forked from CityU-AIM-Group/FedOSS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
93 lines (72 loc) · 3.78 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# -*- coding: utf-8 -*-
"""
Created on Sun Jun 12 10:05:53 2022
@author: ZML
"""
import argparse
import os.path as osp
import numpy as np
import torch
import random
import warnings
from models.utils import pprint, ensure_path
warnings.filterwarnings('ignore')
def main(args):
if args.mode == 'Pretrain':
from lib.Pretrain import run
run(args)
elif args.mode == 'Finetune':
from lib.Finetune import run
run(args)
def set_seed(seed):
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False #for reproducibility
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
if __name__=="__main__":
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('--lr', default=5e-4, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
parser.add_argument('--model_type', default='softmax', type=str, help='Recognition Method')
parser.add_argument('--backbone', default='Resnet18', type=str, help='Backbone type.')
parser.add_argument('--dataset', default='Hyperkvasir',type=str,help='dataset configuration')
parser.add_argument('--known_class', default=5,type=int,help='number of known class')
parser.add_argument('--unknown_class', default=3,type=int,help='number of unknown class')
parser.add_argument('--seed', default='0',type=int,help='random seed for dataset generation.')
parser.add_argument('--data_root', default='./dataset/', type=str, help='data_root')
parser.add_argument('--rotation', default=45,type=int,help='Rotation Angle')
parser.add_argument('--resize', default=144,type=int,help='resize')
parser.add_argument('--cropsize', default=128,type=int,help='crop size')
parser.add_argument('--batchsize', default=16,type=int,help='minibatch size')
parser.add_argument('--epoches', default=200,type=int,help='epoches')
parser.add_argument('--client_num', type=int, default=8, help='the number of clients')
parser.add_argument('--worker_steps', type=int, default=1, help='step of worker')
parser.add_argument('--mode', type=str, default='Pretrain', help='Pretrain, Finetune')
parser.add_argument('--dirichlet', type=float, default=0.5,help='dirichlet alpha')
#Attack
parser.add_argument('--eps', type=float, default=1.,help='eps')
parser.add_argument('--num_steps', type=int, default=10,help='num_steps')
parser.add_argument('--unknown_weight', type=float, default=1.,help='unknown_weight')
parser.add_argument('--start_epoch', type=str, default='[5, 10, 15, 20, 25]', help='start_epoch')
parser.add_argument('--sample_from', type=int, default=8, help='sample_from')
import time
now = time.strftime("%Y-%m-%d %H:%M:%S")
print('The starting time :{}'.format(now))
args = parser.parse_args()
client_names = ['Client'+str(i) for i in range(args.client_num)]
args.client_names = client_names
args.start_epoch = eval(args.start_epoch)
pprint(vars(args))
#os.environ['CUDA_VISIBLE_DEVICES'] =args.gpu
set_seed(args.seed)
save_path1 = osp.join('results','M{}-D{}-M{}-B{}'.format(args.mode, args.dataset,args.model_type, args.backbone))
save_path2 = 'LR{}-K{}-U{}-Seed{}'.format(str(args.lr),str(args.known_class),str(args.unknown_class),str(args.seed))
args.save_path = osp.join(save_path1, save_path2)
ensure_path(save_path1, remove=False)
ensure_path(args.save_path, remove=False)
main(args)
now = time.strftime('%Y-%m-%d %H:%M:%S')
print('The ending time :{}'.format(now))