forked from kerlomz/captcha_trainer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
239 lines (207 loc) · 8.99 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author: kerlomz <[email protected]>
import io
import PIL.Image
import cv2
import numpy as np
import tensorflow as tf
from config import *
from pretreatment import preprocessing
PATH_MAP = {
RunMode.Trains: TRAINS_PATH,
RunMode.Test: TEST_PATH
}
REGEX_MAP = {
RunMode.Trains: TRAINS_REGEX,
RunMode.Test: TEST_REGEX
}
def encode_maps():
return {char: i for i, char in enumerate(GEN_CHAR_SET, 0)}
# Training is not useful for decoding
# Here is for debugging, positioning error source use
# def decode_maps():
# return {i: char for i, char in enumerate(GEN_CHAR_SET, 0)}
class DataIterator:
def __init__(self, mode: RunMode):
self.mode = mode
self.data_dir = PATH_MAP[mode]
self.image = []
self.image_path = []
self.label_list = []
self.image_batch = []
self.label_batch = []
self._label_batch = []
self._size = 0
@staticmethod
def _encoder(code):
if isinstance(code, bytes):
code = code.decode('utf8')
for k, v in CHAR_REPLACE.items():
if not k or not v:
break
code.replace(k, v)
code = code.lower() if 'LOWER' in CHAR_SET or not CASE_SENSITIVE else code
code = code.upper() if 'UPPER' in CHAR_SET else code
try:
return [SPACE_INDEX if code == SPACE_TOKEN else encode_maps()[c] for c in list(code)]
except KeyError as e:
exception(
'The sample label {} contains invalid charset: {}.'.format(
code, e.args[0]
), ConfigException.SAMPLE_LABEL_ERROR
)
def read_sample_from_files(self, data_set=None):
if data_set:
self.image_path = data_set
try:
self.label_list = [
self._encoder(re.search(REGEX_MAP[self.mode], i.split(PATH_SPLIT)[-1]).group()) for i in data_set
]
except AttributeError as e:
regex_not_found = "group" in e.args[0]
if regex_not_found:
exception(
"Configured {} is '{}', it may be wrong and unable to get label properly.".format(
"TrainRegex" if self.mode == RunMode.Trains else "TestRegex",
TRAINS_REGEX if self.mode == RunMode.Trains else TEST_REGEX
),
ConfigException.GET_LABEL_REGEX_ERROR
)
else:
for root, sub_folder, file_list in os.walk(self.data_dir):
for file_path in file_list:
image_name = os.path.join(root, file_path)
self.image_path.append(image_name)
# Get the label from the file name based on the regular expression.
code = re.search(
REGEX_MAP[self.mode], image_name.split(PATH_SPLIT)[-1]
)
if not code:
exception(
"Configured {} is '{}', it may be wrong and unable to get label properly.".format(
"TrainRegex" if self.mode == RunMode.Trains else "TestRegex",
TRAINS_REGEX if self.mode == RunMode.Trains else TEST_REGEX
),
ConfigException.GET_LABEL_REGEX_ERROR
)
code = code.group()
# The manual verification code platform is not case sensitive,
# - it will affect the accuracy of the training set.
# Here is a case conversion based on the selected character set.
self.label_list.append(self._encoder(code))
self._size = len(self.label_list)
def read_sample_from_tfrecords(self, path):
filename_queue = tf.train.string_input_producer([path])
reader = tf.TFRecordReader()
self._size = len([_ for _ in tf.python_io.tf_record_iterator(path)])
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
'label': tf.FixedLenFeature([], tf.string),
'image': tf.FixedLenFeature([], tf.string),
}
)
image = tf.cast(features['image'], tf.string)
label = tf.cast(features['label'], tf.string)
min_after_dequeue = 1000
batch = BATCH_SIZE if self.mode == RunMode.Trains else TEST_BATCH_SIZE
capacity = min_after_dequeue + 3 * batch
self.image_batch, self.label_batch = tf.train.shuffle_batch(
[image, label],
batch_size=batch,
capacity=capacity,
num_threads=64,
min_after_dequeue=min_after_dequeue
)
@property
def size(self):
return self._size
def labels(self, index):
if (TRAINS_USE_TFRECORDS and self.mode == RunMode.Trains) or (TEST_USE_TFRECORDS and self.mode == RunMode.Test):
return self.label_list
else:
return [self.label_list[i] for i in index]
@staticmethod
def _image(path_or_bytes):
# im = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
# The OpenCV cannot handle gif format images, it will return None.
# if im is None:
path_or_stream = io.BytesIO(path_or_bytes) if isinstance(path_or_bytes, bytes) else path_or_bytes
pil_image = PIL.Image.open(path_or_stream)
rgb = pil_image.split()
size = pil_image.size
if len(rgb) > 3 and REPLACE_TRANSPARENT:
background = PIL.Image.new('RGB', pil_image.size, (255, 255, 255))
background.paste(pil_image, (0, 0, size[0], size[1]), pil_image)
pil_image = background
pil_image = pil_image.convert('L')
im = np.array(pil_image)
im = preprocessing(im, BINARYZATION, SMOOTH, BLUR).astype(np.float32)
im = cv2.resize(im, (RESIZE[0], RESIZE[1]))
im = im.swapaxes(0, 1)
return np.array(im[:, :, np.newaxis] / 255.)
@staticmethod
def _get_input_lens(sequences):
lengths = np.asarray([len(_) for _ in sequences], dtype=np.int64)
return sequences, lengths
def generate_batch_by_files(self, index=None):
if index:
image_batch = [self._image(self.image_path[i]) for i in index]
label_batch = [self.label_list[i] for i in index]
else:
image_batch = [self._image(i) for i in self.image_path]
label_batch = self.label_list
return self._generate_batch(image_batch, label_batch)
def _generate_batch(self, image_batch, label_batch):
batch_inputs, batch_seq_len = self._get_input_lens(np.array(image_batch))
batch_labels = sparse_tuple_from_label(label_batch)
self._label_batch = batch_labels
return batch_inputs, batch_seq_len, batch_labels
def generate_batch_by_tfrecords(self, sess):
_image, _label = sess.run([self.image_batch, self.label_batch])
image_batch = [self._image(i) for i in _image]
label_batch = [self._encoder(i) for i in _label]
self._label_batch = label_batch
self.label_list = label_batch
return self._generate_batch(image_batch, label_batch)
def accuracy_calculation(original_seq, decoded_seq, ignore_value=-1):
original_seq_len = len(original_seq)
decoded_seq_len = len(decoded_seq)
if original_seq_len != decoded_seq_len:
print(original_seq)
print('original lengths {} is different from the decoded_seq {}, please check again'.format(
original_seq_len,
decoded_seq_len
))
return 0
count = 0
# Here is for debugging, positioning error source use
# error_sample = []
for i, origin_label in enumerate(original_seq):
decoded_label = [j for j in decoded_seq[i] if j != ignore_value]
if i < 5:
print(i, len(origin_label), len(decoded_label), origin_label, decoded_label)
if origin_label == decoded_label:
count += 1
# Training is not useful for decoding
# Here is for debugging, positioning error source use
# if origin_label != decoded_label and len(error_sample) < 500:
# error_sample.append({
# "origin": "".join([decode_maps()[i] for i in origin_label]),
# "decode": "".join([decode_maps()[i] for i in decoded_label])
# })
# print(error_sample)
return count * 1.0 / len(original_seq)
# Convert a sequence list to a sparse matrix
def sparse_tuple_from_label(sequences, dtype=np.int32):
indices = []
values = []
for n, seq in enumerate(sequences):
indices.extend(zip([n] * len(seq), range(0, len(seq), 1)))
values.extend(seq)
indices = np.asarray(indices, dtype=np.int64)
values = np.asarray(values, dtype=dtype)
shape = np.asarray([len(sequences), np.asarray(indices).max(0)[1] + 1], dtype=np.int64)
return indices, values, shape