-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainUnsupervised.py
323 lines (233 loc) · 12.1 KB
/
trainUnsupervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import argparse
from torch.utils.data import DataLoader
import torch.nn.functional as F
import os
from model.build_BiSeNet import BiSeNet
from torch.autograd import Variable
import torch.optim as optim
import torch
from tensorboardX import SummaryWriter
from tqdm import tqdm
import numpy as np
from utils import poly_lr_scheduler, reverse_one_hot, compute_global_accuracy, fast_hist, per_class_iu
import torch.cuda.amp as amp
from dataset.cityscapes_dataset import cityscapesDataSet
from dataset.gta5_dataset import gta5DataSet
from model.discriminator import FCDiscriminator
from model.discriminator_dsc import DSCDiscriminator
from utils import upload_model, best_model
from arguments import get_args
def val(args, model, dataloader):
print('start val!')
with torch.no_grad():
model.eval()
precision_record = []
hist = np.zeros((args.num_classes, args.num_classes))
for i, (data,label,_,_) in enumerate(dataloader):
label = label.type(torch.LongTensor)
data = data.cuda()
label = label.long().cuda()
# get RGB predict image
predict = model(data).squeeze()
predict = reverse_one_hot(predict)
predict = np.array(predict.cpu())
# get RGB label image
label = label.squeeze()
if args.loss == 'dice':
label = reverse_one_hot(label)
label = np.array(label.cpu())
# compute per pixel accuracy
precision = compute_global_accuracy(predict, label)
hist += fast_hist(label.flatten(), predict.flatten(), args.num_classes)
# there is no need to transform the one-hot array to visual RGB array
precision_record.append(precision)
precision = np.mean(precision_record)
miou_list = per_class_iu(hist)
miou = np.mean(miou_list)
print('precision per pixel for test: %.3f' % precision)
print('mIoU for validation: %.3f' % miou)
print(f'mIoU per class: {miou_list}')
return precision, miou
def train(args, model, optimizer, dataloader_source, dataloader_target, dataloader_val, model_D, optimizer_D, IMG_MEAN, cropSize):
writer = SummaryWriter(comment=''.format(args.optimizer, args.context_path))
scaler = amp.GradScaler()
discriminator_scaler = amp.GradScaler()
# Loss
bce_loss = torch.nn.BCEWithLogitsLoss()
loss_func = torch.nn.CrossEntropyLoss(ignore_index=255)
source_label = 0
target_label = 1
max_miou = 0
step = 0
for epoch in range(args.num_epochs):
lr = poly_lr_scheduler(optimizer, args.learning_rate, iter=epoch, max_iter=args.num_epochs, power = args.power)
discriminator_lr = poly_lr_scheduler(optimizer_D, args.learning_rateD, iter=epoch, max_iter=args.num_epochs, power = args.power)
model.train()
model_D.train()
total=len(dataloader_source) * args.batch_size
tq = tqdm(total=total)
tq.set_description('epoch %d, lr %f'% (epoch , lr))
loss_record_source = []
loss_record_target = []
loss_D_record = []
source_iter = enumerate(dataloader_source)
target_iter = enumerate(dataloader_target)
for batch_source, batch_target in zip(source_iter, target_iter):
_, (data_source, label_source, _, _) = batch_source
_, (data_target, label_target, _, _) = batch_target
optimizer.zero_grad()
optimizer_D.zero_grad()
# Train Segmentation network
for param in model_D.parameters():
param.requires_grad = False
# Train with source
data_source = data_source.cuda()
label_source = label_source.long().cuda()
with amp.autocast():
output, output_sup1, output_sup2 = model(data_source)
loss1 = loss_func(output, label_source)
loss2 = loss_func(output_sup1, label_source)
loss3 = loss_func(output_sup2, label_source)
loss_segmentation_source = loss1 + loss2 + loss3 #LOSS SEGMENTATION
scaler.scale(loss_segmentation_source).backward()
# Train with target
data_target = data_target.cuda()
if args.use_pseudolabels==1:
label_target = label_target.long().cuda()
with amp.autocast():
output_target, output_sup1_t, output_sup2_t = model(data_target)
if args.use_pseudolabels==1:
loss1_t = loss_func(output_target, label_target)
loss2_t = loss_func(output_sup1_t, label_target)
loss3_t = loss_func(output_sup2_t, label_target)
loss_seg_target = loss1_t + loss2_t + loss3_t
else:
loss_seg_target = 0
D_out=model_D(F.softmax(output_target, dim=1))
loss_adversarial = bce_loss(D_out, Variable(torch.FloatTensor(D_out.data.size()).fill_(source_label)).cuda())
loss_target = args.lambda_adv * loss_adversarial + loss_seg_target #LOSS ADVERSARIAL
scaler.scale(loss_target).backward()
# train D
# bring back requires_grad
for param in model_D.parameters():
param.requires_grad = True
# Train D with source
with amp.autocast():
output_source = output.detach()
D_out = model_D(F.softmax(output_source, dim =1))
loss_D_source = bce_loss(D_out, Variable(torch.FloatTensor(D_out.data.size()).fill_(source_label)).cuda())
# Train D with target
with amp.autocast():
output_target = output_target.detach()
D_out = model_D(F.softmax(output_target, dim=1))
loss_D_target = bce_loss(D_out, Variable(torch.FloatTensor(D_out.data.size()).fill_(target_label)).cuda())
loss_D = loss_D_source/2 + loss_D_target/2
discriminator_scaler.scale(loss_D).backward()
discriminator_scaler.step(optimizer_D)
scaler.step(optimizer)
discriminator_scaler.update()
scaler.update()
tq.update(args.batch_size)
tq.set_postfix(loss_segmentation_source='%.6f' % loss_segmentation_source, loss_target='%.6f' % loss_target, loss_D='%.6f' % loss_D)
step += 1
writer.add_scalar('loss_seg_source_step', loss_segmentation_source, step)
writer.add_scalar('loss_target_step', loss_target, step)
writer.add_scalar('loss_D_step', loss_D, step)
loss_record_source.append(loss_segmentation_source.item())
loss_record_target.append(loss_target.item())
loss_D_record.append(loss_D.item())
tq.close()
loss_train_mean_source = np.mean(loss_record_source)
writer.add_scalar('epoch/loss_epoch_train', float(loss_train_mean_source), epoch)
print('loss for train source : %f' % (loss_train_mean_source))
loss_train_mean_target = np.mean(loss_record_target)
writer.add_scalar('epoch/loss_epoch_train', float(loss_train_mean_target), epoch)
print('loss for train target : %f' % (loss_train_mean_target))
loss_D_mean = np.mean(loss_D_record)
writer.add_scalar('epoch/loss_', float(loss_D_mean), epoch)
print('loss for discriminator : %f' % (loss_D_mean))
if epoch % args.validation_step == 0 and epoch != 0:
precision, miou = val(args, model, dataloader_val)
if miou > max_miou:
max_miou = miou
import os
os.makedirs(args.save_model_path, exist_ok=True)
best_model(args, model, model_D, optimizer, optimizer_D, epoch, "best_model")
writer.add_scalar('epoch/precision_val', precision, epoch)
writer.add_scalar('epoch/miou val', miou, epoch)
def main(params):
args, IMG_MEAN = get_args(params)
#sistema
cropSize= (args.crop_width , args.crop_height)
cropSizeGTA5 = (1280,720)
# Create dataset train GTA
dataset_train_source = gta5DataSet(args.source, args.path_source, crop_size=cropSizeGTA5)
dataloader_source = DataLoader(dataset_train_source,
batch_size=args.batch_size,
shuffle=True,
num_workers = args.num_workers)
if args.use_pseudolabels == 1:
args.checkpoint_name_save = args.checkpoint_name_save.replace(".pth", "_ssl.pth")
if args.use_pseudolabels == 0:
dataset_train_target = cityscapesDataSet(args.dataset, args.data_train, crop_size=cropSize)
dataloader_target = DataLoader(dataset_train_target,
batch_size=args.batch_size,
shuffle=True,
num_workers = args.num_workers
)
else:
print('entrato nel dataset_train_target delle pseudo')
dataset_train_target = cityscapesDataSet(args.dataset, args.data_train, crop_size=cropSize, pseudo_path= args.pseudo_path, use_pseudolabels = 1, encodeseg= 0)
dataloader_target = DataLoader(dataset_train_target,
batch_size= args.batch_size,
shuffle=True,
num_workers = args.num_workers,
)
dataset_val = cityscapesDataSet(args.dataset, args.data_val, crop_size=cropSize, use_pseudolabels=0, encodeseg =1 )
dataloader_val = DataLoader(dataset_val,
batch_size= 1,
shuffle=True,
num_workers = args.num_workers,
)
# build model
os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda
model = BiSeNet(args.num_classes, args.context_path)
if(args.Discriminator==0):
print('entrato Discriminator 0')
model_D = FCDiscriminator(num_classes=args.num_classes)
else: #uso quello light weight
print('entrato Discriminator 1')
model_D= DSCDiscriminator(num_classes=args.num_classes)
if torch.cuda.is_available() and args.use_gpu:
model_D = torch.nn.DataParallel(model_D).cuda()
model = torch.nn.DataParallel(model).cuda()
# build optimizers
optimizer_D = optim.Adam(model_D.parameters(), lr=args.learning_rateD, betas=(0.9, 0.99))
optimizer = torch.optim.SGD(model.parameters(), args.learning_rate, momentum=0.9, weight_decay=1e-4)
if args.use_pretrained_model ==1 :
model, model_D, optimizer, optimizer_D, epoch_start = upload_model(args, model, model_D, optimizer, optimizer_D)
else:
train(args, model, optimizer, dataloader_source, dataloader_target, dataloader_val, model_D, optimizer_D, IMG_MEAN, cropSize)
val(args, model, dataloader_val)
if __name__ == '__main__':
params = [
'--use_pseudolabels','0',
'--save_dir_plabels', '/content/drive/MyDrive/dataset/pseudolabels',
'--pseudo_path', './dataset/pseudolabels/labels',
'--num_epochs', '50',
'--learning_rate', '2.5e-4',
'--data_train', './dataset/data/Cityscapes/train.txt',
'--data_val', './dataset/data/Cityscapes/val.txt',
'--num_workers', '4',
'--num_classes', '19',
'--cuda', '0',
'--batch_size', '4',
'--save_model_path', './checkpoints_101_sgd',
'--context_path', 'resnet101', # set resnet18 or resnet101, only support resnet18 and resnet101
'--optimizer', 'sgd',
'--Discriminator', '1',
'--use_pretrained_model','0',
'--checkpoint_name_save','model_output.pth',
'--checkpoint_name_load','model_output_best.pth'
]
main(params)