forked from thu-ml/tianshou
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mujoco_a2c.py
executable file
·212 lines (192 loc) · 7.41 KB
/
mujoco_a2c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/usr/bin/env python3
import argparse
import datetime
import os
import pprint
import gym
import numpy as np
import torch
from torch import nn
from torch.distributions import Independent, Normal
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, ReplayBuffer, VectorReplayBuffer
from tianshou.env import SubprocVectorEnv
from tianshou.policy import A2CPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='HalfCheetah-v3')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--buffer-size', type=int, default=4096)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
parser.add_argument('--lr', type=float, default=7e-4)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--step-per-epoch', type=int, default=30000)
parser.add_argument('--step-per-collect', type=int, default=80)
parser.add_argument('--repeat-per-collect', type=int, default=1)
# batch-size >> step-per-collect means calculating all data in one singe forward.
parser.add_argument('--batch-size', type=int, default=99999)
parser.add_argument('--training-num', type=int, default=16)
parser.add_argument('--test-num', type=int, default=10)
# a2c special
parser.add_argument('--rew-norm', type=int, default=True)
parser.add_argument('--vf-coef', type=float, default=0.5)
parser.add_argument('--ent-coef', type=float, default=0.01)
parser.add_argument('--gae-lambda', type=float, default=0.95)
parser.add_argument('--bound-action-method', type=str, default="clip")
parser.add_argument('--lr-decay', type=int, default=True)
parser.add_argument('--max-grad-norm', type=float, default=0.5)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
)
parser.add_argument('--resume-path', type=str, default=None)
parser.add_argument(
'--watch',
default=False,
action='store_true',
help='watch the play of pre-trained policy only'
)
return parser.parse_args()
def test_a2c(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high))
# train_envs = gym.make(args.task)
train_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)], norm_obs=True
)
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)],
norm_obs=True,
obs_rms=train_envs.obs_rms,
update_obs_rms=False
)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net_a = Net(
args.state_shape,
hidden_sizes=args.hidden_sizes,
activation=nn.Tanh,
device=args.device
)
actor = ActorProb(
net_a,
args.action_shape,
max_action=args.max_action,
unbounded=True,
device=args.device
).to(args.device)
net_c = Net(
args.state_shape,
hidden_sizes=args.hidden_sizes,
activation=nn.Tanh,
device=args.device
)
critic = Critic(net_c, device=args.device).to(args.device)
torch.nn.init.constant_(actor.sigma_param, -0.5)
for m in list(actor.modules()) + list(critic.modules()):
if isinstance(m, torch.nn.Linear):
# orthogonal initialization
torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
torch.nn.init.zeros_(m.bias)
# do last policy layer scaling, this will make initial actions have (close to)
# 0 mean and std, and will help boost performances,
# see https://arxiv.org/abs/2006.05990, Fig.24 for details
for m in actor.mu.modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.zeros_(m.bias)
m.weight.data.copy_(0.01 * m.weight.data)
optim = torch.optim.RMSprop(
list(actor.parameters()) + list(critic.parameters()),
lr=args.lr,
eps=1e-5,
alpha=0.99
)
lr_scheduler = None
if args.lr_decay:
# decay learning rate to 0 linearly
max_update_num = np.ceil(
args.step_per_epoch / args.step_per_collect
) * args.epoch
lr_scheduler = LambdaLR(
optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num
)
def dist(*logits):
return Independent(Normal(*logits), 1)
policy = A2CPolicy(
actor,
critic,
optim,
dist,
discount_factor=args.gamma,
gae_lambda=args.gae_lambda,
max_grad_norm=args.max_grad_norm,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
reward_normalization=args.rew_norm,
action_scaling=True,
action_bound_method=args.bound_action_method,
lr_scheduler=lr_scheduler,
action_space=env.action_space
)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
print("Loaded agent from: ", args.resume_path)
# collector
if args.training_num > 1:
buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
else:
buffer = ReplayBuffer(args.buffer_size)
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs)
# log
t0 = datetime.datetime.now().strftime("%m%d_%H%M%S")
log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_a2c'
log_path = os.path.join(args.logdir, args.task, 'a2c', log_file)
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger = TensorboardLogger(writer, update_interval=100, train_interval=100)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
if not args.watch:
# trainer
result = onpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.repeat_per_collect,
args.test_num,
args.batch_size,
step_per_collect=args.step_per_collect,
save_fn=save_fn,
logger=logger,
test_in_train=False
)
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num, render=args.render)
print(f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}')
if __name__ == '__main__':
test_a2c()