forked from thu-ml/tianshou
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plotter.py
executable file
·288 lines (271 loc) · 8.33 KB
/
plotter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python3
import argparse
import os
import re
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import numpy as np
from tools import csv2numpy, find_all_files, group_files
def smooth(y, radius, mode='two_sided', valid_only=False):
'''Smooth signal y, where radius is determines the size of the window.
mode='twosided':
average over the window [max(index - radius, 0), min(index + radius, len(y)-1)]
mode='causal':
average over the window [max(index - radius, 0), index]
valid_only: put nan in entries where the full-sized window is not available
'''
assert mode in ('two_sided', 'causal')
if len(y) < 2 * radius + 1:
return np.ones_like(y) * y.mean()
elif mode == 'two_sided':
convkernel = np.ones(2 * radius + 1)
out = np.convolve(y, convkernel, mode='same') / \
np.convolve(np.ones_like(y), convkernel, mode='same')
if valid_only:
out[:radius] = out[-radius:] = np.nan
elif mode == 'causal':
convkernel = np.ones(radius)
out = np.convolve(y, convkernel, mode='full') / \
np.convolve(np.ones_like(y), convkernel, mode='full')
out = out[:-radius + 1]
if valid_only:
out[:radius] = np.nan
return out
COLORS = (
[
# deepmind style
'#0072B2',
'#009E73',
'#D55E00',
'#CC79A7',
# '#F0E442',
'#d73027', # RED
# built-in color
'blue',
'red',
'pink',
'cyan',
'magenta',
'yellow',
'black',
'purple',
'brown',
'orange',
'teal',
'lightblue',
'lime',
'lavender',
'turquoise',
'darkgreen',
'tan',
'salmon',
'gold',
'darkred',
'darkblue',
'green',
# personal color
'#313695', # DARK BLUE
'#74add1', # LIGHT BLUE
'#f46d43', # ORANGE
'#4daf4a', # GREEN
'#984ea3', # PURPLE
'#f781bf', # PINK
'#ffc832', # YELLOW
'#000000', # BLACK
]
)
def plot_ax(
ax,
file_lists,
legend_pattern=".*",
xlabel=None,
ylabel=None,
title=None,
xlim=None,
xkey='env_step',
ykey='rew',
smooth_radius=0,
shaded_std=True,
legend_outside=False,
):
def legend_fn(x):
# return os.path.split(os.path.join(
# args.root_dir, x))[0].replace('/', '_') + " (10)"
return re.search(legend_pattern, x).group(0)
legneds = map(legend_fn, file_lists)
# sort filelist according to legends
file_lists = [f for _, f in sorted(zip(legneds, file_lists))]
legneds = list(map(legend_fn, file_lists))
for index, csv_file in enumerate(file_lists):
csv_dict = csv2numpy(csv_file)
x, y = csv_dict[xkey], csv_dict[ykey]
y = smooth(y, radius=smooth_radius)
color = COLORS[index % len(COLORS)]
ax.plot(x, y, color=color)
if shaded_std and ykey + ':shaded' in csv_dict:
y_shaded = smooth(csv_dict[ykey + ':shaded'], radius=smooth_radius)
ax.fill_between(x, y - y_shaded, y + y_shaded, color=color, alpha=.2)
ax.legend(
legneds,
loc=2 if legend_outside else None,
bbox_to_anchor=(1, 1) if legend_outside else None
)
ax.xaxis.set_major_formatter(mticker.EngFormatter())
if xlim is not None:
ax.set_xlim(xmin=0, xmax=xlim)
# add title
ax.set_title(title)
# add labels
if xlabel is not None:
ax.set_xlabel(xlabel)
if ylabel is not None:
ax.set_ylabel(ylabel)
def plot_figure(
file_lists,
group_pattern=None,
fig_length=6,
fig_width=6,
sharex=False,
sharey=False,
title=None,
**kwargs,
):
if not group_pattern:
fig, ax = plt.subplots(figsize=(fig_length, fig_width))
plot_ax(ax, file_lists, title=title, **kwargs)
else:
res = group_files(file_lists, group_pattern)
row_n = int(np.ceil(len(res) / 3))
col_n = min(len(res), 3)
fig, axes = plt.subplots(
row_n,
col_n,
sharex=sharex,
sharey=sharey,
figsize=(fig_length * col_n, fig_width * row_n),
squeeze=False
)
axes = axes.flatten()
for i, (k, v) in enumerate(res.items()):
plot_ax(axes[i], v, title=k, **kwargs)
if title: # add title
fig.suptitle(title, fontsize=20)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='plotter')
parser.add_argument(
'--fig-length',
type=int,
default=6,
help='matplotlib figure length (default: 6)'
)
parser.add_argument(
'--fig-width',
type=int,
default=6,
help='matplotlib figure width (default: 6)'
)
parser.add_argument(
'--style',
default='seaborn',
help='matplotlib figure style (default: seaborn)'
)
parser.add_argument(
'--title', default=None, help='matplotlib figure title (default: None)'
)
parser.add_argument(
'--xkey',
default='env_step',
help='x-axis key in csv file (default: env_step)'
)
parser.add_argument(
'--ykey', default='rew', help='y-axis key in csv file (default: rew)'
)
parser.add_argument(
'--smooth', type=int, default=0, help='smooth radius of y axis (default: 0)'
)
parser.add_argument(
'--xlabel', default='Timesteps', help='matplotlib figure xlabel'
)
parser.add_argument(
'--ylabel', default='Episode Reward', help='matplotlib figure ylabel'
)
parser.add_argument(
'--shaded-std',
action='store_true',
help='shaded region corresponding to standard deviation of the group'
)
parser.add_argument(
'--sharex',
action='store_true',
help='whether to share x axis within multiple sub-figures'
)
parser.add_argument(
'--sharey',
action='store_true',
help='whether to share y axis within multiple sub-figures'
)
parser.add_argument(
'--legend-outside',
action='store_true',
help='place the legend outside of the figure'
)
parser.add_argument(
'--xlim', type=int, default=None, help='x-axis limitation (default: None)'
)
parser.add_argument('--root-dir', default='./', help='root dir (default: ./)')
parser.add_argument(
'--file-pattern',
type=str,
default=r".*/test_rew_\d+seeds.csv$",
help='regular expression to determine whether or not to include target csv '
'file, default to including all test_rew_{num}seeds.csv file under rootdir'
)
parser.add_argument(
'--group-pattern',
type=str,
default=r"(/|^)\w*?\-v(\d|$)",
help='regular expression to group files in sub-figure, default to grouping '
'according to env_name dir, "" means no grouping'
)
parser.add_argument(
'--legend-pattern',
type=str,
default=r".*",
help='regular expression to extract legend from csv file path, default to '
'using file path as legend name.'
)
parser.add_argument('--show', action='store_true', help='show figure')
parser.add_argument(
'--output-path', type=str, help='figure save path', default="./figure.png"
)
parser.add_argument(
'--dpi', type=int, default=200, help='figure dpi (default: 200)'
)
args = parser.parse_args()
file_lists = find_all_files(args.root_dir, re.compile(args.file_pattern))
file_lists = [os.path.relpath(f, args.root_dir) for f in file_lists]
if args.style:
plt.style.use(args.style)
os.chdir(args.root_dir)
plot_figure(
file_lists,
group_pattern=args.group_pattern,
legend_pattern=args.legend_pattern,
fig_length=args.fig_length,
fig_width=args.fig_width,
title=args.title,
xlabel=args.xlabel,
ylabel=args.ylabel,
xkey=args.xkey,
ykey=args.ykey,
xlim=args.xlim,
sharex=args.sharex,
sharey=args.sharey,
smooth_radius=args.smooth,
shaded_std=args.shaded_std,
legend_outside=args.legend_outside
)
if args.output_path:
plt.savefig(args.output_path, dpi=args.dpi, bbox_inches='tight')
if args.show:
plt.show()