diff --git a/DESCRIPTION b/DESCRIPTION index 0ccb87d9..533fa8ee 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,6 +1,6 @@ Package: miaViz Title: Microbiome Analysis Plotting and Visualization -Version: 1.13.2 +Version: 1.13.3 Authors@R: c(person(given = "Tuomas", family = "Borman", role = c("aut", "cre"), email = "tuomas.v.borman@utu.fi", diff --git a/NEWS b/NEWS index 5931bea2..8fa8af51 100644 --- a/NEWS +++ b/NEWS @@ -27,4 +27,4 @@ Changes in version 1.11.x Changes in version 1.13.x + plot*Tree: bugfix, ununique nodes -+ Added confidence.level parameter to plotCCA ++ Added confidence.level parameter to plotCCA diff --git a/R/plotTree.R b/R/plotTree.R index d1fc0d52..5d066bf7 100644 --- a/R/plotTree.R +++ b/R/plotTree.R @@ -97,7 +97,7 @@ #' @return a \code{\link{ggtree}} plot #' #' @seealso -#' \code{\link[mia:splitByRanks]{splitByRanks}} +#' \code{\link[mia:agglomerate-methods]{agglomerateByRanks}} #' #' @name plotTree #' @@ -106,7 +106,7 @@ #' library(mia) #' # preparation of some data #' data(GlobalPatterns) -#' altExps(GlobalPatterns) <- splitByRanks(GlobalPatterns) +#' GlobalPatterns <- agglomerateByRanks(GlobalPatterns) #' altExp(GlobalPatterns,"Genus") <- addPerFeatureQC(altExp(GlobalPatterns,"Genus")) #' rowData(altExp(GlobalPatterns,"Genus"))$log_mean <- #' log(rowData(altExp(GlobalPatterns,"Genus"))$mean) @@ -148,7 +148,7 @@ #' # aggregating data over the taxonomic levels for plotting a taxonomic tree #' # please note that the original tree of GlobalPatterns is dropped by #' # unsplitByRanks -#' altExps(GlobalPatterns) <- splitByRanks(GlobalPatterns) +#' GlobalPatterns <- agglomerateByRanks(GlobalPatterns) #' top_phyla <- getTopFeatures(altExp(GlobalPatterns,"Phylum"), #' method="mean", #' top=10L, diff --git a/man/plotTree.Rd b/man/plotTree.Rd index 5790a767..72903efe 100644 --- a/man/plotTree.Rd +++ b/man/plotTree.Rd @@ -167,7 +167,7 @@ library(scater) library(mia) # preparation of some data data(GlobalPatterns) -altExps(GlobalPatterns) <- splitByRanks(GlobalPatterns) +GlobalPatterns <- agglomerateByRanks(GlobalPatterns) altExp(GlobalPatterns,"Genus") <- addPerFeatureQC(altExp(GlobalPatterns,"Genus")) rowData(altExp(GlobalPatterns,"Genus"))$log_mean <- log(rowData(altExp(GlobalPatterns,"Genus"))$mean) @@ -209,7 +209,7 @@ plotRowTree(x[rownames(x) \%in\% top_genus,], # aggregating data over the taxonomic levels for plotting a taxonomic tree # please note that the original tree of GlobalPatterns is dropped by # unsplitByRanks -altExps(GlobalPatterns) <- splitByRanks(GlobalPatterns) +GlobalPatterns <- agglomerateByRanks(GlobalPatterns) top_phyla <- getTopFeatures(altExp(GlobalPatterns,"Phylum"), method="mean", top=10L, @@ -241,5 +241,5 @@ plotRowTree(x[rowData(x)$Phylum \%in\% top_phyla,], node_colour_by = "log_mean") } \seealso{ -\code{\link[mia:splitByRanks]{splitByRanks}} +\code{\link[mia:agglomerate-methods]{agglomerateByRanks}} }