-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
245 lines (181 loc) · 6.77 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# import torch as th
from __future__ import annotations
from typing import Iterable, Callable, Any, Union, Tuple
import numpy as onp
import scipy
import jax
from jax import numpy as np
class UniformNystromSampler(object):
"""
the sampler will not modify its state
"""
def __init__(self, pkey: jax.random.PRNGKey, rho=0.5, a=1, mn=60):
self.pkey, self.rho, self.a, self.mn = pkey, rho, a, mn
def __call__(self, z_all: np.ndarray) -> np.ndarray:
n = z_all.shape[0]
m = min(max(self.mn, int(self.a * n**self.rho)), n)
idcs = jax.random.permutation(self.pkey, n)[:m]
return z_all[idcs]
def split_pkey(k: Union[jax.random.PRNGKey, None], num: int = 2):
if k is not None:
return jax.random.split(k, num)
return tuple([None] * num)
class PRNGKeyHolder(object):
""" For use inside a function. """
def __init__(self, pkey):
self.pkey = pkey
def gen_key(self):
self.pkey, ckey = jax.random.split(self.pkey)
return ckey
def ceil_div(a, b): return (a + b - 1) // b
def gen_bs_mask(pkey, N, ratio, n_particles):
if ratio + 1e-4 < 1:
Mk = np.ones((N, n_particles), dtype=np.bool_)
idcs = np.arange(N)
bs_n_removed = max(int(N * (1 - ratio)), 1)
for i in range(n_particles):
pkey, ckey = jax.random.split(pkey)
excluded = jax.random.choice(ckey, idcs, (bs_n_removed, 1), replace=False)
Mk = jax.ops.index_update(Mk, jax.ops.index[excluded, i], False)
else:
Mk = np.zeros((N, n_particles), dtype=np.float32)
for i in range(n_particles):
pkey, ckey = jax.random.split(pkey)
idcs = jax.random.randint(ckey, (N, 1), 0, N)
Mk = jax.ops.index_add(Mk, jax.ops.index[idcs, i], 1)
return Mk
def l2_regularizer(params: Any) -> np.ndarray:
return jax.tree_util.tree_reduce(
lambda x, y: x+y,
jax.tree_map(lambda p: (p**2).sum(), params))
def ci_coverage(
actual: np.ndarray, pmean: np.ndarray, psd: np.ndarray, r: float = 0.95) -> np.ndarray:
assert actual.shape == pmean.shape == psd.shape
k = scipy.stats.norm.ppf((1+r) / 2)
return np.logical_and(pmean - k*psd <= actual, actual <= pmean + k*psd).mean()
def mse(a: np.ndarray, b: np.ndarray) -> np.ndarray:
assert a.shape == b.shape
return ((a-b) ** 2).mean()
def normal_loglh(mean, sd, val):
return -0.5 * (np.log(np.pi*2) + 2*np.log(sd) + ((mean-val)/sd)**2)
class TensorDataLoader(object):
""" Lightweight DataLoader . TensorDataset for jax """
def __init__(self, *arrs, batch_size=None, shuffle=False, rng=None, dtype=np.float32):
assert batch_size is not None
self.arrs = [a.astype(dtype) for a in arrs]
self.N, self.B = arrs[0].shape[0], batch_size
self.shuffle = shuffle
assert all(a.shape[0] == self.N for a in arrs[1:])
self.rng = rng if rng is not None else onp.random.RandomState(23)
def __iter__(self):
idcs = onp.arange(self.N)
if self.shuffle:
self.rng.shuffle(idcs)
self.arrs_cur = [a[idcs] for a in self.arrs]
self.i = 0
return self
def __next__(self):
if self.i < self.N:
old_i = self.i
self.i = min(self.i + self.B, self.N)
return tuple(a[old_i:self.i] for a in self.arrs)
else:
raise StopIteration
def __len__(self):
return (self.N+self.B-1) // self.B
def split_list_args(s, typ=float):
if len(s.strip()) == 0:
return []
return list(map(typ, s.split(',')))
def data_split(*arrs, split_ratio=0.8, rng=None):
if rng == None:
rng = onp.random
N = arrs[0].shape[0]
assert all(a.shape[0] == N for a in arrs)
idcs = onp.arange(N)
rng.shuffle(idcs)
split = int(N * split_ratio)
train_tuple = tuple(a[idcs[:split]] for a in arrs)
test_tuple = tuple(a[idcs[split:]] for a in arrs)
return train_tuple, test_tuple
def log_linspace(s, e, n):
return onp.exp(onp.linspace(onp.log(s), onp.log(e), n))
class Accumulator(object):
def __init__(self):
self.a = []
def append(self, d):
# if isinstance(d, th.Tensor):
# d = d.item()
if isinstance(d, jax.numpy.ndarray) and hasattr(d, '_device'):
d = float(d)
self.a.append(d)
def average(self):
return onp.mean(self.a)
def minimum(self, s=0):
return onp.min(self.a[s:])
def maximum(self, s=0):
return onp.max(self.a[s:])
def argmin(self):
return onp.argmin(self.a)
def __getitem__(self, i):
return self.a[i]
class StatsDict(dict):
def __init__(self, *args):
if len(args) == 0:
super().__init__()
else:
assert len(args) == 1
a = args[0]
if isinstance(a, dict):
super().__init__(a.items())
else:
super().__init__(a)
def add_prefix(self, pref: str, sep: str = '/') -> StatsDict:
return StatsDict((pref + sep + k, v) for k, v in self.items())
def filter(self, pred_or_key: Union[Callable[[str], True], str]):
pred = pred_or_key if callable(pred_or_key) else lambda k: k == pred_or_key
return StatsDict((k, v) for k, v in self.items() if not pred(k))
class StatsAccumulator(object):
def __init__(self):
pass
def append(self, d: dict):
if not hasattr(self, 'stats'):
self.stats = dict((k, Accumulator()) for k in d)
for k in d:
v = float(d[k])
self.stats[k].append(v)
def dump(self) -> StatsDict:
return StatsDict((k, self.stats[k].average()) for k in self.stats)
def __getitem__(self, k: str) -> Accumulator:
return self.stats[k]
def traverse_ds(
step_fn: Callable[[Any], Any], dset: Iterable[Any], has_stats: bool,
rng: Union[np.ndarray, None] = None
) -> Tuple[float, StatsDict]:
stats = StatsAccumulator()
for data in dset:
if rng is not None:
rng, c_rng = jax.random.split(rng)
ret = step_fn(data, rng=c_rng)
else:
ret = step_fn(data)
if has_stats:
loss, rdct = ret
rdct['_loss'] = loss
else:
rdct = StatsDict({'_loss': ret})
stats.append(rdct)
ret = stats.dump()
return ret['_loss'], ret
class DummyContext(object):
def __init__(self, v):
self.v = v
def __enter__(self):
return self.v
def __exit__(self, *args, **kw):
pass
def set_postfix(self):
pass
def add_bool_flag(parser, name, default=None):
parser.add_argument('-'+name, action='store_true', default=default)
parser.add_argument('-no_'+name, action='store_false', dest=name)