-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
404 lines (311 loc) · 12.9 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
from collections import Counter
import random
from boltons.iterutils import chunked
import numpy as np
from pysaliency.datasets import create_subset
from pysaliency.utils import remove_trailing_nans
import torch
from tqdm import tqdm
from torch.utils.data import Dataset
def ensure_color_image(image):
if len(image.shape) == 2:
return np.dstack([image, image, image])
return image
def x_y_to_sparse_indices(xs, ys):
# Converts list of x and y coordinates into indices and values for sparse mask
x_inds = []
y_inds = []
values = []
pair_inds = {}
for x, y in zip(xs, ys):
key = (x, y)
if key not in pair_inds:
x_inds.append(x)
y_inds.append(y)
pair_inds[key] = len(x_inds) - 1
values.append(1)
else:
values[pair_inds[key]] += 1
return np.array([y_inds, x_inds]), values
class ImageDataset(Dataset):
def __init__(self, stimuli, fixations, centerbias_model=None, transform=None, cached=True, average='fixation'):
self.stimuli = stimuli
self.fixations = fixations
self.centerbias_model = centerbias_model
self.transform = transform
self.average = average
self.cached = cached
if cached:
self._cache = {}
print("Populating fixations cache")
self._xs_cache = {}
self._ys_cache = {}
for x, y, n in zip(self.fixations.x_int, self.fixations.y_int, tqdm(self.fixations.n)):
self._xs_cache.setdefault(n, []).append(x)
self._ys_cache.setdefault(n, []).append(y)
for key in list(self._xs_cache):
self._xs_cache[key] = np.array(
self._xs_cache[key], dtype=np.long)
for key in list(self._ys_cache):
self._ys_cache[key] = np.array(
self._ys_cache[key], dtype=np.long)
def get_shapes(self):
return list(self.stimuli.sizes)
def __getitem__(self, key):
if not self.cached or key not in self._cache:
image = np.array(self.stimuli.stimuli[key])
# print(self.stimuli.stimuli,self.stimuli,'val_stimuli')
file_name = self.stimuli.filenames[key]
centerbias_prediction = self.centerbias_model.log_density(image)
image = ensure_color_image(image).astype(np.float16)
image = image.transpose(2, 0, 1)
if self.cached:
xs = self._xs_cache.pop(key)
ys = self._ys_cache.pop(key)
else:
inds = self.fixations.n == key
xs = np.array(self.fixations.x_int[inds], dtype=np.long)
ys = np.array(self.fixations.y_int[inds], dtype=np.long)
data = {
"image": image,
"file_name": file_name,
"x": xs,
"y": ys,
"centerbias": centerbias_prediction,
}
if self.average == 'image':
data['weight'] = 1.0
else:
data['weight'] = float(len(xs))
if self.cached:
self._cache[key] = data
else:
data = self._cache[key]
if self.transform is not None:
return self.transform(dict(data))
return data
def __len__(self):
return len(self.stimuli)
class ImageDataset_TEM(Dataset):
def __init__(self, stimuli, TEM, fixations, centerbias_model=None, centerbias_TEM=None, transform=None, cached=True, included_fixations=[0], average='fixation'):
self.stimuli = stimuli
self.fixations = fixations
self.centerbias_model = centerbias_model
self.transform = transform
self.TEM = TEM
self.centerbias_TEM = centerbias_TEM
self.average = average
self.cached = cached
if isinstance(included_fixations, int):
if included_fixations < 0:
included_fixations = [-1 -
i for i in range(-included_fixations)]
else:
raise NotImplementedError()
self.included_fixations = included_fixations
self.fixation_counts = Counter(fixations.n)
if cached:
self._cache = {}
print("Populating fixations cache")
self._xs_cache = {}
self._ys_cache = {}
for x, y, n in zip(self.fixations.x_int, self.fixations.y_int, tqdm(self.fixations.n)):
self._xs_cache.setdefault(n, []).append(x)
self._ys_cache.setdefault(n, []).append(y)
for key in list(self._xs_cache):
self._xs_cache[key] = np.array(
self._xs_cache[key], dtype=np.long)
for key in list(self._ys_cache):
self._ys_cache[key] = np.array(
self._ys_cache[key], dtype=np.long)
def get_shapes(self):
return list(self.stimuli.sizes)
def __getitem__(self, key):
if not self.cached or key not in self._cache:
image = np.array(self.stimuli.stimuli[key])
TEM_image = np.array(self.TEM.stimuli[key])
centerbias_prediction = self.centerbias_model.log_density(image)
file_name = self.stimuli.filenames[key]
x_hist = self.fixations.x_hist
y_hist = self.fixations.y_hist
if self.centerbias_TEM is None:
centerbias_TEM_prediction = self.centerbias_TEM.log_density(
TEM_image)
else:
centerbias_TEM_prediction = None
image = ensure_color_image(image).astype(np.float16)
image = image.transpose(2, 0, 1)
TEM_image = ensure_color_image(TEM_image).astype(np.float32)
TEM_image = TEM_image.transpose(2, 0, 1)
inds = self.fixations.n == key
# print(inds,'inds')
if self.cached:
xs = self._xs_cache.pop(key)
ys = self._ys_cache.pop(key)
else:
inds = self.fixations.n == key
xs = np.array(self.fixations.x_int[inds], dtype=np.long)
ys = np.array(self.fixations.y_int[inds], dtype=np.long)
#x_hist = x_hist[inds]
#y_hist = y_hist[inds]
# change this depending on how you process the fixations file
#new_inds = np.random.randint(0, 160, 100)
data = {
"image": image,
"key": key,
"TEM": TEM_image,
"x": xs,
"y": ys,
"file_name": file_name,
"x_hist": x_hist[key],
"y_hist": y_hist[key],
"centerbias": centerbias_prediction,
"centerbias_TEM": centerbias_TEM_prediction,
}
if self.average == 'image':
data['weight'] = 1.0
else:
data['weight'] = float(len(xs))
if self.cached:
self._cache[key] = data
else:
data = self._cache[key]
if self.transform is not None:
return self.transform(dict(data))
return data
def __len__(self):
return len(self.stimuli)
class FixationDataset(torch.utils.data.Dataset):
def __init__(self, stimuli, fixations, centerbias_model=None, transform=None, included_fixations=-2, average='fixation'):
self.stimuli = stimuli
self.fixations = fixations
self.centerbias_model = centerbias_model
self.transform = transform
self.average = average
self._shapes = None
if isinstance(included_fixations, int):
if included_fixations < 0:
included_fixations = [-1 -
i for i in range(-included_fixations)]
else:
raise NotImplementedError()
self.included_fixations = included_fixations
self.fixation_counts = Counter(fixations.n)
def get_shapes(self):
if self._shapes is None:
shapes = list(self.stimuli.sizes)
print(len(shapes), self.fixations.n)
self._shapes = [shapes[n] for n in self.fixations.n]
return self._shapes
def __getitem__(self, key):
n = self.fixations.n[key]
image = np.array(self.stimuli.stimuli[n])
centerbias_prediction = self.centerbias_model.log_density(image)
image = ensure_color_image(image).astype(np.float32)
image = image.transpose(2, 0, 1)
x_hist = remove_trailing_nans(self.fixations.x_hist[key])
y_hist = remove_trailing_nans(self.fixations.y_hist[key])
x_hist = self.fixations.x_hist[key]
y_hist = self.fixations.y_hist[key]
data = {
"image": image,
"x": np.array([self.fixations.x_int[key]], dtype=np.long),
"y": np.array([self.fixations.y_int[key]], dtype=np.long),
"x_hist": x_hist[self.included_fixations],
"y_hist": y_hist[self.included_fixations],
"centerbias": centerbias_prediction,
}
if self.average == 'image':
data['weight'] = 1.0 / self.fixation_counts[n]
else:
data['weight'] = 1.0
if self.transform is not None:
return self.transform(data)
return data
def __len__(self):
return len(self.fixations)
class FixationMaskTransform(object):
def __call__(self, item):
shape = torch.Size([item['image'].shape[1], item['image'].shape[2]])
x = item.pop('x')
y = item.pop('y')
inds = np.array([y, x])
values = np.ones(len(y), dtype=np.int)
inds[0, np.where(inds[0, :] >= shape[0])] = inds[0,
np.where(inds[0, :] >= shape[0])]-1
inds[1, np.where(inds[1, :] >= np.max([shape[0], shape[1]]))] = inds[1, np.where(
inds[1, :] >= np.max([shape[0], shape[1]]))]-1
mask = torch.sparse.IntTensor(
torch.tensor(inds), torch.tensor(values), shape)
mask = mask.coalesce()
item['fixation_mask'] = mask
return item
def collate_fn(batch):
batch_data = {
"image": torch.tensor([item["image"] for item in batch]),
"fixations": torch.sparse.LongTensor(
)
}
return batch_data
class ImageDatasetSampler(torch.utils.data.Sampler):
def __init__(self, data_source, batch_size=1, ratio_used=1.0, shuffle=True):
self.ratio_used = ratio_used
self.shuffle = shuffle
shapes = data_source.get_shapes()
unique_shapes = sorted(set(shapes))
shape_indices = [[] for shape in unique_shapes]
for k, shape in enumerate(shapes):
shape_indices[unique_shapes.index(shape)].append(k)
if self.shuffle:
for indices in shape_indices:
random.shuffle(indices)
self.batches = sum([chunked(indices, size=batch_size)
for indices in shape_indices], [])
def __iter__(self):
if self.shuffle:
indices = torch.randperm(len(self.batches))
else:
indices = range(len(self.batches))
if self.ratio_used < 1.0:
indices = indices[:int(self.ratio_used * len(indices))]
return iter(self.batches[i] for i in indices)
def __len__(self):
return int(self.ratio_used * len(self.batches))
# TODO: The following helper functions should go into pysaliency or be replaced by
# functions already contained therein.
def create_train_folds(crossval_folds, val_folds, test_folds):
all_folds = list(range(crossval_folds))
if isinstance(val_folds, int):
val_folds = [val_folds]
if isinstance(test_folds, int):
test_folds = [test_folds]
train_folds = [f for f in all_folds if not (
f in val_folds or f in test_folds)]
return train_folds, val_folds, test_folds
def get_crossval_folds(crossval_folds, crossval_no, test_folds=1, val_folds=1):
assert test_folds <= 1
if test_folds:
_test_folds = [crossval_no]
_val_folds = [(crossval_no - i - 1) %
crossval_folds for i in range(val_folds)]
else:
assert val_folds == 1
_test_folds = [crossval_no]
_val_folds = [crossval_no]
_train_folds, _val_folds, _test_folds = create_train_folds(
crossval_folds, _val_folds, _test_folds)
return _train_folds, _val_folds, _test_folds
def get_crossval_split(stimuli, fixations, split_count, included_splits, random=True):
inds = list(range(len(stimuli)))
if random:
print("Using random shuffles for crossvalidation")
rst = np.random.RandomState(seed=42)
rst.shuffle(inds)
inds = list(inds)
size = int(np.ceil(len(inds) / split_count))
chunks = chunked(inds, size=size)
inds = []
for split_nr in included_splits:
inds.extend(chunks[split_nr])
stimuli, fixations = create_subset(stimuli, fixations, inds)
return stimuli, fixations