-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathregre_exp.py
93 lines (81 loc) · 3.21 KB
/
regre_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import time
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
def save_checkpoint(epoch, model, optimizer, filename):
state = {
'Epoch': epoch,
'State_dict': model.state_dict(),
'optimizer': optimizer.state_dict()
}
torch.save(state, filename)
def train(model, device, optimizer, train_loader, criterion, args):
epoch_train_loss = 0
for i, [solute, solvent] in enumerate(train_loader):
solute = solute.to(device)
solvent = solvent.to(device)
model.train()
optimizer.zero_grad()
output = model(solute, solvent, device)
output.require_grad = False
train_loss = criterion(output, solute.y.view(-1,1))
epoch_train_loss += train_loss.item()
train_loss.backward()
optimizer.step()
epoch_train_loss /= len(train_loader)
print('- Loss : %.4f' % epoch_train_loss)
return model, epoch_train_loss
def test(model, device, test_loader, args):
model.eval()
y_pred_list = []
with torch.no_grad():
logS_total = list()
pred_logS_total = list()
for i, [solute, solvent] in enumerate(test_loader):
solute = solute.to(device)
solvent = solvent.to(device)
logS_total += solute.y.tolist()
output = model(solute, solvent, device)
pred_logS_total += output.view(-1).tolist()
y_pred_list.append(output.cpu().numpy())
y_pred_list = [a.squeeze().tolist() for a in y_pred_list]
mae = mean_absolute_error(logS_total, pred_logS_total)
std = np.std(np.array(logS_total)-np.array(pred_logS_total))
mse = mean_squared_error(logS_total, pred_logS_total)
r_square = r2_score(logS_total, pred_logS_total)
print()
print('[Test]')
print('- MAE : %.4f' % mae)
print('- MSE : %.4f' % mse)
print('- R2 : %.4f' % r_square)
return mae, std, mse, r_square, logS_total, pred_logS_total, y_pred_list
def experiment(model, train_loader, test_loader, device, args):
time_start = time.time()
optimizer = optim.Adam(model.parameters(),lr=args.lr)
criterion = nn.MSELoss()
scheduler = optim.lr_scheduler.StepLR(optimizer,
step_size=args.step_size,
gamma=args.gamma)
list_train_loss = list()
print('[Train]')
for epoch in range(args.epoch):
scheduler.step()
print('- Epoch :', epoch+1)
model, train_loss = train(model, device, optimizer, train_loader, criterion, args)
list_train_loss.append(train_loss)
mae, std, mse, r_square, logS_total, pred_logS_total, y_pred_list = test(model, device, test_loader, args)
time_end = time.time()
time_required = time_end - time_start
args.list_train_loss = list_train_loss
args.logS_total = logS_total
args.pred_logS_total = pred_logS_total
args.mae = mae
args.std = std
args.mse = mse
args.r_square = r_square
args.time_required = time_required
args.y_pred_list = y_pred_list
save_checkpoint(epoch, model, optimizer, args.model_path)
return args