forked from DingXiaoH/ACNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstants.py
131 lines (110 loc) · 5.62 KB
/
constants.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
OVERALL_EVAL_RECORD_FILE = 'overall_eval_records.txt'
from collections import namedtuple
LRSchedule = namedtuple('LRSchedule', ['base_lr', 'max_epochs', 'lr_epoch_boundaries', 'lr_decay_factor',
'linear_final_lr'])
import numpy as np
def parse_usual_lr_schedule(try_arg, keyword='lrs{}'):
if keyword.format(1) in try_arg:
lrs = LRSchedule(base_lr=0.1, max_epochs=500, lr_epoch_boundaries=[100, 200, 300, 400], lr_decay_factor=0.3,
linear_final_lr=None)
elif keyword.format(2) in try_arg:
lrs = LRSchedule(base_lr=0.1, max_epochs=500, lr_epoch_boundaries=[100, 200, 300, 400], lr_decay_factor=0.1,
linear_final_lr=None)
elif keyword.format(3) in try_arg:
lrs = LRSchedule(base_lr=0.1, max_epochs=800, lr_epoch_boundaries=[200, 400, 600], lr_decay_factor=0.1,
linear_final_lr=None)
elif keyword.format(4) in try_arg:
lrs = LRSchedule(base_lr=0.1, max_epochs=80, lr_epoch_boundaries=[20, 40, 60], lr_decay_factor=0.1,
linear_final_lr=None)
elif keyword.format(5) in try_arg:
lrs = LRSchedule(base_lr=0.05, max_epochs=200, lr_epoch_boundaries=[50, 100, 150], lr_decay_factor=0.1,
linear_final_lr=None)
elif keyword.format(6) in try_arg:
lrs = LRSchedule(base_lr=0.1, max_epochs=360, lr_epoch_boundaries=[90, 180, 240, 300], lr_decay_factor=0.2,
linear_final_lr=None)
elif keyword.format(7) in try_arg:
lrs = LRSchedule(base_lr=0.1, max_epochs=800, lr_epoch_boundaries=None, lr_decay_factor=None,
linear_final_lr=1e-4)
elif keyword.format(8) in try_arg: # may be enough for MobileNet v1 on CIFARs
lrs = LRSchedule(base_lr=0.1, max_epochs=400, lr_epoch_boundaries=[100, 200, 300], lr_decay_factor=0.1,
linear_final_lr=None)
elif keyword.format(9) in try_arg:
lrs = LRSchedule(base_lr=0.1, max_epochs=200, lr_epoch_boundaries=[50, 100, 150], lr_decay_factor=0.1,
linear_final_lr=None)
elif keyword.format('A') in try_arg:
lrs = LRSchedule(base_lr=0.1, max_epochs=100, lr_epoch_boundaries=None, lr_decay_factor=None,
linear_final_lr=1e-5)
elif keyword.format('B') in try_arg:
lrs = LRSchedule(base_lr=0.1, max_epochs=100, lr_epoch_boundaries=None, lr_decay_factor=None,
linear_final_lr=1e-6)
elif keyword.format('C') in try_arg:
lrs = LRSchedule(base_lr=0.2, max_epochs=125, lr_epoch_boundaries=None, lr_decay_factor=None,
linear_final_lr=0)
elif keyword.format('D') in try_arg:
lrs = LRSchedule(base_lr=0.001, max_epochs=20, lr_epoch_boundaries=[5, 10], lr_decay_factor=0.1,
linear_final_lr=None)
elif keyword.format('E') in try_arg:
lrs = LRSchedule(base_lr=0.001, max_epochs=300, lr_epoch_boundaries=[100, 200], lr_decay_factor=0.1,
linear_final_lr=None)
elif keyword.format('F') in try_arg:
lrs = LRSchedule(base_lr=0.1, max_epochs=120, lr_epoch_boundaries=[30, 60, 90, 110], lr_decay_factor=0.1,
linear_final_lr=None)
# for VGG and CFQKBN
elif keyword.format('G') in try_arg:
lrs = LRSchedule(base_lr=0.05, max_epochs=800, lr_epoch_boundaries=[200, 400, 600], lr_decay_factor=0.1,
linear_final_lr=None)
elif keyword.format('H') in try_arg:
lrs = LRSchedule(base_lr=0.025, max_epochs=200, lr_epoch_boundaries=[50, 100, 150], lr_decay_factor=0.1,
linear_final_lr=None)
elif keyword.format('X') in try_arg:
lrs = LRSchedule(base_lr=0.2, max_epochs=6, lr_epoch_boundaries=None, lr_decay_factor=None,
linear_final_lr=0)
elif keyword.replace('{}', '') in try_arg:
raise ValueError('Unsupported lrs config.')
else:
lrs = None
return lrs
VGG_ORIGIN_DEPS = [64, 64, 128, 128, 256, 256, 256, 512, 512, 512, 512, 512, 512]
CFQK_ORIGIN_DEPS = np.array([32, 32, 64], dtype=np.int32)
def wrn_origin_deps_flattened(n, k):
assert n in [2, 4, 6] # total_depth = 6n + 4
filters_in_each_stage = n * 2 + 1
stage0 = [16]
stage1 = [16 * k] * filters_in_each_stage
stage2 = [32 * k] * filters_in_each_stage
stage3 = [64 * k] * filters_in_each_stage
return np.array(stage0 + stage1 + stage2 + stage3)
def wrn_pacesetter_idxes(n):
assert n in [2, 4, 6]
filters_in_each_stage = n * 2 + 1
pacesetters = [1, int(filters_in_each_stage)+1, int(2 * filters_in_each_stage)+1] #[1, 10, 19] for WRN-28-x, for example
return pacesetters
def wrn_convert_flattened_deps(flattened):
assert len(flattened) in [16, 28, 40]
n = int((len(flattened) - 4) // 6)
assert n in [2, 4, 6]
pacesetters = wrn_pacesetter_idxes(n)
result = [flattened[0]]
for ps in pacesetters:
assert flattened[ps] == flattened[ps+2]
stage_deps = []
for i in range(n):
stage_deps.append([flattened[ps + 1 + 2 * i], flattened[ps + 2 + 2 * i]])
result.append(stage_deps)
return result
#################### WRN
WRN16_FOLLOW_DICT = {1:1, 3:1, 5:1, 6:6, 8:6, 10:6, 11:11, 13:11, 15:11}
WRN16_PACESETTER_IDS = [1, 6, 11]
WRN16_SUBSEQUENT_STRATEGY = {
0:[1, 2],
1:[4, 6, 7],
2:3,
4:5,
6:[9, 11, 12],
7:8,
9:10,
11:[14, 16],
12:13,
14:15
}
WRN16_INTERNAL_IDS = [2,4,7,9,12,14]