This repository has been archived by the owner on Nov 16, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathpredict_new_data.py
162 lines (133 loc) · 5.94 KB
/
predict_new_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import sys
# ======== PLEASE MODIFY ========
# where is the repo
repoRoot = r'.'
# to CUDA\vX.Y\bin
#os.environ['PATH'] = r'path\to\your\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin' + ';' + os.environ['PATH']
import argparse
import yaml
import numpy as np
import mxnet as mx
import cv2
import flow_vis
from moviepy.editor import ImageSequenceClip
from moviepy.audio.AudioClip import AudioArrayClip
import network.config
from network import get_pipeline
import path
import logger
def find_checkpoint(checkpoint_str):
# find checkpoint
steps = 0
if checkpoint_str is not None:
if ':' in checkpoint_str:
prefix, steps = checkpoint_str.split(':')
else:
prefix = checkpoint_str
steps = None
log_file, run_id = path.find_log(prefix)
if steps is None:
checkpoint, steps = path.find_checkpoints(run_id)[-1]
else:
checkpoints = path.find_checkpoints(run_id)
try:
checkpoint, steps = next(filter(lambda t : t[1] == steps, checkpoints))
except StopIteration:
print('The steps not found in checkpoints', steps, checkpoints)
sys.stdout.flush()
raise StopIteration
steps = int(steps)
if args.clear_steps:
steps = 0
else:
_, exp_info = path.read_log(log_file)
exp_info = exp_info[-1]
for k in args.__dict__:
if k in exp_info and k in ('tag',):
setattr(args, k, eval(exp_info[k]))
print('{}={}, '.format(k, exp_info[k]), end='')
print()
sys.stdout.flush()
return checkpoint, steps
def load_model(config_str):
# load network configuration
with open(os.path.join(repoRoot, 'network', 'config', config_str)) as f:
config = network.config.Reader(yaml.load(f))
return config
def instantiate_model(gpu_device, config):
ctx = [mx.cpu()] if gpu_device == '' else [mx.gpu(gpu_id) for gpu_id in map(int, gpu_device.split(','))]
# initiate
pipe = get_pipeline(args.network, ctx=ctx, config=config)
return pipe
def load_checkpoint(pipe, config, checkpoint):
# load parameters from given checkpoint
print('Load Checkpoint {}'.format(checkpoint))
sys.stdout.flush()
network_class = getattr(config.network, 'class').get()
print('load the weight for the network')
pipe.load(checkpoint)
if network_class == 'MaskFlownet':
print('fix the weight for the head network')
pipe.fix_head()
sys.stdout.flush()
return pipe
def predict_image_pair_flow(img1, img2, pipe, resize=None):
for result in pipe.predict([img1], [img2], batch_size = 1, resize=resize):
flow, occ_mask, warped = result
return flow, occ_mask, warped
def create_video_clip_from_frames(frame_list, fps):
""" Function takes a list of video frames and puts them together in a sequence"""
visual_clip = ImageSequenceClip(frame_list, fps=fps) #put frames together using moviepy
return visual_clip #return the ImageSequenceClip
def predict_video_flow(video_filename, batch_size, resize=None):
cap = cv2.VideoCapture(video_filename)
fps = cap.get(cv2.CAP_PROP_FPS)
prev_frames = []
new_frames = []
has_frames, frame = cap.read()
prev_frames.append(frame)
while True:
has_frames, frame = cap.read()
if not has_frames:
cap.release()
break
new_frames.append(frame)
prev_frames.append(frame)
del prev_frames[-1] #delete the last frame of the video from prev_frames
flow_video = [flow for flow, occ_mask, warped in pipe.predict(prev_frames, new_frames, batch_size=batch_size, resize=resize)]
return flow_video, fps
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('flow_filepath', type=str, help='destination filepath of the flow image/video')
parser.add_argument('config', type=str, nargs='?', default=None)
parser.add_argument('--image_1', type=str, help='filepath of the first image')
parser.add_argument('--image_2', type=str, help='filepath of the second image')
parser.add_argument('--video_filepath', type=str, help='filepath of the input video')
parser.add_argument('-g', '--gpu_device', type=str, default='', help='Specify gpu device(s)')
parser.add_argument('-c', '--checkpoint', type=str, default=None,
help='model checkpoint to load; by default, the latest one.'
'You can use checkpoint:steps to load to a specific steps')
parser.add_argument('--clear_steps', action='store_true')
parser.add_argument('-n', '--network', type=str, default='MaskFlownet', help='The choice of network')
parser.add_argument('--batch', type=int, default=8, help='minibatch size of samples per device')
parser.add_argument('--resize', type=str, default='', help='shape to resize image frames before inference')
parser.add_argument('--threads', type=str, default=8, help='Number of threads to use when writing flow video to file')
args = parser.parse_args()
# Get desired image resize from the string argument
infer_resize = [int(s) for s in args.resize.split(',')] if args.resize else None
checkpoint, steps = find_checkpoint(args.checkpoint)
config = load_model(args.config)
pipe = instantiate_model(args.gpu_device, config)
pipe = load_checkpoint(pipe, config, checkpoint)
if args.image_1 is not None:
image_1 = cv2.imread(args.image_1)
image_2 = cv2.imread(args.image_2)
flow, occ_mask, warped = predict_image_pair_flow(image_1, image_2, pipe)
cv2.imwrite(args.flow_filepath, flow_vis.flow_to_color(flow, convert_to_bgr=False))
else:
flow_video, fps = predict_video_flow(args.video_filepath, batch_size=args.batch)
flow_video_visualisations = [flow_vis.flow_to_color(flow, convert_to_bgr=False) for flow in flow_video]
flow_video_clip = create_video_clip_from_frames(flow_video_visualisations, fps)
flow_video_clip.write_videofile(args.flow_filepath, threads=args.threads, logger=None) #export the video
sys.exit(0)