-
Notifications
You must be signed in to change notification settings - Fork 0
/
stock_map.py
executable file
·306 lines (247 loc) · 9.85 KB
/
stock_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#! /usr/bin/env python
# -*- coding: utf-8 -*-
"""
=======================================
Visualizing the stock market structure
=======================================
This example employs several unsupervised learning techniques to extract
the stock market structure from variations in historical quotes.
The quantity that we use is the daily variation in quote price: quotes
that are linked tend to cofluctuate during a day.
.. _stock_market:
Learning a graph structure
--------------------------
We use sparse inverse covariance estimation to find which quotes are
correlated conditionally on the others. Specifically, sparse inverse
covariance gives us a graph, that is a list of connection. For each
symbol, the symbols that it is connected too are those useful to explain
its fluctuations.
Clustering
----------
We use clustering to group together quotes that behave similarly. Here,
amongst the :ref:`various clustering techniques <clustering>` available
in the scikit-learn, we use :ref:`affinity_propagation` as it does
not enforce equal-size clusters, and it can choose automatically the
number of clusters from the data.
Note that this gives us a different indication than the graph, as the
graph reflects conditional relations between variables, while the
clustering reflects marginal properties: variables clustered together can
be considered as having a similar impact at the level of the full stock
market.
Embedding in 2D space
---------------------
For visualization purposes, we need to lay out the different symbols on a
2D canvas. For this we use :ref:`manifold` techniques to retrieve 2D
embedding.
Visualization
-------------
The output of the 3 models are combined in a 2D graph where nodes
represents the stocks and edges the:
- cluster labels are used to define the color of the nodes
- the sparse covariance model is used to display the strength of the edges
- the 2D embedding is used to position the nodes in the plan
This example has a fair amount of visualization-related code, as
visualization is crucial here to display the graph. One of the challenge
is to position the labels minimizing overlap. For this we use an
heuristic based on the direction of the nearest neighbor along each
axis.
"""
print(__doc__)
# Author: Gael Varoquaux [email protected]
# License: BSD 3 clause
# Modified by MDA ([email protected])
from datetime import datetime
from datetime import date
import numpy as np
from matplotlib import rcParams
from matplotlib import pyplot as plt
from matplotlib.collections import LineCollection
from six.moves.urllib.request import urlopen
from six.moves.urllib.parse import urlencode
from sklearn import cluster, covariance, manifold
import quandl
from quandl_config import API_CONFIG_KEY
quandl.ApiConfig.api_key = API_CONFIG_KEY
rcParams.update({'font.size': 8})
###############################################################################
# Retrieve the data from Internet
def quotes_historical_google(symbol, date1, date2):
"""Get the historical data from Google finance.
Parameters
----------
symbol : str
Ticker symbol to query for, for example ``"DELL"``.
date1 : datetime.datetime
Start date.
date2 : datetime.datetime
End date.
Returns
-------
X : array
The columns are ``date`` -- datetime, ``open``, ``high``,
``low``, ``close`` and ``volume`` of type float.
"""
params = urlencode({
'q': symbol,
'startdate': date1.strftime('%b %d, %Y'),
'enddate': date2.strftime('%b %d, %Y'),
'output': 'csv'
})
url = 'http://www.google.com/finance/historical?' + params
with urlopen(url) as response:
# print(response, symbol)
dtype = {
'names': ['date', 'open', 'high', 'low', 'close', 'volume'],
'formats': ['object', 'f4', 'f4', 'f4', 'f4', 'f4']
}
converters = {0: lambda s: datetime.strptime(s.decode(), '%d-%b-%y')}
return np.genfromtxt(response, delimiter=',', skip_header=1,
dtype=dtype, converters=converters,
missing_values='-', filling_values=-1)
# We are looking for 2y max
d1 = datetime(2017, 1, 1)
d2 = datetime(2017, 7, 10)
# d1 = today = datetime.datetime(2016, 1, 1)
# d1 = today = date.today()
# d2 = start = datetime.datetime(2017, 5, 10)
# start = (today.day, today.month, today.year - 1)
# start = str(start[0]) + '-' + str(start[1]) + '-' + str(start[2])
def make_symbol_dic(stocks, **kwargs):
symbol_dict = {}
if not kwargs:
F = open(stocks, 'r')
stocks = set(F.readlines())
for symbol in stocks:
try:
qnd_symbol = 'WIKI/' + symbol.strip()
stock = quandl.Dataset(qnd_symbol).name
symbol_dict.setdefault(symbol.strip(), stock.split(' (', 1)[0])
except:
pass
return symbol_dict
shortlist = [
'MMM', 'CVX', 'PTEN', 'NVDA', 'TDG',
'JNJ', 'TSLA', 'F', 'NFLX', 'AMD', 'MU',
'AMZN', 'AAPL', 'FB', 'BA', 'TDG',
'BA', 'GOOGL', 'STX', 'WDC', 'TXN', 'AMS', 'WLM',
'BK', 'WMT'
]
longlist = [
'AMZN', 'GOOGL', 'TSLA', 'FB', 'GLD', 'NVDA', 'GILD',
'NESN', 'MSFT', 'BBY', 'INTC', 'AMD', 'IMGN',
'HBI', 'DIS', 'MEET', 'MCD', 'TWTR',
'NFLX', 'NXPI', 'BABA', 'JNJ', 'T', 'PG', 'MA',
'WMT', 'IBM', 'AAPL', 'BBBY', 'MRK', 'GS', 'CRM',
'MS', 'TDG', 'BA', 'MU', 'MMM', 'ILMN', 'LPL',
'SNE', 'BAC', 'FOXA', 'GPRO', 'GILD', 'SNAP', 'FIT',
'TXN', 'STX', 'WDC'
]
pipeline = ['LB', 'FL', 'COL','VXX', 'TVIX', 'XIV', 'SVXY', 'UVXY', 'SNAP', 'AMD']
symbol_dict = make_symbol_dic(pipeline, t=list)
symbols, names = np.array(list(symbol_dict.items())).T
'''
quotes = []
for symbol in symbols:
try:
quote = quotes_historical_google(symbol, d1, d2)
quotes.append(quote)
except Exception as e:
print(e)
close_prices = np.stack([q['close'] for q in quotes])
open_prices = np.stack([q['open'] for q in quotes])
'''
for symbol in symbols:
try:
quotes = [quandl.get('WIKI/' + symbol, start_date=d1,
end_date=d2, returns='numpy')
for symbol in symbols]
except Exception as e:
print(e)
close_prices = np.stack([q['Close'] for q in quotes])
open_prices = np.stack([q['Open'] for q in quotes])
# The daily variations of the quotes are what carry most information
variation = close_prices - open_prices
###############################################################################
# Learn a graphical structure from the correlations
edge_model = covariance.GraphLassoCV()
# standardize the time series: using correlations rather than covariance
# is more efficient for structure recovery
X = variation.copy().T
X /= X.std(axis=0)
edge_model.fit(X)
###############################################################################
# Cluster using affinity propagation
_, labels = cluster.affinity_propagation(edge_model.covariance_)
n_labels = labels.max()
for i in range(n_labels + 1):
print('Cluster %i: %s' % ((i + 1), ', '.join(names[labels == i])))
###############################################################################
# Find a low-dimension embedding for visualization: find the best position of
# the nodes (the stocks) on a 2D plane
# We use a dense eigen_solver to achieve reproducibility (arpack is
# initiated with random vectors that we don't control). In addition, we
# use a large number of neighbors to capture the large-scale structure.
node_position_model = manifold.LocallyLinearEmbedding(
n_components=2, eigen_solver='dense', n_neighbors=6)
embedding = node_position_model.fit_transform(X.T).T
###############################################################################
# Visualization
plt.figure(1, facecolor='w', figsize=(10, 8))
plt.clf()
ax = plt.axes([0., 0., 1., 1.])
plt.axis('off')
# Display a graph of the partial correlations
partial_correlations = edge_model.precision_.copy()
d = 1 / np.sqrt(np.diag(partial_correlations))
partial_correlations *= d
partial_correlations *= d[:, np.newaxis]
non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02)
# Plot the nodes using the coordinates of our embedding
plt.scatter(embedding[0], embedding[1], s=100 * d ** 2, c=labels,
cmap=plt.cm.spectral)
# Plot the edges
start_idx, end_idx = np.where(non_zero)
# a sequence of (*line0*, *line1*, *line2*), where::
# linen = (x0, y0), (x1, y1), ... (xm, ym)
segments = [[embedding[:, start], embedding[:, stop]]
for start, stop in zip(start_idx, end_idx)]
values = np.abs(partial_correlations[non_zero])
lc = LineCollection(segments,
zorder=0, cmap=plt.cm.hot_r,
norm=plt.Normalize(0, .7 * values.max()))
lc.set_array(values)
lc.set_linewidths(15 * values)
ax.add_collection(lc)
# Add a label to each node. The challenge here is that we want to
# position the labels to avoid overlap with other labels
for index, (name, label, (x, y)) in enumerate(
zip(names, labels, embedding.T)):
dx = x - embedding[0]
dx[index] = 1
dy = y - embedding[1]
dy[index] = 1
this_dx = dx[np.argmin(np.abs(dy))]
this_dy = dy[np.argmin(np.abs(dx))]
if this_dx > 0:
horizontalalignment = 'left'
x = x + .002
else:
horizontalalignment = 'right'
x = x - .002
if this_dy > 0:
verticalalignment = 'bottom'
y = y + .002
else:
verticalalignment = 'top'
y = y - .002
plt.text(x, y, name, size=10,
horizontalalignment=horizontalalignment,
verticalalignment=verticalalignment,
bbox=dict(facecolor='w',
edgecolor=plt.cm.spectral(label / float(n_labels)),
alpha=.6))
plt.xlim(embedding[0].min() - .15 * embedding[0].ptp(),
embedding[0].max() + .10 * embedding[0].ptp(),)
plt.ylim(embedding[1].min() - .03 * embedding[1].ptp(),
embedding[1].max() + .03 * embedding[1].ptp())
plt.show()