Skip to content

Latest commit

 

History

History
106 lines (96 loc) · 3.1 KB

multi_tower.md

File metadata and controls

106 lines (96 loc) · 3.1 KB

MultiTower

简介

  • 多塔模型效果比单塔模型有明显的提升
  • 不采用FM,所以embedding可以有不同的dimension。

multi_tower.png

模型配置

model_config: {
  model_class: 'MultiTower'
  feature_groups: {
    group_name: 'user'
    feature_names: 'user_id'
    feature_names: 'cms_segid'
    ...
    feature_names: 'new_user_class_level'
    wide_deep: DEEP
  }
  feature_groups: {
    group_name: 'item'
    feature_names: 'adgroup_id'
    feature_names: 'cate_id'
    ...
    feature_names: 'price'
    wide_deep: DEEP
  }
  feature_groups: {
    group_name: 'combo'
    feature_names: 'pid'
    feature_names: 'tag_category_list'
    feature_names: 'tag_brand_list'
    wide_deep: DEEP
  }
  losses {
    loss_type: F1_REWEIGHTED_LOSS
    weight: 1.0
    f1_reweighted_loss {
      f1_beta_square: 1.0
    }
  }
  losses {
    loss_type: PAIR_WISE_LOSS
    weight: 1.0
  }
  multi_tower {
    towers {
      input: "user"
      dnn {
        hidden_units: [256, 128, 96, 64]
      }
    }
    towers {
      input: "item"
      dnn {
        hidden_units: [256, 128, 96, 64]
      }
    }
    towers {
      input: "combo"
      dnn {
        hidden_units: [128, 96, 64, 32]
      }
    }
    final_dnn {
      hidden_units: [128, 96, 64, 32, 16]
    }
    l2_regularization: 1e-6
  }
  embedding_regularization: 1e-4
}
  • feature_groups: 不同的特征组,如user feature为一组,item feature为一组, combo feature为一组
    • group_name: 可以根据实际情况取
    • wide_deep: 必须是DEEP
  • losses: 可选,可以选择同时配置两个loss函数,并且为每个loss配置不同的权重
    • loss_type: CLASSIFICATION [默认值] 二分类的sigmoid cross entropy loss
    • loss_type: PAIR_WISE_LOSS [可选] 以优化AUC为主要目标的 pairwise rank loss
    • loss_type: F1_REWEIGHTED_LOSS [可选] 可以调节二分类模型recall/precision相对权重的loss; 注意不要与loss_type: CLASSIFICATION同时使用
  • f1_reweight_loss: 可以调节二分类模型recall/precision相对权重的损失函数
    • f1_beta_square: 大于1的值会导致模型更关注recall,小于1的值会导致模型更关注precision
    • F1 分数,又称平衡F分数(balanced F Score),它被定义为精确率和召回率的调和平均数。
    • 更一般的,我们定义 F_beta 分数为:
    • f1_beta_square 即为 上述公式中的 beta 系数的平方。
  • towers:
    • 每个feature_group对应了一个tower, tower的input必须和feature_groups的group_name对应
    • dnn: 深度网络
      • hidden_units: 定义不同层的channel数目,即神经元数目
  • final_dnn 整合towers和din_towers的输入
    • hidden_units: dnn每一层的channel数目,即神经元的数目
  • l2_regularization: L2正则,防止overfit
  • embedding_regularization: embedding的L2正则

示例config

multi_tower_demo.config

参考论文

自研模型,暂无参考论文