))
numBatches := runtime.NumCPU()
batchSize := len(nodesValues) / numBatches
group, _ := errgroup.WithContext(context.Background())
for i := 0; i < numBatches; i++ {
start := i * batchSize
end := (i + 1) * batchSize
if i == numBatches-1 {
end = len(nodesValues)
}
work := func(ret []LeafNode, nodesValues []BatchNewLeafNodeData) func() error {
return func() error {
c1c2points := make([]*Point, 2*len(nodesValues))
c1c2frs := make([]*Fr, 2*len(nodesValues))
for i, nv := range nodesValues {
valsslice := make([][]byte, NodeWidth)
for idx := range nv.Values {
valsslice[idx] = nv.Values[idx]
}
var leaf *LeafNode
leaf, err := NewLeafNode(nv.Stem, valsslice)
if err != nil {
return err
}
ret[i] = *leaf
c1c2points[2*i], c1c2points[2*i+1] = ret[i].c1, ret[i].c2
c1c2frs[2*i], c1c2frs[2*i+1] = new(Fr), new(Fr)
}
if err := banderwagon.BatchMapToScalarField(c1c2frs, c1c2points); err != nil {
return fmt.Errorf("mapping to scalar field: %s", err)
}
var poly [NodeWidth]Fr
poly[0].SetUint64(1)
for i, nv := range nodesValues {
if err := StemFromBytes(&poly[1], nv.Stem); err != nil {
return err
}
poly[2] = *c1c2frs[2*i]
poly[3] = *c1c2frs[2*i+1]
ret[i].commitment = cfg.CommitToPoly(poly[:], 252)
}
return nil
}
}
group.Go(work(ret[start:end], nodesValues[start:end]))
}
if err := group.Wait(); err != nil {
return nil, fmt.Errorf("creating leaf node: %s", err)
}
sort.Slice(ret, func(i, j int) bool {
return bytes.Compare(ret[i].stem, ret[j].stem) < 0
})
return ret, nil
}
// firstDiffByteIdx will return the first index in which the two stems differ.
// Both stems *must* be different.
func firstDiffByteIdx(stem1 []byte, stem2 []byte) int {
for i := range stem1 {
if stem1[i] != stem2[i] {
return i
}
}
panic("stems are equal")
}
func (n *InternalNode) InsertMigratedLeaves(leaves []LeafNode, resolver NodeResolverFn) error {
sort.Slice(leaves, func(i, j int) bool {
return bytes.Compare(leaves[i].stem, leaves[j].stem) < 0
})
// We first mark all children of the subtreess that we'll update in parallel,
// so the subtree updating doesn't produce a concurrent access to n.cowChild(...).
var lastChildrenIdx = -1
for i := range leaves {
if int(leaves[i].stem[0]) != lastChildrenIdx {
lastChildrenIdx = int(leaves[i].stem[0])
if _, ok := n.children[lastChildrenIdx].(HashedNode); ok {
serialized, err := resolver([]byte{byte(lastChildrenIdx)})
if err != nil {
return fmt.Errorf("resolving node: %s", err)
}
resolved, err := ParseNode(serialized, 1)
if err != nil {
return fmt.Errorf("parsing node %x: %w", serialized, err)
}
n.children[lastChildrenIdx] = resolved
}
n.cowChild(byte(lastChildrenIdx))
}
}
// We insert the migrated leaves for each subtree of the root node.
group, _ := errgroup.WithContext(context.Background())
group.SetLimit(runtime.NumCPU())
currStemFirstByte := 0
for i := range leaves {
if leaves[currStemFirstByte].stem[0] != leaves[i].stem[0] {
start := currStemFirstByte
end := i
group.Go(func() error {
return n.insertMigratedLeavesSubtree(leaves[start:end], resolver)
})
currStemFirstByte = i
}
}
group.Go(func() error {
return n.insertMigratedLeavesSubtree(leaves[currStemFirstByte:], resolver)
})
if err := group.Wait(); err != nil {
return fmt.Errorf("inserting migrated leaves: %w", err)
}
return nil
}
func (n *InternalNode) insertMigratedLeavesSubtree(leaves []LeafNode, resolver NodeResolverFn) error { // skipcq: GO-R1005
for i := range leaves {
ln := leaves[i]
parent := n
// Look for the appropriate parent for the leaf node.
for {
if _, ok := parent.children[ln.stem[parent.depth]].(HashedNode); ok {
serialized, err := resolver(ln.stem[:parent.depth+1])
if err != nil {
return fmt.Errorf("resolving node path=%x: %w", ln.stem[:parent.depth+1], err)
}
resolved, err := ParseNode(serialized, parent.depth+1)
if err != nil {
return fmt.Errorf("parsing node %x: %w", serialized, err)
}
parent.children[ln.stem[parent.depth]] = resolved
}
nextParent, ok := parent.children[ln.stem[parent.depth]].(*InternalNode)
if !ok {
break
}
parent.cowChild(ln.stem[parent.depth])
parent = nextParent
}
switch node := parent.children[ln.stem[parent.depth]].(type) {
case Empty:
parent.cowChild(ln.stem[parent.depth])
parent.children[ln.stem[parent.depth]] = &ln
ln.setDepth(parent.depth + 1)
case *LeafNode:
if bytes.Equal(node.stem, ln.stem) {
// In `ln` we have migrated key/values which should be copied to the leaf
// only if there isn't a value there. If there's a value, we skip it since
// our migrated value is stale.
nonPresentValues := make([][]byte, NodeWidth)
for i := range ln.values {
if node.values[i] == nil {
nonPresentValues[i] = ln.values[i]
}
}
if err := node.updateMultipleLeaves(nonPresentValues); err != nil {
return fmt.Errorf("updating leaves: %s", err)
}
continue
}
// Otherwise, we need to create the missing internal nodes depending in the fork point in their stems.
idx := firstDiffByteIdx(node.stem, ln.stem)
// We do a sanity check to make sure that the fork point is not before the current depth.
if byte(idx) <= parent.depth {
return fmt.Errorf("unexpected fork point %d for nodes %x and %x", idx, node.stem, ln.stem)
}
// Create the missing internal nodes.
for i := parent.depth + 1; i <= byte(idx); i++ {
nextParent := newInternalNode(parent.depth + 1).(*InternalNode)
parent.cowChild(ln.stem[parent.depth])
parent.children[ln.stem[parent.depth]] = nextParent
parent = nextParent
}
// Add old and new leaf node to the latest created parent.
parent.cowChild(node.stem[parent.depth])
parent.children[node.stem[parent.depth]] = node
node.setDepth(parent.depth + 1)
parent.cowChild(ln.stem[parent.depth])
parent.children[ln.stem[parent.depth]] = &ln
ln.setDepth(parent.depth + 1)
default:
return fmt.Errorf("unexpected node type %T", node)
}
}
return nil
}