-
Notifications
You must be signed in to change notification settings - Fork 372
/
util.py
100 lines (82 loc) · 3.4 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import numpy as np
from io import StringIO
import PIL.Image
from IPython.display import Image, display
# find connection in the specified sequence, center 29 is in the position 15
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10],
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17],
[1, 16], [16, 18], [3, 17], [6, 18]]
# the middle joints heatmap correpondence
hmapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22],
[23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52],
[55, 56], [37, 38], [45, 46]]
# visualize
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0],
[0, 255, 0],
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255],
[85, 0, 255],
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
def show_bgr_image(a, fmt='jpeg'):
a = np.uint8(np.clip(a, 0, 255))
a[:, :, [0, 2]] = a[:, :, [2, 0]] # for B,G,R order
f = StringIO()
PIL.Image.fromarray(a).save(f, fmt)
display(Image(data=f.getvalue()))
def showmap(a, fmt='png'):
a = np.uint8(np.clip(a, 0, 255))
f = StringIO()
PIL.Image.fromarray(a).save(f, fmt)
display(Image(data=f.getvalue()))
# def checkparam(param):
# octave = param['octave']
# starting_range = param['starting_range']
# ending_range = param['ending_range']
# assert starting_range <= ending_range, 'starting ratio should <= ending ratio'
# assert octave >= 1, 'octave should >= 1'
# return starting_range, ending_range, octave
def get_jet_color(v, vmin, vmax):
c = np.zeros(3)
if v < vmin:
v = vmin
if v > vmax:
v = vmax
dv = vmax - vmin
if v < (vmin + 0.125 * dv):
c[0] = 256 * (0.5 + (v * 4)) # B: 0.5 ~ 1
elif v < (vmin + 0.375 * dv):
c[0] = 255
c[1] = 256 * (v - 0.125) * 4 # G: 0 ~ 1
elif v < (vmin + 0.625 * dv):
c[0] = 256 * (-4 * v + 2.5) # B: 1 ~ 0
c[1] = 255
c[2] = 256 * (4 * (v - 0.375)) # R: 0 ~ 1
elif v < (vmin + 0.875 * dv):
c[1] = 256 * (-4 * v + 3.5) # G: 1 ~ 0
c[2] = 255
else:
c[2] = 256 * (-4 * v + 4.5) # R: 1 ~ 0.5
return c
def colorize(gray_img):
out = np.zeros(gray_img.shape + (3,))
for y in range(out.shape[0]):
for x in range(out.shape[1]):
out[y, x, :] = get_jet_color(gray_img[y, x], 0, 1)
return out
def pad_right_down_corner(img, stride, pad_value):
h = img.shape[0]
w = img.shape[1]
pad = 4 * [None]
pad[0] = 0 # up
pad[1] = 0 # left
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
img_padded = img
pad_up = np.tile(img_padded[0:1, :, :] * 0 + pad_value, (pad[0], 1, 1))
img_padded = np.concatenate((pad_up, img_padded), axis=0)
pad_left = np.tile(img_padded[:, 0:1, :] * 0 + pad_value, (1, pad[1], 1))
img_padded = np.concatenate((pad_left, img_padded), axis=1)
pad_down = np.tile(img_padded[-2:-1, :, :] * 0 + pad_value, (pad[2], 1, 1))
img_padded = np.concatenate((img_padded, pad_down), axis=0)
pad_right = np.tile(img_padded[:, -2:-1, :] * 0 + pad_value, (1, pad[3], 1))
img_padded = np.concatenate((img_padded, pad_right), axis=1)
return img_padded, pad