diff --git a/notebooks/deepmc/mc_forecast.ipynb b/notebooks/deepmc/mc_forecast.ipynb
index d41b43b7..7fbfa798 100755
--- a/notebooks/deepmc/mc_forecast.ipynb
+++ b/notebooks/deepmc/mc_forecast.ipynb
@@ -15,7 +15,9 @@
"```bash\n",
"$ micromamba env create -f ./deepmc_env.yaml\n",
"$ micromamba activate deepmc-pytorch\n",
- "```\n"
+ "```\n",
+ "\n",
+ "**We currently only support Unix-based systems (Linux and MacOS) for running this notebook.**"
]
},
{
@@ -55,33 +57,22 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/azureuser/.conda/envs/deepmc-pytorch/lib/python3.8/site-packages/torchvision/io/image.py:11: UserWarning: Failed to load image Python extension: /home/azureuser/.conda/envs/deepmc-pytorch/lib/python3.8/site-packages/torchvision/image.so: undefined symbol: _ZNK3c1010TensorImpl36is_contiguous_nondefault_policy_implENS_12MemoryFormatE\n",
- " warn(f\"Failed to load image Python extension: {e}\")\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
- "import pandas as pd\n",
- "import numpy as np\n",
+ "import warnings\n",
+ "from datetime import datetime\n",
"\n",
- "from datetime import datetime, timedelta\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
"from matplotlib import pyplot as plt\n",
- "\n",
- "from shapely import geometry\n",
- "\n",
- "from notebook_lib import utils\n",
- "from notebook_lib import prediction\n",
"from notebook_lib import train\n",
- "from notebook_lib.forecast import Forecast\n",
+ "from shapely import geometry\n",
+ "\n",
+ "from vibe_notebook.deepmc import prediction, utils\n",
+ "from vibe_notebook.deepmc.forecast import Forecast\n",
"\n",
- "import warnings\n",
"warnings.filterwarnings(\"ignore\")"
]
},
@@ -90,7 +81,7 @@
"metadata": {},
"source": [
"### Workflows\n",
- "The notebook utilize below workflows available in farmvibes"
+ "The notebook utilizes the workflow below, which is available in FarmVibes.AI: "
]
},
{
@@ -107,9 +98,9 @@
"metadata": {},
"source": [
"### Data\n",
- "The notebook utilizing two types of datasets\n",
+ "The notebook utilizes two types of datasets:\n",
"\n",
- "1. The historical observations recorded by weather stations\n",
+ "1. The historical observations recorded by weather stations.\n",
"2. The forecast observations downloaded using the [herbie package](https://blaylockbk.github.io/Herbie/_build/html/). This package helps to download recent and archived numerical weather prediction (NWP) model output from different cloud archive sources. Its most popular capability is to download HRRR model data.\n"
]
},
@@ -118,7 +109,7 @@
"metadata": {},
"source": [
"### AGWeatherNet\n",
- "In this notebook, we utilize historical observations downloaded from AGWeatherNet for a station \\\"Palouse\\\". The data used for training range from May 2020 to June 2022. For more information check [AGWeatherNet documentation](http://weather.wsu.edu/?p=92850&desktop)."
+ "In this notebook, we utilize historical observations downloaded from AGWeatherNet for the station `Palouse`. The data used for training range from May 2020 to June 2022. For more information check [AGWeatherNet documentation](http://weather.wsu.edu/?p=92850&desktop)."
]
},
{
@@ -146,8 +137,8 @@
"metadata": {},
"outputs": [],
"source": [
- "PREDICT=\"%s\"\n",
- "RELEVANT=\"%s\"\n",
+ "PREDICT = \"%s\"\n",
+ "RELEVANT = \"%s\"\n",
"ROOT_PATH = f\"./data/model_{PREDICT}/\"\n",
"DATA_EXPORT_PATH = ROOT_PATH + f\"{STATION_NAME}/{RELEVANT}/train_data.pkl\""
]
@@ -166,7 +157,7 @@
"outputs": [],
"source": [
"# weather dataset filtered and model training limited to train features.\n",
- "HISTORICAL_MODEL_TRAIN_FEATURES = ['humidity', 'wind_speed', 'temperature']\n",
+ "HISTORICAL_MODEL_TRAIN_FEATURES = [\"humidity\", \"wind_speed\", \"temperature\"]\n",
"\n",
"# Historical data aligned using INDEX variable\n",
"INDEX = \"date\""
@@ -203,7 +194,7 @@
"outputs": [],
"source": [
"# Models trained to predict out features\n",
- "OUT_FEATURES = ['wind_speed' , 'temperature']"
+ "OUT_FEATURES = [\"wind_speed\", \"temperature\"]"
]
},
{
@@ -211,14 +202,16 @@
"metadata": {},
"source": [
"### Relevant vs Not Relevant\n",
- "The notebook support performing micro climate predictions with below approaches. \n",
+ "The scenario is considered relevant when there is a close match between historical data and forecasts, with minimal discrepancies else it's not relevant.\n",
+ "\n",
+ "The notebook supports performing micro climate predictions with the following approaches: \n",
"\n",
"1. Utilizing both Historical & Forecast observations. This approach is suggested to use if both observations are relevant. \n",
"\n",
"2. Utilizing only Historical dataset. This approach is suggested to use if both Historical & Forecast observations are not relevant or Forecast dataset doesn't exist. \n",
"\n",
"\n",
- "In next cells, demonstrated training & prediction process for both relevant and not relevant scenarios. "
+ "In next cells, we demonstrate the training and prediction processes for both relevant and non-relevant scenarios. "
]
},
{
@@ -270,7 +263,7 @@
"1. The index variable is converted to datetime\n",
"2. The input data is interpolated to fill the missing values using their neighbors\n",
"3. The script focuses on training the model with a 60-minute frequency, hence the data is grouped for this frequency.\n",
- "4. The data is scaled using the scikit-learn StandardScalar. For more information check [scikit-learn documentaion](https://github.com/scikit-learn/scikit-learn)"
+ "4. The data is scaled using the scikit-learn StandardScalar. For more information check [scikit-learn documentation](https://github.com/scikit-learn/scikit-learn)"
]
},
{
@@ -296,7 +289,7 @@
"metadata": {},
"outputs": [],
"source": [
- "historical_dataset = utils.get_csv_data(path=file_path)"
+ "historical_dataset = utils.get_csv_data(path=file_path, interpolate=False, fill_na=False)"
]
},
{
@@ -319,7 +312,7 @@
" - humidity - \"RH:2 m\" \n",
" - wind speed - The forecast observations of wind speed are derived using data downloaded for u & v components. The algebraic expression used to calculate wind speed is \n",
" $$ \n",
- " ws = \\sqrt{u^2 + v^2}\n",
+ " ws(u, v) = \\sqrt{u^2 + v^2}\n",
" $$\n",
" i. u component - \"UGRD:10 m\" \n",
" ii. v component - \"VGRD:10 m\""
@@ -348,24 +341,14 @@
"start_date = datetime(year=2020, month=5, day=31)\n",
"end_date = datetime(year=2022, month=8, day=2)\n",
"time_range = (start_date, end_date)\n",
- "date_column=\"date\"\n",
+ "date_column = \"date\"\n",
"\n",
- "parameters = [{\n",
- " \"weather_type\": \"temperature\",\n",
- " \"search_text\": \"TMP:2 m\"\n",
- " },\n",
- " {\n",
- " \"weather_type\": \"humidity\",\n",
- " \"search_text\": \"RH:2 m\"\n",
- " },\n",
- " {\n",
- " \"weather_type\": \"u-component\",\n",
- " \"search_text\": \"UGRD:10 m\"\n",
- " },\n",
- " {\n",
- " \"weather_type\": \"v-component\",\n",
- " \"search_text\": \"VGRD:10 m\"\n",
- " }]"
+ "parameters = [\n",
+ " {\"weather_type\": \"temperature\", \"search_text\": \"TMP:2 m\"},\n",
+ " {\"weather_type\": \"humidity\", \"search_text\": \"RH:2 m\"},\n",
+ " {\"weather_type\": \"u-component\", \"search_text\": \"UGRD:10 m\"},\n",
+ " {\"weather_type\": \"v-component\", \"search_text\": \"VGRD:10 m\"},\n",
+ "]"
]
},
{
@@ -373,7 +356,7 @@
"metadata": {},
"source": [
"### Submit Request to Worker\n",
- "Download forecast observations by submitting request to worker running in background. If more than one worker instance running in background, it process the request in parallel for each parameter. Workflow execution utilize below parameters while processing requests, this can be overwritten using the parameter argument.\n",
+ "We download forecast observations by submitting a request to the worker running in the background. If more than one worker instance is running in the background, the request is processed in parallel for each parameter. Workflow execution utilizes the parameters below while processing requests, this can be overwritten using the parameter argument.\n",
"\n",
"- fxx: [1, 25, 1] # start, stop, step\n",
"- search_text: \"TMP:2 m\"\n",
@@ -388,24 +371,48 @@
"metadata": {},
"outputs": [
{
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "'VibeWorkflowRun'(id='d7c0dc6a-339f-45b9-81d1-2fb93d2938f6', name='forecast_temperature', workflow='data_ingestion/weather/herbie_forecast', status='done')\n",
- "'VibeWorkflowRun'(id='61d952d1-b068-4c2c-b522-a680efed450f', name='forecast_humidity', workflow='data_ingestion/weather/herbie_forecast', status='running')\n",
- "'VibeWorkflowRun'(id='8c95f7ab-6d6b-40e8-a3bd-c12b854d0a7b', name='forecast_u-component', workflow='data_ingestion/weather/herbie_forecast', status='running')\n",
- "'VibeWorkflowRun'(id='7490cd70-9731-4cac-ab36-051d3903776a', name='forecast_v-component', workflow='data_ingestion/weather/herbie_forecast', status='running')\n"
- ]
+ "data": {
+ "text/html": [
+ "
\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "c00b48cb983f4c2184d411cd346f2bdb",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Output()"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
}
],
"source": [
- "forecast_ = Forecast(\n",
- " workflow_name=HERBIE_DOWNLOAD_WORKFLOW,\n",
- " geometry=STATION_GEOMETRY,\n",
- " time_range=time_range,\n",
- " parameters=parameters,\n",
- " )\n",
- "run_list = forecast_.submit_download_request()"
+ "forecast = Forecast(\n",
+ " workflow_name=HERBIE_DOWNLOAD_WORKFLOW,\n",
+ " geometry=STATION_GEOMETRY,\n",
+ " time_range=time_range,\n",
+ " parameters=parameters,\n",
+ ")\n",
+ "run_list = forecast.submit_download_request()"
]
},
{
@@ -413,12 +420,14 @@
"metadata": {},
"source": [
"### Monitor download of Forecast observations\n",
- "Check the download status and fetch the downloaded data from the cluster running in backend. The execution time of download depends on time_range. The downloaded data undergoes below changes.\n",
+ "Check the download status and fetch the downloaded data from FarmVibes.AI. The execution time of the download depends on the time range. \n",
+ "\n",
+ "The downloaded data undergoes the following changes:\n",
"\n",
- "1. concatenate the output of all requests submitted.\n",
+ "1. Concatenate the output of all submitted requests.\n",
"2. Set index on date column.\n",
- "3. Does interpolate to derive the missing data.\n",
- "4. The data downloaded follows the utc timezone. It's required to transform the data to the timezone of historical observations. The historical observations used in this notebook follows pst timezone, hence the data offset by -8 hours."
+ "3. Interpolate to derive the missing data.\n",
+ "4. The data downloaded follows the UTC timezone. It's required to transform the data to the timezone of historical observations. The historical observations used in this notebook follows the PST timezone, hence the data is offset by -8 hours."
]
},
{
@@ -501,14 +510,14 @@
"2020-05-30 17:00:00 -2.861307 1.178179 "
]
},
- "execution_count": 15,
+ "execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# transform downloaded data from utc to pst timezone\n",
- "forecast_dataset = forecast_.get_downloaded_data(run_list=run_list, offset_hours=-8)\n",
+ "forecast_dataset = forecast.get_downloaded_data(run_list=run_list, offset_hours=-8)\n",
"forecast_dataset.to_csv(f\"{STATION_NAME}_forecast.csv\")\n",
"forecast_dataset.head(2)"
]
@@ -517,109 +526,40 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "### Preprocess Forecast Observations\n",
- "Below preprocessing performed on downloaded data before performing model training.\n",
- "\n",
- "- Temperature: The downloaded data has units \"kelvin\". It will be converted to Fahrenheit.\n",
- "- wind_speed: Using the u-component & v-component values downloaded, the wind_speed values derived. The derived values multiplied by 2.23 to convert from m/sec to mph\n",
- "- drop u-component & v-component"
+ "### Preprocess Forecast Observations"
]
},
{
- "cell_type": "code",
- "execution_count": 16,
+ "cell_type": "markdown",
"metadata": {},
- "outputs": [],
"source": [
- "# Temperature\n",
- "# convert kelvin to celsius\n",
- "forecast_dataset[\"temperature_forecast\"] = forecast_dataset[\"temperature_forecast\"]-273.15\n",
+ "We perform the following preprocessing in the downloaded data before training the model.\n",
"\n",
- "# convert celsius to Fahrenheit\n",
- "forecast_dataset[\"temperature_forecast\"] = forecast_dataset[\"temperature_forecast\"].apply(lambda x: (x * 9/5) + 32)"
+ "- `temperature`: The downloaded data is in Kelvin. It will be converted to Fahrenheit.\n",
+ "- `wind_speed`: Using the u-component & v-component values downloaded, the `wind_speed` values are derived. The derived values are multiplied by 2.23 to convert from m/sec to mph.\n",
+ "- Drop u-component & v-component"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- "
\n",
- "
\n",
- "
temperature_forecast
\n",
- "
humidity_forecast
\n",
- "
wind_speed_forecast
\n",
- "
\n",
- "
\n",
- "
date
\n",
- "
\n",
- "
\n",
- "
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
2020-05-30 16:00:00
\n",
- "
84.173633
\n",
- "
49.299999
\n",
- "
7.025768
\n",
- "
\n",
- "
\n",
- "
2020-05-30 17:00:00
\n",
- "
82.149731
\n",
- "
54.599998
\n",
- "
6.900466
\n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " temperature_forecast humidity_forecast \\\n",
- "date \n",
- "2020-05-30 16:00:00 84.173633 49.299999 \n",
- "2020-05-30 17:00:00 82.149731 54.599998 \n",
- "\n",
- " wind_speed_forecast \n",
- "date \n",
- "2020-05-30 16:00:00 7.025768 \n",
- "2020-05-30 17:00:00 6.900466 "
- ]
- },
- "execution_count": 17,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
- "# wind_speed\n",
- "# multiplying with 2.23 to convert wind speed from m/sec to mph\n",
- "forecast_dataset[\"wind_speed_forecast\"] = forecast_dataset.apply(lambda x: np.sqrt(np.square(x[\"u-component_forecast\"]) + \n",
- " np.square(x[\"v-component_forecast\"]))*2.23, axis=1)\n",
- "\n",
- "forecast_dataset.drop(columns=[\"u-component_forecast\", \"v-component_forecast\"], inplace=True)\n",
+ "forecast_dataset = utils.convert_forecast_data(forecast_dataset)\n",
"forecast_dataset.head(2)"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We also clean the input data with the following operations:\n",
+ "- Exclude input data outside the time_range of interest.\n",
+ "- Shift forecast data by number of hours\n",
+ "- Fill missing data with neighboring data points using pandas interpolate techniques."
+ ]
+ },
{
"cell_type": "code",
"execution_count": 18,
@@ -698,18 +638,21 @@
"2020-07-06 01:00:00 57.220984 3.85 10.642863 "
]
},
- "execution_count": 18,
+ "execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "input_df = utils.clean_relevant_data(\n",
- " actual_df=historical_dataset, \n",
- " forecast_df=forecast_dataset, \n",
- " out_variables=RELEVANT_FEATURES,\n",
- " freq_hours=frequency_hour,\n",
- " num_of_indices=number_of_hours)\n",
+ "input_df = utils.clean_relevant_data_using_hrrr(\n",
+ " actual_df=historical_dataset,\n",
+ " forecast_df=forecast_dataset,\n",
+ " out_variables=RELEVANT_FEATURES,\n",
+ " freq_hours=frequency_hour,\n",
+ " num_of_indices=number_of_hours,\n",
+ " start_date=start_date,\n",
+ " end_date=end_date,\n",
+ ")\n",
"input_df.head(2)"
]
},
@@ -717,12 +660,12 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "### Verifying the forecast observations are relevant or not relevant"
+ "### Verifying if the forecast observations are relevant or not relevant"
]
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 20,
"metadata": {},
"outputs": [
{
@@ -731,7 +674,7 @@
""
]
},
- "execution_count": 19,
+ "execution_count": 21,
"metadata": {},
"output_type": "execute_result"
},
@@ -747,7 +690,7 @@
}
],
"source": [
- "plot_df = input_df[(input_df.index.month==7) & (input_df.index.year==2020)]\n",
+ "plot_df = input_df[(input_df.index.month == 7) & (input_df.index.year == 2020)]\n",
"\n",
"plt.figure(figsize=(20, 4))\n",
"plt.plot(plot_df.index.values, plot_df[\"temperature_forecast\"].values, label=\"forecast\")\n",
@@ -759,7 +702,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "Based on the distribution of observation in above plot, the forecast observations are relevant. In this scenario continue with model training process using relevant dataset."
+ "Based on the distribution of observation in above plot, the forecast observations are relevant. In this scenario, we will continue with model training using the relevant dataset."
]
},
{
@@ -768,7 +711,7 @@
"source": [
"### Training\n",
"\n",
- "The script is configured to train the Micro Climate prediction model for 24 hours and the historical weather station data has points with a 60-minute frequency. Below inputs vary based on number of hours of prediction and frequency of weather station data points.\n",
+ "The script is configured to train the Micro Climate prediction model for 24 hours and the historical weather station data has points with a 60-minute frequency. Below inputs vary based on the number of hours of prediction and frequency of weather station data points.\n",
"\n",
"1. `chunk_size` - The value of the chunk size is based on the frequency of the weather station data points. For a frequency of 60 minutes, the minimum required data points are 528. If the data frequency is 15 minutes, the minimum number of data points required is 528*4 = 2112. These are the minimum number of data points need to be provided as input during the inference.\n",
"2. `ts_lookahead` - The value used during the data preprocessing. It is the value used to consider weather data points ahead for a given time period while grouping the data.\n",
@@ -791,7 +734,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 22,
"metadata": {
"tags": []
},
@@ -803,7 +746,8 @@
" root_path=ROOT_PATH,\n",
" data_export_path=DATA_EXPORT_PATH,\n",
" station_name=STATION_NAME,\n",
- " relevant=True)\n",
+ " relevant=True,\n",
+ ")\n",
"\n",
"train_weather.train_model(input_df)"
]
@@ -820,26 +764,27 @@
"metadata": {},
"source": [
"### Current\n",
- "Predict weather for the next 24 hours. To predict weather for next 24 hours it is required to certain hours of historical forecast observations, the default size called chunk size of historical forecast observations is 528. Choosing start time of prediction is important, if historical observations used to train model has the start time of 12:00:00 then the historical observations used for prediction should start at the same time."
+ "To predict the weather for next 24 hours, we need certain hours of historical forecast observations beforehand. The default size (chunk size) of historical forecast observations is 528. Choosing a start time to predict is important, if historical observations used to train model have a starting time of 12:00:00, then the historical observations used for prediction should start at the same time."
]
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"weather_forecast = prediction.InferenceWeather(\n",
- " root_path=ROOT_PATH,\n",
- " data_export_path=DATA_EXPORT_PATH,\n",
- " station_name=STATION_NAME,\n",
- " predicts=OUT_FEATURES,\n",
- " relevant=True)"
+ " root_path=ROOT_PATH,\n",
+ " data_export_path=DATA_EXPORT_PATH,\n",
+ " station_name=STATION_NAME,\n",
+ " predicts=OUT_FEATURES,\n",
+ " relevant=True,\n",
+ ")"
]
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
@@ -848,55 +793,69 @@
"p_end_date = datetime(year=2022, month=6, day=3, hour=0, minute=0, second=0)\n",
"\n",
"time_range = (p_start_date, p_end_date)\n",
- "date_column=\"date\"\n",
+ "date_column = \"date\"\n",
"\n",
- "parameters = [{\n",
- " \"weather_type\": \"temperature\",\n",
- " \"search_text\": \"TMP:2 m\"\n",
- " },\n",
- " {\n",
- " \"weather_type\": \"humidity\",\n",
- " \"search_text\": \"RH:2 m\"\n",
- " },\n",
- " {\n",
- " \"weather_type\": \"u-component\",\n",
- " \"search_text\": \"UGRD:10 m\"\n",
- " },\n",
- " {\n",
- " \"weather_type\": \"v-component\",\n",
- " \"search_text\": \"VGRD:10 m\"\n",
- " }]"
+ "parameters = [\n",
+ " {\"weather_type\": \"temperature\", \"search_text\": \"TMP:2 m\"},\n",
+ " {\"weather_type\": \"humidity\", \"search_text\": \"RH:2 m\"},\n",
+ " {\"weather_type\": \"u-component\", \"search_text\": \"UGRD:10 m\"},\n",
+ " {\"weather_type\": \"v-component\", \"search_text\": \"VGRD:10 m\"},\n",
+ "]"
]
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 25,
"metadata": {},
"outputs": [
{
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "'VibeWorkflowRun'(id='ea662424-c9c5-4d1f-8d1c-ed907f0176ea', name='forecast_temperature', workflow='data_ingestion/weather/herbie_forecast', status='done')\n",
- "'VibeWorkflowRun'(id='e93b52c2-9c20-4bf2-b647-a7dc04ff4947', name='forecast_humidity', workflow='data_ingestion/weather/herbie_forecast', status='done')\n",
- "'VibeWorkflowRun'(id='5cbd7199-626c-43dc-aa73-17639c97bc30', name='forecast_u-component', workflow='data_ingestion/weather/herbie_forecast', status='done')\n",
- "'VibeWorkflowRun'(id='e9373c58-5730-4b03-aee4-83015ab08848', name='forecast_v-component', workflow='data_ingestion/weather/herbie_forecast', status='done')\n"
- ]
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "04e890c9992c4710acdbb661b49c1e56",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Output()"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n"
+ ],
+ "text/plain": []
+ },
+ "metadata": {},
+ "output_type": "display_data"
}
],
"source": [
- "forecast_ = Forecast(\n",
- " workflow_name=HERBIE_DOWNLOAD_WORKFLOW,\n",
- " geometry=STATION_GEOMETRY,\n",
- " time_range=time_range,\n",
- " parameters=parameters,\n",
- " )\n",
- "run_list = forecast_.submit_download_request()"
+ "forecast = Forecast(\n",
+ " workflow_name=HERBIE_DOWNLOAD_WORKFLOW,\n",
+ " geometry=STATION_GEOMETRY,\n",
+ " time_range=time_range,\n",
+ " parameters=parameters,\n",
+ ")\n",
+ "run_list = forecast.submit_download_request()"
]
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 26,
"metadata": {},
"outputs": [
{
@@ -974,21 +933,21 @@
"2022-03-17 17:00:00 4.563419 1.176411 "
]
},
- "execution_count": 23,
+ "execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# transform downloaded data from utc to pst timezone\n",
- "p_forecast_dataset = forecast_.get_downloaded_data(run_list=run_list, offset_hours=-8)\n",
+ "p_forecast_dataset = forecast.get_downloaded_data(run_list=run_list, offset_hours=-8)\n",
"p_forecast_dataset.to_csv(f\"{STATION_NAME}_forecast.csv\")\n",
"p_forecast_dataset.head(2)"
]
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 28,
"metadata": {},
"outputs": [
{
@@ -1047,14 +1006,14 @@
"2022-03-18 14:00:00 66.300 16.175 50.075"
]
},
- "execution_count": 24,
+ "execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predict_file_path = f\"./data/{STATION_NAME}/prediction.csv\"\n",
- "p_historical_dataset = utils.get_csv_data(path=predict_file_path)\n",
+ "p_historical_dataset = utils.get_csv_data(path=predict_file_path, interpolate=False, fill_na=False)\n",
"p_historical_dataset = p_historical_dataset[HISTORICAL_MODEL_TRAIN_FEATURES]\n",
"\n",
"p_historical_dataset.head(2)"
@@ -1062,35 +1021,26 @@
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
- "# Temperature\n",
- "# convert kelvin to celsius\n",
- "p_forecast_dataset[\"temperature_forecast\"] = p_forecast_dataset[\"temperature_forecast\"]-273.15\n",
- "\n",
- "# convert celsius to Fahrenheit\n",
- "p_forecast_dataset[\"temperature_forecast\"] = p_forecast_dataset[\"temperature_forecast\"].apply(lambda x: (x * 9/5) + 32)"
+ "p_forecast_dataset = utils.convert_forecast_data(p_forecast_dataset)"
]
},
{
- "cell_type": "code",
- "execution_count": 26,
+ "cell_type": "markdown",
"metadata": {},
- "outputs": [],
"source": [
- "# wind_speed\n",
- "# multiplying with 2.23 to convert wind speed from m/sec to mph\n",
- "p_forecast_dataset[\"wind_speed_forecast\"] = p_forecast_dataset.apply(lambda x: np.sqrt(np.square(x[\"u-component_forecast\"]) + \n",
- " np.square(x[\"v-component_forecast\"]))*2.23, axis=1)\n",
- "\n",
- "p_forecast_dataset.drop(columns=[\"u-component_forecast\", \"v-component_forecast\"], inplace=True)"
+ "We clean the input data with the following operations:\n",
+ "- Exclude input data outside the time range of interest.\n",
+ "- Shift forecast data by number of hours\n",
+ "- Fill missing data with neighboring data points using pandas interpolate techniques."
]
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": 31,
"metadata": {},
"outputs": [
{
@@ -1166,19 +1116,21 @@
"2022-03-18 14:00:00 45.456384 16.175 17.855009 "
]
},
- "execution_count": 27,
+ "execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "input_df = utils.clean_relevant_data(\n",
- " actual_df=p_historical_dataset.copy(),\n",
- " forecast_df= p_forecast_dataset.copy(),\n",
- " out_variables= RELEVANT_FEATURES,\n",
- " freq_hours=frequency_hour,\n",
- " num_of_indices=number_of_hours\n",
- " )\n",
+ "input_df = utils.clean_relevant_data_using_hrrr(\n",
+ " actual_df=p_historical_dataset.copy(),\n",
+ " forecast_df=p_forecast_dataset.copy(),\n",
+ " out_variables=RELEVANT_FEATURES,\n",
+ " freq_hours=frequency_hour,\n",
+ " num_of_indices=number_of_hours,\n",
+ " start_date=start_date,\n",
+ " end_date=end_date,\n",
+ ")\n",
"\n",
"base_data_df = input_df[RELEVANT_FEATURES]\n",
"base_data_df.head(2)"
@@ -1186,7 +1138,7 @@
},
{
"cell_type": "code",
- "execution_count": 28,
+ "execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
@@ -1197,7 +1149,7 @@
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": 34,
"metadata": {},
"outputs": [
{
@@ -1239,7 +1191,7 @@
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": 35,
"metadata": {},
"outputs": [
{
@@ -1315,45 +1267,45 @@
"2022-03-16 17:00:00 44.783197 14.325 10.509131 "
]
},
- "execution_count": 30,
+ "execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predict_file_path = f\"./data/{STATION_NAME}/training.csv\"\n",
- "p_historical_dataset = utils.get_csv_data(path=predict_file_path)\n",
+ "p_historical_dataset = utils.get_csv_data(path=predict_file_path, interpolate=False, fill_na=False)\n",
"p_historical_dataset = p_historical_dataset[HISTORICAL_MODEL_TRAIN_FEATURES]\n",
"p_historical_dataset.head(5)\n",
"\n",
"input_df = utils.clean_relevant_data(\n",
- " p_historical_dataset.copy(), \n",
- " p_forecast_dataset.copy(), \n",
- " RELEVANT_FEATURES,\n",
- " freq_hours=frequency_hour,\n",
- " num_of_indices=number_of_hours)\n",
+ " p_historical_dataset.copy(),\n",
+ " p_forecast_dataset.copy(),\n",
+ " RELEVANT_FEATURES,\n",
+ " freq_hours=frequency_hour,\n",
+ " num_of_indices=number_of_hours,\n",
+ ")\n",
"base_data_df = input_df[RELEVANT_FEATURES]\n",
"base_data_df.head(2)"
]
},
{
"cell_type": "code",
- "execution_count": 31,
+ "execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"predict_start_datetime = datetime(year=2022, month=4, day=30, hour=13, minute=0, second=0)\n",
"predict_end_datetime = datetime(year=2022, month=5, day=21, hour=13, minute=0, second=0)\n",
"\n",
- "df_out = weather_forecast.inference_historical(base_data_df.copy(),\n",
- " start_datetime=predict_start_datetime,\n",
- " end_datetime=predict_end_datetime\n",
- " )"
+ "df_out = weather_forecast.inference_historical(\n",
+ " base_data_df.copy(), start_datetime=predict_start_datetime, end_datetime=predict_end_datetime\n",
+ ")"
]
},
{
"cell_type": "code",
- "execution_count": 32,
+ "execution_count": 38,
"metadata": {},
"outputs": [
{
@@ -1378,20 +1330,22 @@
}
],
"source": [
- "base_data_df = base_data_df[(base_data_df.index >= predict_start_datetime) & (base_data_df.index <= predict_end_datetime)]\n",
+ "base_data_df = base_data_df[\n",
+ " (base_data_df.index >= predict_start_datetime) & (base_data_df.index <= predict_end_datetime)\n",
+ "]\n",
"\n",
"for predict in OUT_FEATURES:\n",
" plt.figure(figsize=(18, 6))\n",
- " plt.plot(df_out[\"date\"].values, utils.smooth(df_out[predict].values, 2), label=\"Predict\")\n",
+ " plt.plot(df_out[\"date\"].values, utils.smooth(df_out[predict].values, 2), label=\"Prediction\")\n",
" plt.plot(base_data_df.index.values, base_data_df[predict].values, label=\"Ground Truth\")\n",
- " # plt.plot(base_data_df.index.values, base_data_df[predict+\"_forecast\"].values, label=\"Forecast\")\n",
+ "\n",
" plt.title(f\"24 Models {predict} Ground Truth Vs Predict\")\n",
" plt.legend()"
]
},
{
"cell_type": "code",
- "execution_count": 33,
+ "execution_count": 39,
"metadata": {},
"outputs": [
{
@@ -1411,31 +1365,28 @@
}
],
"source": [
- "from sklearn.metrics import mean_squared_error, mean_absolute_error\n",
- "import math\n",
- "\n",
- "def calculate_KPI(y, yhat):\n",
- " print(\"RMSE: {}\".format(round(mean_squared_error(y,yhat,squared=False),2)))\n",
- " print(\"MAE: {}\".format(round(mean_absolute_error(y,yhat),2)))\n",
- " print(\"MAE%: {}%\".format(round(100*sum(abs(y-yhat))/sum(y),2)))\n",
- "\n",
"print(\"temperature\")\n",
- "calculate_KPI(utils.smooth(df_out[\"temperature\"].values, 1),base_data_df[\"temperature\"].values)\n",
+ "utils.calculate_KPI(\n",
+ " utils.smooth(list(df_out[\"temperature\"].values), 1),\n",
+ " np.array(base_data_df[\"temperature\"].values),\n",
+ ")\n",
"\n",
"print(\"\\n\", \"wind_speed\")\n",
- "calculate_KPI(utils.smooth(df_out[\"wind_speed\"].values, 1),base_data_df[\"wind_speed\"].values)"
+ "utils.calculate_KPI(\n",
+ " utils.smooth(list(df_out[\"wind_speed\"].values), 1), np.array(base_data_df[\"wind_speed\"].values)\n",
+ ")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "### Training model using not relevant dataset or without forecast observations"
+ "### Training model using non-relevant dataset or without forecast observations"
]
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
@@ -1445,7 +1396,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
@@ -1455,7 +1406,8 @@
" root_path=ROOT_PATH,\n",
" data_export_path=DATA_EXPORT_PATH,\n",
" station_name=STATION_NAME,\n",
- " relevant=False)\n",
+ " relevant=False,\n",
+ ")\n",
"\n",
"train_weather.train_model(historical_df, start=0, epochs=1)"
]
@@ -1470,15 +1422,16 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"weather_forecast = prediction.InferenceWeather(\n",
- " root_path=ROOT_PATH,\n",
- " data_export_path=DATA_EXPORT_PATH,\n",
- " station_name=STATION_NAME,\n",
- " predicts=OUT_FEATURES)"
+ " root_path=ROOT_PATH,\n",
+ " data_export_path=DATA_EXPORT_PATH,\n",
+ " station_name=STATION_NAME,\n",
+ " predicts=OUT_FEATURES,\n",
+ ")"
]
},
{
@@ -1491,7 +1444,7 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
@@ -1501,7 +1454,7 @@
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
@@ -1511,14 +1464,12 @@
"\n",
"df_output_merge = pd.DataFrame(columns=base_data_df.columns)\n",
"\n",
- "df_out = weather_forecast.inference(base_data_df,\n",
- " start_datetime=predict_start_datetime\n",
- " )"
+ "df_out = weather_forecast.inference(base_data_df, start_datetime=predict_start_datetime)"
]
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 45,
"metadata": {},
"outputs": [
{
@@ -1560,7 +1511,7 @@
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": 46,
"metadata": {},
"outputs": [],
"source": [
@@ -1571,15 +1522,14 @@
"predict_start_datetime = datetime(year=2022, month=4, day=30, hour=13, minute=0, second=0)\n",
"predict_end_datetime = datetime(year=2022, month=5, day=21, hour=13, minute=0, second=0)\n",
"\n",
- "df_out = weather_forecast.inference_historical(base_data_df,\n",
- " start_datetime=predict_start_datetime,\n",
- " end_datetime=predict_end_datetime\n",
- " )"
+ "df_out = weather_forecast.inference_historical(\n",
+ " base_data_df, start_datetime=predict_start_datetime, end_datetime=predict_end_datetime\n",
+ ")"
]
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": 47,
"metadata": {},
"outputs": [
{
@@ -1604,12 +1554,14 @@
}
],
"source": [
- "base_data_df = base_data_df[(base_data_df.index >= predict_start_datetime) & (base_data_df.index <= predict_end_datetime)]\n",
+ "base_data_df = base_data_df[\n",
+ " (base_data_df.index >= predict_start_datetime) & (base_data_df.index <= predict_end_datetime)\n",
+ "]\n",
"for predict in OUT_FEATURES:\n",
" plt.figure(figsize=(20, 5))\n",
" plt.plot(df_out[\"date\"].values, df_out[predict].values)\n",
" plt.plot(base_data_df.index.values, base_data_df[predict].values)\n",
- " plt.title(f\"24 Models {predict} Ground Truth Vs Predict\")\n",
+ " plt.title(f\"24 Models {predict} Ground Truth Vs Prediction\")\n",
" plt.legend([\"Predict\", \"Ground Truth\"])"
]
}
@@ -1632,7 +1584,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.16"
+ "version": "3.8.18"
},
"name": "Micro climate prediction",
"running_time": "",
diff --git a/notebooks/deepmc/notebook_lib/forecast.py b/notebooks/deepmc/notebook_lib/forecast.py
index 645b8e8d..993a6617 100644
--- a/notebooks/deepmc/notebook_lib/forecast.py
+++ b/notebooks/deepmc/notebook_lib/forecast.py
@@ -1,4 +1,3 @@
-import time
from datetime import datetime, timedelta
from typing import Any, Dict, List, Tuple, cast
@@ -8,7 +7,7 @@
from shapely.geometry import Point
from vibe_core.client import FarmvibesAiClient, get_default_vibe_client
-from vibe_core.datamodel import RunConfig, RunConfigUser, RunDetails, SpatioTemporalJson
+from vibe_core.datamodel import RunConfig, RunConfigUser, SpatioTemporalJson
class Forecast:
@@ -31,7 +30,8 @@ def submit_download_request(self):
"""
Submit request to worker to download forecast data
"""
- run_list = []
+ run_metadata_list = []
+ runs = []
for parameter in self.parameters:
run_name = f"forecast_{parameter['weather_type']}"
run = self.client.run(
@@ -42,57 +42,40 @@ def submit_download_request(self):
parameters=parameter,
)
- try:
- run.block_until_complete(5)
- except RuntimeError:
- print(run)
-
- run_list.append(
+ run_metadata_list.append(
{
"id": run.id,
"weather_type": parameter["weather_type"],
}
)
+ runs.append(run)
+
+ self.client.monitor(runs, 5)
- return run_list
+ return run_metadata_list
def get_run_status(self, run_list: List[Dict[str, str]]):
clear_output(wait=True)
- all_done = True
- out_ = []
+ out = []
for run_item in run_list:
o = self.client.describe_run(run_item["id"])
print(f"Execution status for {run_item['weather_type']}: {o.details.status}")
if o.details.status == "done":
- out_.append(o)
- elif o.details.status == "failed":
- print(o.details)
+ out.append(o)
else:
- all_done = False
- cnt_complete = 0
- for key, value in o.task_details.items():
- value = cast(RunDetails, value)
- assert value.subtasks is not None, "Subtasks don't exist"
- for subtask in value.subtasks:
- if subtask.status == "done":
- cnt_complete += 1
- print(
- "\t",
- f"Subtask {key}",
- cnt_complete,
- "/",
- len(value.subtasks),
- )
- cnt_complete = 0
- return all_done, out_
+ raise Exception(
+ f"Execution status for {run_item['weather_type']}: {o.details.status}"
+ )
+
+ return out
def get_all_assets(self, details: RunConfigUser):
asset_files = []
output = details.output["weather_forecast"]
record: Dict[str, Any]
for record in cast(List[Dict[str, Any]], output):
- for _, value in record["assets"].items():
+ for value in record["assets"].values():
asset_files.append(value["href"])
df_assets = [pd.read_csv(f, index_col=False) for f in asset_files]
df_out = pd.concat(df_assets)
@@ -104,21 +87,15 @@ def get_downloaded_data(self, run_list: List[Dict[str, str]], offset_hours: int
check the download status. If status is done, fetch the downloaded data
"""
forecast_dataset = pd.DataFrame()
- status = False
- out_ = []
- while status is False:
- status, out_ = self.get_run_status(run_list)
- time.sleep(10)
-
- if status:
- for detail in out_:
- df = self.get_all_assets(detail)
+ out = self.get_run_status(run_list)
+ for detail in out:
+ df = self.get_all_assets(detail)
- # Offset from UTC to specified timezone
- df.index = df.index + pd.offsets.Hour(offset_hours)
+ # Offset from UTC to specified timezone
+ df.index = df.index + pd.offsets.Hour(offset_hours)
- if not df.empty:
- forecast_dataset = pd.concat([forecast_dataset, df], axis=1)
+ if not df.empty:
+ forecast_dataset = pd.concat([forecast_dataset, df], axis=1)
return forecast_dataset
diff --git a/notebooks/deepmc/notebook_lib/modules.py b/notebooks/deepmc/notebook_lib/modules.py
index 5fbfe012..9be52ab4 100644
--- a/notebooks/deepmc/notebook_lib/modules.py
+++ b/notebooks/deepmc/notebook_lib/modules.py
@@ -59,14 +59,14 @@ def training_step(self, train_batch: Tensor, _):
x, y = train_batch[:6], train_batch[6]
y_hat = self.deepmc(x)
loss = self.loss(y_hat, y)
- self.log("train_loss/total", loss)
+ self.log("train_loss/total", loss, on_epoch=True, prog_bar=True, logger=True, on_step=True)
return loss
def validation_step(self, validation_batch: Tensor, _):
x, y = validation_batch[:6], validation_batch[6]
y_hat = self.deepmc(x)
loss = self.loss(y_hat, y)
- self.log("val_loss/total", loss, on_epoch=True)
+ self.log("val_loss/total", loss, on_epoch=True, prog_bar=True, logger=True, on_step=True)
return loss
diff --git a/notebooks/deepmc/notebook_lib/post_models.py b/notebooks/deepmc/notebook_lib/post_models.py
deleted file mode 100644
index 224be6fd..00000000
--- a/notebooks/deepmc/notebook_lib/post_models.py
+++ /dev/null
@@ -1,34 +0,0 @@
-from keras.layers import BatchNormalization, Dense, Input
-from keras.models import Sequential
-from keras.utils.vis_utils import plot_model
-
-
-def simple_mixture_model(inshape: int):
- model = Sequential()
- model.add(Input(shape=(inshape,)))
-
- model.add(Dense(inshape * 2, activation="relu"))
- model.add(BatchNormalization())
- model.add(Dense(inshape * 4, activation="relu"))
- model.add(BatchNormalization())
- model.add(Dense(inshape))
-
- model.compile(loss="mae", optimizer="adam")
- return model
-
-
-def fit_model(model, train_X, train_y, test_X, test_y, batch_size: int):
- batch_size = batch_size
- validation_data = (test_X, test_y)
-
- # fit network
- history = model.fit(
- train_X,
- train_y,
- epochs=20,
- batch_size=batch_size,
- validation_data=validation_data,
- verbose=1,
- )
-
- return model, history
diff --git a/notebooks/deepmc/notebook_lib/train.py b/notebooks/deepmc/notebook_lib/train.py
index 6a6f2242..4b9fa8b7 100644
--- a/notebooks/deepmc/notebook_lib/train.py
+++ b/notebooks/deepmc/notebook_lib/train.py
@@ -14,8 +14,8 @@
from torch import Tensor
from torch.utils.data import DataLoader, TensorDataset
-from . import utils
-from .preprocess import Preprocess
+from vibe_notebook.deepmc import utils
+from vibe_notebook.deepmc.preprocess import Preprocess
MODEL_SUFFIX = "deepmc."
@@ -35,7 +35,7 @@ def __init__(
wavelet: str = "bior3.5",
mode: str = "periodic",
level: int = 5,
- batch_size: int = 256,
+ batch_size: int = 24,
relevant: bool = False,
):
if relevant:
@@ -67,6 +67,7 @@ def train_model(
start: int = 0,
end: int = -1,
epochs: int = 20,
+ reset_preprocess: bool = False,
):
end = self.total_models if end == -1 else end
@@ -80,12 +81,22 @@ def train_model(
input_order_df[out_feature] = out_feature_df
# data preprocessing
- (train_scaler, output_scaler, train_df, test_df,) = utils.get_split_scaled_data(
+ (
+ train_scaler,
+ output_scaler,
+ train_df,
+ test_df,
+ ) = utils.get_split_scaled_data(
data=input_order_df, out_feature=out_feature, split_ratio=0.92
)
+ if reset_preprocess and os.path.exists(
+ self.data_export_path % (out_feature, self.relevant_text)
+ ):
+ os.remove(self.data_export_path % (out_feature, self.relevant_text))
if os.path.exists(self.data_export_path % (out_feature, self.relevant_text)):
- with open(self.data_export_path % (out_feature, self.relevant_text), "rb") as f:
+ exp_path = self.data_export_path.replace("train_data.pkl", "train_data_dates.pkl")
+ with open(exp_path % (out_feature, self.relevant_text), "rb") as f:
(
train_X,
train_y,
@@ -93,6 +104,10 @@ def train_model(
test_y,
train_scaler,
output_scaler,
+ train_dates_X,
+ train_dates_y,
+ test_dates_X,
+ test_dates_y,
) = pickle.load(f)
self.preprocess = Preprocess(
@@ -128,6 +143,10 @@ def train_model(
train_y,
test_X,
test_y,
+ train_dates_X,
+ train_dates_y,
+ test_dates_X,
+ test_dates_y,
) = self.preprocess.wavelet_transform_train(train_df, test_df, out_feature)
with open(self.data_export_path % (out_feature, self.relevant_text), "wb") as f:
@@ -136,6 +155,25 @@ def train_model(
f,
)
+ exp_path = self.data_export_path.replace("train_data.pkl", "train_data_dates.pkl")
+
+ with open(exp_path % (out_feature, self.relevant_text), "wb") as f:
+ pickle.dump(
+ [
+ train_X,
+ train_y,
+ test_X,
+ test_y,
+ train_scaler,
+ output_scaler,
+ train_dates_X,
+ train_dates_y,
+ test_dates_X,
+ test_dates_y,
+ ],
+ f,
+ )
+
self.train_models(
train_X=train_X, # type: ignore
train_y=train_y, # type: ignore
@@ -145,6 +183,8 @@ def train_model(
out_feature=out_feature,
start=start,
end=end,
+ train_dates_y=train_dates_y, # type: ignore
+ test_dates_y=test_dates_y, # type: ignore
)
def train_models(
@@ -157,6 +197,8 @@ def train_models(
out_feature: str,
start: int,
end: int,
+ train_dates_y: List[str],
+ test_dates_y: List[str],
):
first_channels = train_X[0].shape[2]
rest_channels = train_X[1].shape[2]
@@ -209,7 +251,6 @@ def train_models(
dirpath=model_path,
),
],
- num_processes=1,
)
t_obj.fit(m, train_loader, val_loader)
@@ -225,6 +266,8 @@ def train_models(
out_feature=out_feature,
model_index=i,
epochs=epochs,
+ train_dates_y=train_dates_y,
+ test_dates_y=test_dates_y,
)
def export_to_onnx(
@@ -249,19 +292,24 @@ def export_to_onnx(
)
def get_dataloader(
- self, gt: NDArray[Any], target: NDArray[Any], o_feature: str
+ self,
+ gt: NDArray[Any],
+ target: NDArray[Any],
+ o_feature: str,
+ dates_mapped: NDArray[Any],
) -> Tuple[DataLoader[Any], List[Tensor]]:
- o_x = self.preprocess.dl_preprocess_data(pd.DataFrame(gt), o_feature)[0][:, :, 0].astype(
- np.float32
- )
+ dates_mapped = pd.to_datetime(dates_mapped, format="%Y-%m-%d %H:%M:%S").values
+ df = pd.DataFrame(list(zip(gt, dates_mapped)), columns=["data", "date"])
+ df.set_index("date", inplace=True)
+ o_x = self.preprocess.dl_preprocess_data(df, o_feature)[0][:, :, 0].astype(np.float32)
- o_y = self.preprocess.dl_preprocess_data(pd.DataFrame(target), o_feature)[0][
- :, :, 0
- ].astype(np.float32)
+ df = pd.DataFrame(list(zip(target, dates_mapped)), columns=["data", "date"])
+ df.set_index("date", inplace=True)
+ o_y = self.preprocess.dl_preprocess_data(df, o_feature)[0][:, :, 0].astype(np.float32)
o_inputs = [torch.from_numpy(x.astype(np.float32)) for x in (o_x, o_y)]
o_dataset = TensorDataset(*o_inputs)
- o_loader = DataLoader(o_dataset, batch_size=self.batch_size, shuffle=True)
+ o_loader = DataLoader(o_dataset, batch_size=self.batch_size, shuffle=True, drop_last=True)
return o_loader, o_inputs
def post_model(
@@ -274,6 +322,8 @@ def post_model(
out_feature: str,
model_index: int,
epochs: int,
+ train_dates_y: List[str],
+ test_dates_y: List[str],
):
m.eval()
@@ -288,11 +338,17 @@ def xf(a: List[NDArray[Any]]) -> List[Tensor]:
os.mkdir(post_model_path)
train_dataloader, _ = self.get_dataloader(
- gt=train_y[:, model_index, 0], target=train_yhat, o_feature=out_feature # type: ignore
+ gt=train_y[:, model_index, 0], # type: ignore
+ target=train_yhat,
+ o_feature=out_feature,
+ dates_mapped=train_dates_y[:, model_index], # type: ignore
)
- val_dataloader, val_inputs = self.get_dataloader(
- gt=test_y[:, model_index, 0], target=test_yhat, o_feature=out_feature # type: ignore
+ val_dataloader, _ = self.get_dataloader(
+ gt=test_y[:, model_index, 0], # type: ignore
+ target=test_yhat,
+ o_feature=out_feature,
+ dates_mapped=test_dates_y[:, model_index], # type: ignore
)
p_m = DeepMCPostTrain(first_in_features=self.total_models)
@@ -308,9 +364,113 @@ def xf(a: List[NDArray[Any]]) -> List[Tensor]:
dirpath=post_model_path,
),
],
- num_processes=1,
)
t_obj.fit(p_m, train_dataloaders=train_dataloader, val_dataloaders=val_dataloader)
self.export_to_onnx(file_path=post_model_path, model=p_m.deepmc, inputs=torch.rand((1, 24)))
+
+ def preprocess_data(
+ self,
+ input_df: pd.DataFrame,
+ out_path: str,
+ start: int = 0,
+ end: int = -1,
+ epochs: int = 20,
+ reset_preprocess: bool = False,
+ ):
+ end = self.total_models if end == -1 else end
+
+ for out_feature in self.out_features:
+ if not os.path.exists(self.path_to_station % out_feature):
+ os.makedirs(self.path_to_station % out_feature, exist_ok=True)
+
+ input_order_df = input_df[self.train_features].copy()
+ out_feature_df = input_order_df[out_feature]
+ input_order_df.drop(columns=[out_feature], inplace=True)
+ input_order_df[out_feature] = out_feature_df
+
+ # data preprocessing
+ (
+ train_scaler,
+ output_scaler,
+ train_df,
+ test_df,
+ ) = utils.get_split_scaled_data(
+ data=input_order_df, out_feature=out_feature, split_ratio=0.92
+ )
+ if reset_preprocess and os.path.exists(
+ self.data_export_path % (out_feature, self.relevant_text)
+ ):
+ os.remove(self.data_export_path % (out_feature, self.relevant_text))
+
+ if os.path.exists(self.data_export_path % (out_feature, self.relevant_text)):
+ with open(self.data_export_path % (out_feature, self.relevant_text), "rb") as f:
+ (
+ train_X,
+ train_y,
+ test_X,
+ test_y,
+ train_scaler,
+ output_scaler,
+ ) = pickle.load(f)
+
+ self.preprocess = Preprocess(
+ train_scaler=train_scaler,
+ output_scaler=output_scaler,
+ is_training=True,
+ is_validation=self.is_validation,
+ ts_lookahead=self.ts_lookahead,
+ ts_lookback=self.ts_lookback,
+ chunk_size=self.chunk_size,
+ wavelet=self.wavelet,
+ mode=self.mode,
+ level=self.level,
+ relevant=self.relevant,
+ )
+ else:
+ self.preprocess = Preprocess(
+ train_scaler=train_scaler,
+ output_scaler=output_scaler,
+ is_training=True,
+ is_validation=self.is_validation,
+ ts_lookahead=self.ts_lookahead,
+ ts_lookback=self.ts_lookback,
+ chunk_size=self.chunk_size,
+ wavelet=self.wavelet,
+ mode=self.mode,
+ level=self.level,
+ relevant=self.relevant,
+ )
+
+ (
+ train_X,
+ train_y,
+ test_X,
+ test_y,
+ train_dates,
+ test_dates,
+ ) = self.preprocess.wavelet_transform_train(train_df, test_df, out_feature)
+
+ with open(self.data_export_path % (out_feature, self.relevant_text), "wb") as f:
+ pickle.dump(
+ [train_X, train_y, test_X, test_y, train_scaler, output_scaler],
+ f,
+ )
+
+ exp_path = self.data_export_path.replace("train_data.pkl", "train_data_dates.pkl")
+
+ with open(exp_path % (out_feature, self.relevant_text), "wb") as f:
+ pickle.dump(
+ [
+ train_X,
+ train_y,
+ test_X,
+ test_y,
+ train_scaler,
+ output_scaler,
+ train_dates,
+ test_dates,
+ ],
+ f,
+ )
diff --git a/notebooks/deepmc/notebook_lib/transformer_models_ts.py b/notebooks/deepmc/notebook_lib/transformer_models_ts.py
deleted file mode 100644
index ba55aaca..00000000
--- a/notebooks/deepmc/notebook_lib/transformer_models_ts.py
+++ /dev/null
@@ -1,367 +0,0 @@
-import numpy as np
-import tensorflow as tf
-
-
-def get_angles(pos, i, d_model):
- angle_rates = 1 / np.power(10000, (2 * (i // 2)) / np.float32(d_model))
- return pos * angle_rates
-
-
-def positional_encoding(position, d_model):
- angle_rads = get_angles(
- np.arange(position)[:, np.newaxis], np.arange(d_model)[np.newaxis, :], d_model
- )
-
- # apply sin to even indices in the array; 2i
- angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
-
- # apply cos to odd indices in the array; 2i+1
- angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
-
- pos_encoding = angle_rads[np.newaxis, ...]
-
- return tf.cast(pos_encoding, dtype=tf.float32)
-
-
-# create mask for padding, 0 --> 1 (mask)
-def create_padding_mask(seq):
- seq = tf.cast(tf.math.equal(seq, 0), tf.float32)
-
- # add extra dimensions to add the padding
- # to the attention logits.
- return seq[:, tf.newaxis, tf.newaxis, :] # (batch_size, 1, 1, seq_len)
-
-
-def create_look_ahead_mask(size):
- mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0)
- return mask # (seq_len, seq_len)
-
-
-def scaled_dot_product_attention(q, k, v, mask):
- """Calculate the attention weights.
- q, k, v must have matching leading dimensions.
- k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v.
- The mask has different shapes depending on its type(padding or look ahead)
- but it must be broadcastable for addition.
-
- Args:
- q: query shape == (..., seq_len_q, depth)
- k: key shape == (..., seq_len_k, depth)
- v: value shape == (..., seq_len_v, depth_v)
- mask: Float tensor with shape broadcastable
- to (..., seq_len_q, seq_len_k). Defaults to None.
-
- Returns:
- output, attention_weights
- """
-
- matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k)
-
- # scale matmul_qk
- dk = tf.cast(tf.shape(k)[-1], tf.float32)
- scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
-
- # add the mask to the scaled tensor.
- if mask is not None:
- scaled_attention_logits += mask * -1e9
-
- # softmax is normalized on the last axis (seq_len_k) so that the scores
- # add up to 1.
- attention_weights = tf.nn.softmax(
- scaled_attention_logits, axis=-1
- ) # (..., seq_len_q, seq_len_k)
-
- output = tf.matmul(attention_weights, v) # (..., seq_len_q, depth_v)
-
- return output, attention_weights
-
-
-def print_out(q, k, v):
- temp_out, temp_attn = scaled_dot_product_attention(q, k, v, None)
- print("Attention weights are:")
- print(temp_attn)
- print("Output is:")
- print(temp_out)
-
-
-"""
- - Q (query), K (key) and V (value) are split into multiple heads (num_heads)
- - each tuple (q, k, v) are fed to scaled_dot_product_attention
- - all attention outputs are concatenated
-"""
-
-
-class MultiHeadAttention(tf.keras.layers.Layer):
- def __init__(self, d_model, num_heads):
- super(MultiHeadAttention, self).__init__()
- self.num_heads = num_heads
- self.d_model = d_model
-
- assert d_model % self.num_heads == 0
-
- self.depth = d_model // self.num_heads
-
- self.wq = tf.keras.layers.Dense(d_model)
- self.wk = tf.keras.layers.Dense(d_model)
- self.wv = tf.keras.layers.Dense(d_model)
-
- self.dense = tf.keras.layers.Dense(d_model)
-
- def split_heads(self, x, batch_size):
- """Split the last dimension into (num_heads, depth).
- Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)
- """
- x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
- return tf.transpose(x, perm=[0, 2, 1, 3])
-
- def call(self, v, k, q, mask):
- batch_size = tf.shape(q)[0]
-
- q = self.wq(q) # (batch_size, seq_len, d_model)
- k = self.wk(k) # (batch_size, seq_len, d_model)
- v = self.wv(v) # (batch_size, seq_len, d_model)
-
- q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth)
- k = self.split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth)
- v = self.split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth)
-
- scaled_attention, attention_weights = scaled_dot_product_attention(q, k, v, mask)
-
- scaled_attention = tf.transpose(
- scaled_attention, perm=[0, 2, 1, 3]
- ) # (batch_size, seq_len_q, num_heads, depth)
-
- concat_attention = tf.reshape(
- scaled_attention, (batch_size, -1, self.d_model)
- ) # (batch_size, seq_len_q, d_model)
-
- output = self.dense(concat_attention) # (batch_size, seq_len_q, d_model)
-
- return output, attention_weights
-
-
-def point_wise_feed_forward_network(d_model, dff):
- return tf.keras.Sequential(
- [
- tf.keras.layers.Dense(dff, activation="relu"), # (batch_size, seq_len, dff)
- tf.keras.layers.Dense(d_model), # (batch_size, seq_len, d_model)
- ]
- )
-
-
-class EncoderLayer(tf.keras.layers.Layer):
- def __init__(self, d_model, num_heads, dff, rate=0.1):
- super(EncoderLayer, self).__init__()
-
- self.mha = MultiHeadAttention(d_model, num_heads)
- self.ffn = point_wise_feed_forward_network(d_model, dff)
-
- self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
- self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
-
- self.dropout1 = tf.keras.layers.Dropout(rate)
- self.dropout2 = tf.keras.layers.Dropout(rate)
-
- def call(self, x, training, mask):
-
- attn_output, _ = self.mha(x, x, x, mask) # (batch_size, input_seq_len, d_model)
- attn_output = self.dropout1(attn_output, training=training)
- out1 = self.layernorm1(x + attn_output) # (batch_size, input_seq_len, d_model)
-
- ffn_output = self.ffn(out1) # (batch_size, input_seq_len, d_model)
- ffn_output = self.dropout2(ffn_output, training=training)
- out2 = self.layernorm2(out1 + ffn_output) # (batch_size, input_seq_len, d_model)
-
- return out2
-
-
-class DecoderLayer(tf.keras.layers.Layer):
- def __init__(self, d_model, num_heads, dff, rate=0.1):
- super(DecoderLayer, self).__init__()
-
- self.mha1 = MultiHeadAttention(d_model, num_heads)
- self.mha2 = MultiHeadAttention(d_model, num_heads)
-
- self.ffn = point_wise_feed_forward_network(d_model, dff)
-
- self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
- self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
- self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
-
- self.dropout1 = tf.keras.layers.Dropout(rate)
- self.dropout2 = tf.keras.layers.Dropout(rate)
- self.dropout3 = tf.keras.layers.Dropout(rate)
-
- def call(self, x, enc_output, training, look_ahead_mask, padding_mask):
- # enc_output.shape == (batch_size, input_seq_len, d_model)
-
- attn1, attn_weights_block1 = self.mha1(
- x, x, x, look_ahead_mask
- ) # (batch_size, target_seq_len, d_model)
- attn1 = self.dropout1(attn1, training=training)
- out1 = self.layernorm1(attn1 + x)
-
- attn2, attn_weights_block2 = self.mha2(
- enc_output, enc_output, out1, padding_mask
- ) # (batch_size, target_seq_len, d_model)
- attn2 = self.dropout2(attn2, training=training)
- out2 = self.layernorm2(attn2 + out1) # (batch_size, target_seq_len, d_model)
-
- ffn_output = self.ffn(out2) # (batch_size, target_seq_len, d_model)
- ffn_output = self.dropout3(ffn_output, training=training)
- out3 = self.layernorm3(ffn_output + out2) # (batch_size, target_seq_len, d_model)
-
- return out3, attn_weights_block1, attn_weights_block2
-
-
-class Encoder(tf.keras.layers.Layer):
- def __init__(self, num_layers, d_model, num_heads, dff, maximum_position_encoding, rate=0.1):
- super(Encoder, self).__init__()
-
- self.d_model = d_model
- self.num_layers = num_layers
-
- self.embedding = tf.keras.layers.Dense(d_model, activation="relu")
- self.pos_encoding = positional_encoding(maximum_position_encoding, self.d_model)
-
- self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers)]
-
- self.dropout = tf.keras.layers.Dropout(rate)
-
- def call(self, x, training, mask):
-
- seq_len = tf.shape(x)[1]
-
- # print("Encoder:", x.shape)
- # adding embedding and position encoding.
- x = self.embedding(x) # (batch_size, input_seq_len, d_model)
- x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
- x += self.pos_encoding[:, :seq_len, :]
-
- x = self.dropout(x, training=training)
-
- for i in range(self.num_layers):
- x = self.enc_layers[i](x, training, mask)
-
- return x # (batch_size, input_seq_len, d_model)
-
-
-class Decoder(tf.keras.layers.Layer):
- def __init__(self, num_layers, d_model, num_heads, dff, maximum_position_encoding, rate=0.1):
- super(Decoder, self).__init__()
-
- self.d_model = d_model
- self.num_layers = num_layers
-
- self.embedding = tf.keras.layers.Dense(d_model, activation="relu")
- self.pos_encoding = positional_encoding(maximum_position_encoding, d_model)
-
- self.dec_layers = [DecoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers)]
- self.dropout = tf.keras.layers.Dropout(rate)
-
- def call(self, x, enc_output, training, look_ahead_mask, padding_mask):
-
- seq_len = tf.shape(x)[1]
- attention_weights = {}
-
- x = self.embedding(x) # (batch_size, target_seq_len, d_model)
- x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
- x += self.pos_encoding[:, :seq_len, :]
-
- x = self.dropout(x, training=training)
-
- for i in range(self.num_layers):
- x, block1, block2 = self.dec_layers[i](
- x, enc_output, training, look_ahead_mask, padding_mask
- )
- attention_weights["decoder_layer{}_block1".format(i + 1)] = block1
- attention_weights["decoder_layer{}_block2".format(i + 1)] = block2
-
- return x, attention_weights
-
-
-class Transformer(tf.keras.Model):
- def __init__(
- self, num_layers, d_model, num_heads, dff, target_vocab_size, pe_input, pe_target, rate=0.1
- ):
- super(Transformer, self).__init__()
-
- self.encoder = Encoder(num_layers, d_model, num_heads, dff, pe_input, rate)
-
- self.decoder = Decoder(num_layers, d_model, num_heads, dff, pe_target, rate)
-
- self.final_layer = tf.keras.layers.Dense(target_vocab_size)
-
- def call(self, inp, tar, training, enc_padding_mask, look_ahead_mask, dec_padding_mask):
-
- enc_output = self.encoder(
- inp, training, enc_padding_mask
- ) # (batch_size, inp_seq_len, d_model)
-
- # dec_output.shape == (batch_size, tar_seq_len, d_model)
- dec_output, attention_weights = self.decoder(
- tar, enc_output, training, look_ahead_mask, dec_padding_mask
- )
-
- final_output = self.final_layer(dec_output) # (batch_size, tar_seq_len, target_vocab_size)
-
- return final_output, attention_weights
-
-
-class GLU(tf.keras.layers.Layer):
- def __init__(self, input_channel, output_channel):
- super(GLU, self).__init__()
- self.linear_left = tf.keras.layers.Dense(output_channel)
- self.linear_right = tf.keras.layers.Dense(output_channel)
-
- def call(self, x):
- return tf.math.multiply(
- self.linear_left(x), tf.keras.activations.sigmoid(self.linear_right(x))
- )
-
-
-class FFT(tf.keras.layers.Layer):
- def __init__(self, time_step, order, output_channel):
- super(FFT, self).__init__()
- self.time_step = time_step
- self.order = order
- self.output_channel = output_channel
- self.GLUs = [] # nn.ModuleList()
- for i in range(3):
- if i == 0:
- self.GLUs.append(
- GLU(self.time_step * self.order, self.time_step * self.output_channel)
- )
- self.GLUs.append(
- GLU(self.time_step * self.order, self.time_step * self.output_channel)
- )
- elif i == 1:
- self.GLUs.append(
- GLU(self.time_step * self.output_channel, self.time_step * self.output_channel)
- )
- self.GLUs.append(
- GLU(self.time_step * self.output_channel, self.time_step * self.output_channel)
- )
- else:
- self.GLUs.append(
- GLU(self.time_step * self.output_channel, self.time_step * self.output_channel)
- )
- self.GLUs.append(
- GLU(self.time_step * self.output_channel, self.time_step * self.output_channel)
- )
-
- def call(self, x):
- # x should be (b, seq_len, units)
- x = tf.keras.layers.Permute((2, 1))(x)
- ffted = tf.signal.fft(tf.cast(x, dtype=tf.complex64)) # (b, units, seq_len)
- real = tf.math.real(ffted) # [b, units, seq_len]
- img = tf.math.imag(ffted)
- for i in range(3):
- real = self.GLUs[i * 2](real)
- img = self.GLUs[2 * i + 1](img)
-
- time_step_as_inner = tf.dtypes.complex(real, img)
- iffted = tf.signal.ifft(time_step_as_inner) # [b, k, node_cnt, 48]
- iffted = tf.cast(iffted, dtype=tf.float32)
- iffted = tf.keras.layers.Permute((2, 1))(iffted)
- return iffted
diff --git a/notebooks/deepmc/notebook_lib/utils.py b/notebooks/deepmc/notebook_lib/utils.py
deleted file mode 100644
index eacec1aa..00000000
--- a/notebooks/deepmc/notebook_lib/utils.py
+++ /dev/null
@@ -1,104 +0,0 @@
-from datetime import datetime, timedelta
-from typing import Any, Dict, List
-
-import numpy as np
-import pandas as pd
-from numpy._typing import NDArray
-from pandas.tseries.offsets import DateOffset
-from sklearn.preprocessing import StandardScaler
-
-
-def get_csv_data(
- path: str,
- date_attribute: str = "date",
- columns_rename: Dict[str, str] = {},
- frequency: str = "60min",
-):
- """
- Read data from CSV file using Pandas python package.
- """
-
- data_df = pd.read_csv(path)
- data_df[date_attribute] = pd.to_datetime(data_df[date_attribute])
-
- if columns_rename:
- data_df.rename(columns=columns_rename, inplace=True)
-
- # apply index on date
- data_df.reset_index(drop=True, inplace=True)
- data_df.set_index(date_attribute, inplace=True)
- data_df.sort_index(ascending=True, inplace=True)
-
- # interpolate to derive missing data
- data_df = data_df.interpolate(method="from_derivatives")
- assert data_df is not None, "Interpolate deleted all data"
- data_df = data_df.dropna()
-
- # Group rows by frequency, requires date attribute indexed to execute this
- data_df = data_df.fillna(method="ffill")
- data_df = data_df.fillna(method="bfill")
- data_df = data_df.groupby(pd.Grouper(freq=frequency)).mean()
- data_df = data_df.fillna(method="ffill")
- data_df = data_df.fillna(method="bfill")
-
- return data_df
-
-
-def hour_round(t: datetime):
- # Rounds to nearest hour by adding a timedelta hour if minute >= 30
- return t.replace(second=0, microsecond=0, minute=0, hour=t.hour) + timedelta(
- hours=t.minute // 30
- )
-
-
-def get_split_scaled_data(data: pd.DataFrame, out_feature: str, split_ratio: float = 0.92):
- split = int(split_ratio * data.shape[0])
-
- train_data = data.iloc[:split]
- test_data = data.iloc[split:]
-
- output_scaler = StandardScaler()
- output_scaler.fit_transform(np.expand_dims(data[out_feature].values, axis=1)) # type: ignore
-
- train_scaler = StandardScaler()
- train_scale_df = pd.DataFrame(
- train_scaler.fit_transform(train_data), columns=train_data.columns, index=train_data.index
- )
- test_scale_df = pd.DataFrame(
- train_scaler.transform(test_data), columns=test_data.columns, index=test_data.index
- )
-
- return train_scaler, output_scaler, train_scale_df, test_scale_df
-
-
-def shift_index(ds_df: pd.DataFrame, freq_minutes: int, num_indices: int, dateColumn: str = "date"):
- ds_df[dateColumn] = ds_df.index.shift(-num_indices, freq=DateOffset(minutes=freq_minutes))
- ds_df = ds_df.reset_index(drop=True)
- ds_df = ds_df.set_index(dateColumn)
- return ds_df
-
-
-def clean_relevant_data(
- actual_df: pd.DataFrame,
- forecast_df: pd.DataFrame,
- out_variables: List[str],
- freq_hours: int,
- num_of_indices: int,
-):
- base_data_df = actual_df.copy()
- current_ws_df = forecast_df.add_suffix("Current")
- base_data_df = base_data_df.join(current_ws_df)
- shift_forecast_df = shift_index(forecast_df, freq_hours * 60, num_of_indices)
- base_data_df = base_data_df.join(shift_forecast_df)
-
- base_data_df = base_data_df[out_variables]
- base_data_df = base_data_df.interpolate(method="from_derivatives")
- assert base_data_df is not None, "Interpolate deleted all data"
- base_data_df = base_data_df.dropna()
- return base_data_df
-
-
-def smooth(y: NDArray[Any], box_pts: int):
- box = np.ones(box_pts) / box_pts
- y_smooth = np.convolve(y, box, mode="same")
- return y_smooth
diff --git a/notebooks/deepmc_neighbors/deepmc_neighbors_env.yaml b/notebooks/deepmc_neighbors/deepmc_neighbors_env.yaml
new file mode 100644
index 00000000..834e34c9
--- /dev/null
+++ b/notebooks/deepmc_neighbors/deepmc_neighbors_env.yaml
@@ -0,0 +1,19 @@
+name: deepmc-pytorch-neighbors
+channels:
+ - pyg
+ - conda-forge
+ - defaults
+dependencies:
+ - python=3.9.*
+ - pip~=21.2.4
+ - pip:
+ - geopandas~=0.9.0
+ - einops~=0.6.0
+ - geopy~=2.4.1
+ - ipykernel~=6.17.1
+ - unfoldNd~=0.2.0
+ - pyWavelets~=1.3.0
+ - pydantic~=1.10.12
+ - matplotlib~=3.9.0
+ - ../../src/vibe_core
+ - ../../src/vibe_notebook
\ No newline at end of file
diff --git a/notebooks/deepmc_neighbors/gnn_forecast.ipynb b/notebooks/deepmc_neighbors/gnn_forecast.ipynb
new file mode 100644
index 00000000..75834edc
--- /dev/null
+++ b/notebooks/deepmc_neighbors/gnn_forecast.ipynb
@@ -0,0 +1,643 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Micro Climate Predictions with Nearby Weather Stations\n",
+ "\n",
+ "It helps infer weather forecasts for stations that have no data or limited data by utilizing data of neighboring stations. The notebook demonstrates configuring inputs and training a model using neighboring weather stations data.\n",
+ "\n",
+ "This is an extension of the deepmc notebook [notebooks/deepmc/mc_forecast.ipynb](https://github.com/microsoft/farmvibes-ai/blob/main/notebooks/deepmc/mc_forecast.ipynb).\n",
+ "\n",
+ "Before running this notebook, let's build a micromamba environment. If you do not have micromamba installed, please follow the instructions from the [micromamba installation guide](https://mamba.readthedocs.io/en/latest/installation/micromamba-installation.html).\n",
+ "\n",
+ "```bash\n",
+ "$ micromamba env create -f ./deepmc_neighbors_env.yaml\n",
+ "$ micromamba activate deepmc-pytorch-neighbors\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Install Packages**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "! pip install torch==1.12.1 --index-url https://download.pytorch.org/whl/cpu\n",
+ "! pip install torch-scatter==2.1.0 torch-sparse==0.6.15 torch-geometric==2.3.0 -f https://data.pyg.org/whl/torch-1.12.1%2Bcpu.html\n",
+ "! pip install torch-geometric-temporal~=0.54.0 onnxruntime~=1.15.0 pytorch-lightning~=1.8.0"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Notebook overview\n",
+ "In this notebook, we describe steps to generate forecast for weather variables at a specific station with no or limited data. We employ [Graphical Neural Network (GNNs)](https://pytorch-geometric.readthedocs.io/) for cross-learning from nearby weather stations by capturing spatial relationships. \n",
+ "\n",
+ "To illustrate this approach, we focus on three locations in Washington state, U.S.A., utilizing data accessible through [AGWeatherNet](https://weather.wsu.edu/). An example is shown the figure below. For instance, assuming that the Warden SW station has missing data, we look to neighboring stations (such as Royal Slope and Ringold) that provide relevant data. We consider the weather variables, temperature, humidity and wind_speed.\n",
+ "\n",
+ "\n",
+ "\n",
+ "Selecting appropriate neighboring stations is crucial for accurate predictions. When choosing neighboring weather stations, consider the following factors:\n",
+ "\n",
+ "- Elevation Similarity: In the current model the neighboring stations should be at a similar elevation to the target station. This ensures that altitude-related effects are consistent. Although, one can build a edge weight model which includes altitude differential to accommodate for the topography (this notebook does not cover that). \n",
+ "\n",
+ "- Spatial Proximity: The distance between neighboring stations should be small. Proximity often implies similar local weather patterns. For example, in the example, we chose stations with distance less than 25 km between them. In our experiments we noticed significant errors with distances greater than 25 Kms.\n",
+ "\n",
+ "**Graph Representation of Weather Stations for GNNs**\n",
+ "\n",
+ "Each weather station corresponds to a node in our graph. To capture the relationships between stations, we connect stations based on the distance between them. This graph does not change with time during inference. If a new station is available which can be helpful to increase accuracy, then the model can be dynamically updated by recomputing & retraining the GNN.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Following steps are required for training a model and inference.\n",
+ "\n",
+ "**Step 1: Download AgWeatherNet data**\n",
+ "- Download historical weather data for the stations Royal Slope and Ringold from [AGWeatherNet]( https://weather.wsu.edu/) for the time range of interest (minimum 2 years of data).\n",
+ "- Clean downloaded historical data for considered variables temperature, humidity and wind_speed. \n",
+ "\n",
+ "Note: these two steps are not included in the notebook. See [sample data](sample_data.csv) for an example. \n",
+ "\n",
+ "**Step 2: Download forecast data**\n",
+ "- Download HRRR data for the stations Warden SW, Royal Slope and Ringold using herbie_forecast workflow in Farmvibes for the time range of interest (minimum 2 years of data).\n",
+ "- Clean downloaded HRRR data for considered variables temperature, humidity and wind_speed.\n",
+ "\n",
+ "**Step 3: Train DeepMC models**\n",
+ "- For stations Royal Slope and Ringold, train the DeepMC model using the notebook [notebooks/deepmc/mc_forecast.ipynb]( https://github.com/microsoft/farmvibes-ai/blob/main/notebooks/deepmc/mc_forecast.ipynb). You will need to train separately for each station.\n",
+ "- The results received from DeepMC inference results are weather forecasts for next 24 hours for the stations Royal Slope and Ringold.\n",
+ "\n",
+ "**Step 4: Preparation for GNN model training**\n",
+ "- Create embeddings: Concatenate cleaned HRRR weather forecast data of station Warden SW and DeepMC inference results of station Royal Slope & Ringold.\n",
+ "- Create train and test splits from the embeddings.\n",
+ "- Train GNN model.\n",
+ "\n",
+ "**Step 5: Inference**\n",
+ "\n",
+ "Run the inference to infer weather forecasts for the Warden SW station.\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Notebook Setup\n",
+ "\n",
+ "Let's start by importing the required packages and defining some constants.\n",
+ "\n",
+ "### Imports"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import warnings\n",
+ "from datetime import datetime\n",
+ "\n",
+ "from notebook_lib.post_deepmc_inference import download_forecast_data\n",
+ "from notebook_lib.train import MC_Neighbors\n",
+ "\n",
+ "warnings.filterwarnings(\"ignore\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Constants\n",
+ "- ROOT_DIR - Root directory of DeepMC output.\n",
+ "- WEATHER_TYPE - temperature, humidity, or wind_speed.\n",
+ "- INFERENCE_STATION - Station having missing weather data.\n",
+ "- MODEL_TYPE - relevant or not-relevant"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ROOT_DIR = \"\"\n",
+ "WEATHER_TYPE = \"temperature\"\n",
+ "INFERENCE_STATION = \"Warden_SW\"\n",
+ "MODEL_TYPE = \"relevant\"\n",
+ "ROOT_PATH = os.path.join(ROOT_DIR, WEATHER_TYPE)\n",
+ "\n",
+ "# Forecast data\n",
+ "infer_forecast_data_path = f\"{ROOT_PATH}/{INFERENCE_STATION}/{MODEL_TYPE}/forecast.csv\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Step 1: Download stations data. \n",
+ "Here, we are taking the stations from [AGWeatherNet](https://weather.wsu.edu/). \n",
+ "\n",
+ "We are assuming that the station Warden_SW does not have the weather station data. We consider the stations Royal Slope and Ringold as neighboring weather stations having similar weather patterns, hence historical data download is required for these two stations. See [sample data](sample_data.csv) for an example."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Neighboring stations\n",
+ "# Coordinates are in (longitude, latitude)\n",
+ "neighbor_stations = [\n",
+ " {\n",
+ " \"name\": \"Warden_SW\",\n",
+ " \"column_name\": \"temperature_forecast\",\n",
+ " \"coordinates\": (-119.12, 46.93),\n",
+ " },\n",
+ " {\n",
+ " \"name\": \"royal_slope\",\n",
+ " \"column_name\": \"temperature\",\n",
+ " \"coordinates\": (-119.32, 46.95),\n",
+ " },\n",
+ " {\n",
+ " \"name\": \"ringold\",\n",
+ " \"column_name\": \"temperature\",\n",
+ " \"coordinates\": (-119.18, 46.48),\n",
+ " },\n",
+ "]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Step 2: Download Forecast data\n",
+ "\n",
+ "For weather station Warden SW, download weather forecast observations by submitting request to worker running in background. Workflow execution utilize below parameters while processing requests, this can be overwritten using the parameter argument.\n",
+ "\n",
+ "- fxx: [1, 25, 1] # start, stop, step\n",
+ "- search_text: \"TMP:2 m\"\n",
+ "- interval: 60 # in minutes\n",
+ "- weather_type: \"temperature\"\n",
+ "- multi_threads: 25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "start_date = datetime(year=2021, month=7, day=30)\n",
+ "end_date = datetime(year=2023, month=8, day=2)\n",
+ "forecast_data = download_forecast_data([neighbor_stations[0]], start_date, end_date)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "forecast_data[\"Warden_SW\"].to_csv(infer_forecast_data_path)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Step 3: Train DeepMC models\n",
+ "\n",
+ "Complete the DeepMC model training using the notebook [notebooks/deepmc/mc_forecast.ipynb](https://github.com/microsoft/farmvibes-ai/blob/main/notebooks/deepmc/mc_forecast.ipynb) for weather stations Royal Slope and Ringold.\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Step 4: Train [Graphical Neural Network (GNN)](https://pytorch-geometric.readthedocs.io/) model\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Step 4.1 Create embeddings\n",
+ "\n",
+ "The get_embeddings module does the following: \n",
+ "1. Run inference using DeepMC trained model to find weather forecasts of temperature for station Royal Slope and Ringold weather stations.\n",
+ "2. Pre-process inference results to create a lookback by transforming it to a 2D matrix.\n",
+ "3. Pre-process HRRR weather forecast to create a lookback by transforming it to a 2D matrix.\n",
+ "4. Embeddings created by concatenating pre-process results. The embeddings are sorted by timestamp and station name."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "obj_neighbors = MC_Neighbors(root_dir=ROOT_PATH, learning_rate=0.0025, use_edge_weights=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "train_embeddings, test_embeddings = obj_neighbors.get_embeddings(\n",
+ " INFERENCE_STATION,\n",
+ " neighbor_stations,\n",
+ " 24,\n",
+ " infer_forecast_data_path,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Step 4.2 Model training\n",
+ "\n",
+ "The GNN training script does the following:\n",
+ "\n",
+ "1. Creates Dataset that reads the input embeddings, creates a node for each timestamp, and creates edges connecting weather stations.\n",
+ "2. Creates BatchSampler to split data into batches for training and testing dataset.\n",
+ "3. Using PyTorch lightning package, the model training is initiated."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "obj_neighbors.run_train(\n",
+ " train_embeddings=train_embeddings,\n",
+ " test_embeddings=test_embeddings,\n",
+ " neighbor_stations=neighbor_stations,\n",
+ " infer_station=INFERENCE_STATION,\n",
+ " epochs=20,\n",
+ " batch_size=24 * len(neighbor_stations),\n",
+ " forecast_hours=24,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Run Inference to validate the trained model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "pred_df = obj_neighbors.run_inference(\n",
+ " embeddings=test_embeddings.copy(),\n",
+ " neighbors_station=neighbor_stations,\n",
+ " infer_station=INFERENCE_STATION,\n",
+ " batch_size=len(neighbor_stations),\n",
+ " forecast_hours=24,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "- historical_data_path: it's a path to historical weather data downloaded and cleaned in Step 1.\n",
+ "- hrrr_data_path: it's a path to hrr weather data downloaded and cleaned in Step 2."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "historical_data_path = \"\"\n",
+ "hrrr_data_path = \"\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABasAAAIQCAYAAACPLTLEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT9frA8U9WmzRddA9KKS2yQdnIFhQEFFwoLlBx49XrVa/60ysquHDh3uBVuW4cqCAyRBSQKXuvQveeaZvk/P44OWnTwbJJGM/79eJV+j0nyZPRJOc5z/f56hRFURBCCCGEEEIIIYQQQggh/Ejv7wCEEEIIIYQQQgghhBBCCElWCyGEEEIIIYQQQgghhPA7SVYLIYQQQgghhBBCCCGE8DtJVgshhBBCCCGEEEIIIYTwO0lWCyGEEEIIIYQQQgghhPA7SVYLIYQQQgghhBBCCCGE8DtJVgshhBBCCCGEEEIIIYTwO0lWCyGEEEIIIYQQQgghhPA7SVYLIYQQQgghhBBCCCGE8DtJVgshhBDijKXT6Zg6daq/wzgjzZ49G51Ox/79+/0dyhHpdDqmTJni7zC8avXq1Zx77rlYrVZ0Oh0bNmzwd0jiCOR9SwghhBCnM0lWCyGEEGewPXv2cOutt9KmTRvMZjOhoaH079+fmTNnUllZ6e/wBPD9999z0UUXERsbS0BAABEREQwaNIgXXniBkpISf4fnNfv370en0x3Tv7+b8P7jjz+YOnUqRUVFzRI7wIsvvohOp+OXX35pcp93330XnU7Hd99997dua8iQIXTu3PmELltTU8MVV1xBQUEBL730Eh999BHJycl/K55TmXYSRftnNBpJTExk0qRJHD582N/hNao5X7/r1q1Dp9PxyCOPNLnPrl270Ol03HvvvX/rtqZOnYpOpyMvL6/R7a1bt2bMmDEeY/X/9kNDQxk8eDA//PBDg8sf73M5ZMgQj/0tFgtdu3bl5Zdfxul0/q37KoQQQohjZ/R3AEIIIYTwjx9++IErrriCwMBArr/+ejp37kx1dTXLly/n/vvvZ8uWLbzzzjv+DtOrKisrMRpPzq9DTqeTm266idmzZ9OlSxfuuOMOkpKSKC0tZcWKFTzyyCP8+OOPLFq0yN+hekV0dDQfffSRx9gLL7zAoUOHeOmllxrs+3f88ccfPP7440yaNInw8PC/dV2aq666ivvvv585c+YwfPjwRveZM2cOkZGRXHjhhc1ymydiz549HDhwgHfffZfJkyf7LY6TzRNPPEFKSgo2m42VK1cye/Zsli9fzubNmzGbzf4Oz0Nzvn67d+9O+/bt+d///se0adMa3WfOnDkAXHvttX/rtk7U+eefz/XXX4+iKBw4cIA333yTiy66iJ9++okRI0Y02P94nsuWLVvy9NNPA5CXl8ecOXP45z//SW5uLtOnT/fJ/RNCCCHOdCfn0ZkQQgghvGrfvn1cddVVJCcns3jxYuLj493b7rzzTnbv3t1opdrpwOl0Ul1djdlsPumSTnU999xzzJ49m3/+85+88MIL6HQ697a7776bzMxM/vvf/x7xOure11ON1WptkAz79NNPKSwsPGKSTFEUbDYbFovF2yEeUUJCAkOHDuXrr7/mzTffJDAw0GP74cOHWbZsGbfccgsmk8lPUUJOTg5AsyXpAcrLy7Farc12ff5w4YUX0rNnTwAmT55MVFQUzz77LN999x3jx4/3c3Tedc011/Doo4+ycuVK+vbt22D7//73P9q3b0/37t39EB2cddZZHu8Bl112GR07dmTmzJmNJquP57kMCwvzuO7bbruN9u3b8+qrr/LEE09gMBi8dK+EEEIIoZE2IEIIIcQZ6LnnnqOsrIz333/fI1GtSUtL4+6773b/brfbefLJJ0lNTSUwMJDWrVvz8MMPU1VV5XE5bdr20qVL6dmzJxaLhS5durB06VIAvv76a7p06YLZbKZHjx6sX7/e4/KTJk0iODiYvXv3MmLECKxWKwkJCTzxxBMoiuKx7/PPP8+5555LZGQkFouFHj168OWXXza4L1rP4U8++YROnToRGBjI/Pnz3dvq9n4tLS3lnnvuoXXr1gQGBhITE8P555/PunXrPK7ziy++oEePHlgsFqKiorj22msbTCvX7svhw4cZN24cwcHBREdHc9999+FwOJp4ZlQVFRU8++yzdOrUiRkzZngkqjXx8fH8+9//Pub7un79ei688EJCQ0MJDg5m2LBhrFy50uPy2rT8+hrrL60918uXL6d3796YzWbatGnTaAJ9y5YtnHfeeVgsFlq2bMm0adOabVq9FseCBQvcr7m3337b3UZk9uzZDS5T93mfOnUq999/PwApKSlNthb55ptv6Ny5M4GBgXTq1Mn9uB7JtddeS3FxcaMnfj799FOcTifXXHONe2zNmjWMGDGCqKgoLBYLKSkp3Hjjjcf+YNS7j1OmTDli3JMmTWLw4MEAXHHFFeh0OoYMGeLevn37di6//HIiIiIwm8307NmzQcsS7bXx66+/cscddxATE0PLli3d23/66ScGDhyI1WolJCSE0aNHs2XLFo/rOJ6/FafTycyZM93vI9HR0YwcOZI1a9Z47Pfxxx+7/0YjIiK46qqrSE9PP6HHEmDgwIGAWole17E8RjU1NTz++OO0bdsWs9lMZGQkAwYMYOHChe59hgwZ4vHY131sWrdu3WRcR3v9Lly4kAEDBhAeHk5wcDDt2rXj4YcfPuJ91V6TWgV1XWvXrmXHjh0er9usrCxuuOEGWrZsSWBgIPHx8YwdO9Zn/eg7dOhAVFRUg+emKU09l40xm8306tWL0tJS94kdIYQQQniXVFYLIYQQZ6Dvv/+eNm3acO655x7T/pMnT+bDDz/k8ssv51//+herVq3i6aefZtu2bcydO9dj3927d3P11Vdz6623cu211/L8889z0UUX8dZbb/Hwww9zxx13APD0008zfvx4duzYgV5fe/7c4XAwcuRI+vbty3PPPcf8+fN57LHHsNvtPPHEE+79Zs6cycUXX8w111xDdXU1n376KVdccQXz5s1j9OjRHjEtXryYzz//nClTphAVFdVk8ue2227jyy+/ZMqUKXTs2JH8/HyWL1/Otm3b3FWEs2fP5oYbbqBXr148/fTTZGdnM3PmTH7//XfWr1/vUaHqcDgYMWIEffr04fnnn+eXX37hhRdeIDU1ldtvv73Jx3v58uUUFRVx3333HXclX2P3dcuWLQwcOJDQ0FAeeOABTCYTb7/9NkOGDOHXX3+lT58+x3Ubmt27d3P55Zdz0003MXHiRD744AMmTZpEjx496NSpE6AmsoYOHYrdbufBBx/EarXyzjvvNGvl844dO5gwYQK33norN998M+3atTvmy1566aXs3LmT//3vf7z00ktERUUBnq1Fli9fztdff80dd9xBSEgIr7zyCpdddhkHDx4kMjLyiNd9++23M2fOHC699FKPbXPmzCE5OZn+/fsDaoXzBRdcQHR0NA8++CDh4eHs37+fr7/++ngeCg9Hi/vWW28lMTGRp556in/84x/06tWL2NhYQD3B0L9/fxITE93P2+eff864ceP46quvuOSSSzxu64477iA6Opr//Oc/lJeXA/DRRx8xceJERowYwbPPPktFRQVvvvkmAwYMYP369R5/h8f6t6K1xrnwwguZPHkydrud3377jZUrV7qrZ6dPn86jjz7K+PHjmTx5Mrm5ubz66qsMGjSowd/osdISry1atHCPHetjNHXqVJ5++mkmT55M7969KSkpYc2aNaxbt47zzz//uGOp60iv3y1btjBmzBi6du3KE088QWBgILt37+b3338/4nWmpKRw7rnn8vnnn/PSSy95vAdpCeyrr77aPXbZZZexZcsW7rrrLlq3bk1OTg4LFy7k4MGDR0y0awoKChodP9YTWsXFxRQWFpKamnpM+zf2XB5tf51O16yzD4QQQghxBIoQQgghzijFxcUKoIwdO/aY9t+wYYMCKJMnT/YYv++++xRAWbx4sXssOTlZAZQ//vjDPbZgwQIFUCwWi3LgwAH3+Ntvv60AypIlS9xjEydOVADlrrvuco85nU5l9OjRSkBAgJKbm+ser6io8Iinurpa6dy5s3Leeed5jAOKXq9XtmzZ0uC+Acpjjz3m/j0sLEy58847m3wsqqurlZiYGKVz585KZWWle3zevHkKoPznP/9pcF+eeOIJj+s455xzlB49ejR5G4qiKDNnzlQA5ZtvvvEYt9vtSm5ursc/p9N51Ps6btw4JSAgQNmzZ497LCMjQwkJCVEGDRrkHnvssceUxr4ezpo1SwGUffv2uce053rZsmXusZycHCUwMFD517/+5R675557FEBZtWqVx35hYWENrvNoRo8erSQnJ3uMaXHMnz/fY3zfvn0KoMyaNavB9dR/3mfMmNFkLIASEBCg7N692z32119/KYDy6quvHjXmK664QjGbzUpxcbF7bPv27QqgPPTQQ+6xuXPnKoCyevXqo15nfYMHD1Y6dep0QnEvWbJEAZQvvvjC4/LDhg1TunTpothsNveY0+lUzj33XKVt27buMe21MWDAAMVut7vHS0tLlfDwcOXmm2/2uN6srCwlLCzMY/xY/1YWL16sAMo//vGPBo+B9newf/9+xWAwKNOnT/fYvmnTJsVoNDYYr0+7P7/88ouSm5urpKenK19++aUSHR2tBAYGKunp6cf9GHXr1k0ZPXr0EW938ODByuDBgxuMT5w4scFr/lhfvy+99JICeLxvHqvXX39dAZQFCxa4xxwOh5KYmKj069fPPVZYWKgAyowZM477NrT3myP9q/+4AcpNN92k5ObmKjk5OcqaNWuUkSNHNhrD8TyXiqI+B+3bt3e/t27fvl25//77G41DCCGEEN4jbUCEEEKIM0xJSQkAISEhx7T/jz/+CMC9997rMf6vf/0LoEGLg44dO9KvXz/371rV7nnnnUerVq0ajO/du7fBbU6ZMsX9f62dQXV1Nb/88ot7vG5lbmFhIcXFxQwcOLBByw6AwYMH07Fjx6PcU7Vv76pVq8jIyGh0+5o1a8jJyeGOO+7w6AM9evRo2rdv32i7h9tuu83j94EDBzZ6n+vSnqPg4GCP8U2bNhEdHe3xLz8/32Of+vfV4XDw888/M27cONq0aeMej4+P5+qrr2b58uXu2zteHTt2dE+pB7Was127dh7378cff6Rv37707t3bY7+6bQT+rpSUlEZ71TaX4cOHe1Rtdu3aldDQ0KM+j6C2ArHZbB4V0lp1at3HQKvanDdvHjU1NX6Nu6CggMWLFzN+/HhKS0vJy8sjLy+P/Px8RowYwa5duxq0vbn55ps9KnAXLlxIUVEREyZMcF8+Ly8Pg8FAnz59WLJkSYPbPdrfyldffYVOp+Oxxx5rcFmtfc3XX3+N0+lk/PjxHrcbFxdH27ZtG73dxgwfPpzo6GiSkpK4/PLLsVqtfPfdd+4WJ8fzGIWHh7NlyxZ27dp1TLfdXLTX1LfffnvcbXeuvPJKTCaTRyuQX3/9lcOHD3u8bi0WCwEBASxdupTCwsITivOrr75i4cKFDf5pVf71vf/++0RHRxMTE0PPnj1ZtGgRDzzwQIPPKM3Rnsu6tm/f7n5vbd++PTNmzODiiy9utJ2QEEIIIbxDktVCCCHEGSY0NBRQ+zMfiwMHDqDX60lLS/MYj4uLIzw8nAMHDniM101Ig7pgFUBSUlKj4/UTHHq93iOpCuqCWoBHD9R58+bRt29fzGYzERERREdH8+abb1JcXNzgPqSkpBztbgJqL+/NmzeTlJRE7969mTp1qkeyTLuvjbWZaN++fYPHQuupW1eLFi2OmtTRTiSUlZV5jKelpbkTOdddd12jl61/X3Nzc6moqGg05g4dOuB0Ok+4l2/95xoa3r8DBw7Qtm3bBvsdT6uOoznW5/dEHcv9bMqFF15IRESER9Lvf//7H926dXO3SgH1JMNll13G448/TlRUFGPHjmXWrFkN+sL7Iu7du3ejKAqPPvpog5MjWqK4fv/e+s+Blpg977zzGlzHzz//3ODyx/K3smfPHhISEoiIiGgy9l27dqEoCm3btm1wu9u2bTvmvsOvv/46Cxcu5Msvv2TUqFHk5eV5LJJ5PI/RE088QVFREWeddRZdunTh/vvvZ+PGjccUx99x5ZVX0r9/fyZPnkxsbCxXXXUVn3/++TElriMjIxkxYgRz587FZrMB6kkWo9HosShhYGAgzz77LD/99BOxsbEMGjSI5557jqysrGOOc9CgQQwfPrzBv6YWhh07diwLFy7khx9+cPfZr6io8GgnVdfRnsu6WrduzcKFC1mwYAFvvPEGiYmJ5ObmnpKL1AohhBCnKulZLYQQQpxhQkNDSUhIYPPmzcd1ucYW3mtMUz2WmxpX6i2ceCx+++03Lr74YgYNGsQbb7xBfHw8JpOJWbNmNboo2LH2Rx4/fjwDBw5k7ty5/Pzzz8yYMYNnn32Wr7/+mgsvvPC44zzeftOa9u3bA7B582bGjh3rHg8ODmb48OGA2o+4MX+nF3RTz3FTC0I253P6dzR2n4/3vhzJ37mfJpOJ8ePH8+6775Kdnc3BgwfZtWsXzz33XIN4v/zyS1auXMn333/PggULuPHGG3nhhRdYuXJlgyp7b8atJTPvu+++JivW65+8qv8caNfx0UcfERcX1+DyRqPnYciJ/q3U53Q60el0/PTTT41e57E+jr1793b3wB43bhwDBgzg6quvZseOHQQHBx/XYzRo0CD27NnDt99+y88//8x7773HSy+9xFtvvcXkyZMB9flv7Hk5kderxmKxsGzZMpYsWcIPP/zA/Pnz+eyzzzjvvPP4+eefj/qYX3vttcybN4958+Zx8cUX89VXX7n7qtd1zz33cNFFF/HNN9+wYMECHn30UZ5++mkWL17MOeecc8LxN6Vly5bu98FRo0YRFRXFlClTGDp0aIPe8HD057Iuq9Xqvm6A/v370717dx5++GFeeeWVZr8vQgghhGhIKquFEEKIM9CYMWPYs2cPK1asOOq+ycnJOJ3OBlPYs7OzKSoqIjk5uVljczqdDdoU7Ny5E8C9WNdXX32F2Wx2J/QuvPBCjwTD3xEfH88dd9zBN998w759+4iMjGT69OkA7vu6Y8eOBpfbsWNHsz0WAwcOJCwsjE8//fS4p+/XFx0dTVBQUKMxb9++Hb1e76561xYcKyoq8tivfsX48UhOTm60/UFj8TSn47kvx3oi5kRdc801OBwOPvvsM+bMmYNOp2PChAmN7tu3b1+mT5/OmjVr+OSTT9iyZQuffvqpV+OrT5vZYDKZGq14HT58+FHbCGntR2JiYhq9/JAhQ447rtTUVDIyMppckE/bR1EUUlJSGr3dvn37HvftGgwGnn76aTIyMnjttdeA43+MIiIiuOGGG/jf//5Heno6Xbt2ZerUqe7tLVq0aPBahWP72zvS61ev1zNs2DBefPFFtm7dyvTp01m8ePExtUO5+OKLCQkJYc6cOfz0008UFhY22b4nNTWVf/3rX/z8889s3ryZ6upqXnjhhaPeRnO49dZbSU1N5ZFHHjnqiZjGnssj6dq1K9deey1vv/02Bw8ebK6QhRBCCHEEkqwWQgghzkAPPPAAVquVyZMnk52d3WD7nj17mDlzJqBWrgG8/PLLHvu8+OKLgNqvubnVTSIoisJrr72GyWRi2LBhgJpw0Ol0HlWH+/fv55tvvjnh23Q4HA1aiMTExJCQkOBuxdCzZ09iYmJ46623PNoz/PTTT2zbtq3ZHougoCAeeOABNm/ezIMPPthoAuZYq5cNBgMXXHAB3377rUcblezsbObMmcOAAQPcrWG0BOOyZcvc+5WXl/Phhx+e8H0ZNWoUK1eu5M8//3SP5ebm8sknn5zwdR6L0NBQoqKiPO4LwBtvvNFgX6vVCjRMbDeX/v3707p1az7++GM+++wzBg8e3KBfbmFhYYPn9Oyzzwb4W61ATkRMTAxDhgzh7bffJjMzs8H23Nzco17HiBEjCA0N5amnnmq0B/exXEd9l112GYqi8PjjjzfYpj12l156KQaDgccff7zB46koSoMe78dqyJAh9O7dm5dffhmbzXZcj1H92wwODiYtLc3jeU1NTWX79u0el/vrr7/4/fffjxpbU6/fxpL6x/OaslgsXHLJJfz444+8+eabWK1Wj5keABUVFe42IXXvS0hIiM9et0ajkX/9619s27aNb7/99qj7138uj+aBBx6gpqbG/ZknhBBCCO+SNiBCCCHEGSg1NZU5c+Zw5ZVX0qFDB66//no6d+5MdXU1f/zxB1988QWTJk0CoFu3bkycOJF33nmHoqIiBg8ezJ9//smHH37IuHHjGDp0aLPGZjabmT9/PhMnTqRPnz789NNP/PDDDzz88MPu6eejR4/mxRdfZOTIkVx99dXk5OTw+uuvk5aWdsK9YEtLS2nZsiWXX3453bp1Izg4mF9++YXVq1e7KwRNJhPPPvssN9xwA4MHD2bChAlkZ2czc+ZMWrduzT//+c9mexwefPBBtm3bxowZM/j555+57LLLaNmyJYWFhaxbt44vvviCmJiYY+qlOm3aNBYuXMiAAQO44447MBqNvP3221RVVXm0o7jgggto1aoVN910E/fffz8Gg4EPPviA6OjoE64qfOCBB/joo48YOXIkd999N1arlXfeeYfk5GSv9+2dPHkyzzzzDJMnT6Znz54sW7bMXaVfV48ePQD4v//7P6666ipMJhMXXXSROwn4d+l0Oq6++mqeeuopQO1hXN+HH37IG2+8wSWXXEJqaiqlpaW8++67hIaGuk8Y+dLrr7/OgAED6NKlCzfffDNt2rQhOzubFStWcOjQIf76668jXj40NJQ333yT6667ju7du3PVVVe5X0c//PAD/fv3P6bK1rqGDh3KddddxyuvvMKuXbsYOXIkTqeT3377jaFDhzJlyhRSU1OZNm0aDz30EPv372fcuHGEhISwb98+5s6dyy233MJ99913Qo/J/fffzxVXXMHs2bO57bbbjvkx6tixI0OGDKFHjx5ERESwZs0avvzyS4+FZG+88UZefPFFRowYwU033UROTg5vvfUWnTp1OuoCqE29fp944gmWLVvG6NGjSU5OJicnhzfeeIOWLVsyYMCAY7rP1157Lf/9739ZsGAB11xzTYO/iZ07dzJs2DDGjx9Px44dMRqNzJ07l+zsbK666qrjeXj/lkmTJvGf//yHZ599lnHjxh11//rP5ZF07NiRUaNG8d577/Hoo48SGRnZTFELIYQQolGKEEIIIc5YO3fuVG6++WaldevWSkBAgBISEqL0799fefXVVxWbzeber6amRnn88ceVlJQUxWQyKUlJScpDDz3ksY+iKEpycrIyevToBrcDKHfeeafH2L59+xRAmTFjhnts4sSJitVqVfbs2aNccMEFSlBQkBIbG6s89thjisPh8Lj8+++/r7Rt21YJDAxU2rdvr8yaNUt57LHHlPpfbxq77brbHnvsMUVRFKWqqkq5//77lW7duikhISGK1WpVunXrprzxxhsNLvfZZ58p55xzjhIYGKhEREQo11xzjXLo0CGPfbT7Ul9jMR7J3LlzlVGjRinR0dGK0WhUwsPDlQEDBigzZsxQioqKjvm+rlu3ThkxYoQSHBysBAUFKUOHDlX++OOPBvutXbtW6dOnjxIQEKC0atVKefHFF5VZs2YpgLJv3z73fk0914MHD1YGDx7sMbZx40Zl8ODBitlsVhITE5Unn3xSef/99xtc59GMHj1aSU5O9hhrKg5FUZSKigrlpptuUsLCwpSQkBBl/PjxSk5OjsfzrnnyySeVxMRERa/Xe8TV1GOanJysTJw48Zhj37JliwIogYGBSmFhYYPt69atUyZMmKC0atVKCQwMVGJiYpQxY8Yoa9asOep1Dx48WOnUqZPH2LHGvWTJEgVQvvjiiwb77tmzR7n++uuVuLg4xWQyKYmJicqYMWOUL7/80r2P9tpYvXp1o7EtWbJEGTFihBIWFqaYzWYlNTVVmTRpksf9Op6/FbvdrsyYMUNp3769EhAQoERHRysXXnihsnbtWo/9vvrqK2XAgAGK1WpVrFar0r59e+XOO+9UduzY0Wicx3J/HA6HkpqaqqSmpip2u/2YH6Np06YpvXv3VsLDwxWLxaK0b99emT59ulJdXe1x/R9//LHSpk0bJSAgQDn77LOVBQsWKBMnTmzwmj/W1++iRYuUsWPHKgkJCUpAQICSkJCgTJgwQdm5c+cRH4O67Ha7Eh8frwDKjz/+2GB7Xl6ecueddyrt27dXrFarEhYWpvTp00f5/PPPj3rd2vObm5vb6PbG/raP9B43depUBVCWLFmiKMrxP5eN/R1pli5d2ujjLoQQQojmp1MUH6+AI4QQQgjRhEmTJvHll19SVlbm71CEEEIIIYQQQviY9KwWQgghhBBCCCGEEEII4XeSrBZCCCGEEEIIIYQQQgjhd5KsFkIIIYQQQgghhBBCCOF30rNaCCGEEEIIIYQQQgghhN9JZbUQQgghhBBCCCGEEEIIv5NktRBCCCGEEEIIIYQQQgi/M/o7gBPhdDrJyMggJCQEnU7n73CEEEIIIYQQQgghhBBCNEJRFEpLS0lISECvP3Lt9CmZrM7IyCApKcnfYQghhBBCCCGEEEIIIYQ4Bunp6bRs2fKI+5ySyeqQkBBAvYOhoaF+jkYIIYQQQgghhBBCCCFEY0pKSkhKSnLndI/klExWa60/QkNDJVkthBBCCCGEEEIIIYQQJ7ljaecsCywKIYQQQgghhBBCCCGE8DtJVgshhBBCCCGEEEIIIYTwO0lWCyGEEEIIIYQQQgghhPC7U7JntRBCCCGEEEIIIYQQwvscDgc1NTX+DkOcxEwmEwaDoVmuS5LVQgghhBBCCCGEEEIID4qikJWVRVFRkb9DEaeA8PBw4uLijmkRxSORZLUQQgghhBBCCCGEEMKDlqiOiYkhKCjobychxelJURQqKirIyckBID4+/m9dnySrhRBCCCGEEEIIIYQQbg6Hw52ojoyM9Hc44iRnsVgAyMnJISYm5m+1BJEFFoUQQgghhBBCCCGEEG5aj+qgoCA/RyJOFdpr5e/2N5dktRBCCCGEEEIIIYQQogFp/SGOVXO9ViRZLYQQQgghhBBCCCGEEMLvJFkthBBCCCGEEEIIIYQQx2HSpEmMGzfO/fuQIUO45557/BbP6UKS1UIIIYQQQgghhBBCiNPCpEmT0Ol06HQ6AgICSEtL44knnsBut3v1dr/++muefPLJY9p36dKl6HQ6ioqKvBrTqcjo7wCEEEIIIYQQQgghhBCiuYwcOZJZs2ZRVVXFjz/+yJ133onJZOKhhx7y2K+6upqAgIBmuc2IiIhmuZ4znVRWCyGEEEIIIYQQQgghThuBgYHExcWRnJzM7bffzvDhw/nuu+/crTumT59OQkIC7dq1AyA9PZ3x48cTHh5OREQEY8eOZf/+/e7rczgc3HvvvYSHhxMZGckDDzyAoiget1m/DUhVVRX//ve/SUpKIjAwkLS0NN5//33279/P0KFDAWjRogU6nY5JkyZ5+yE5ZUhltRBCCCGEEEIIIYQQ4ogURaGyxuGX27aYDOh0uhO/vMVCfn4+AIsWLSI0NJSFCxcCUFNTw4gRI+jXrx+//fYbRqORadOmMXLkSDZu3EhAQAAvvPACs2fP5oMPPqBDhw688MILzJ07l/POO6/J27z++utZsWIFr7zyCt26dWPfvn3k5eWRlJTEV199xWWXXcaOHTsIDQ3FYrGc8H073Rx3snrZsmXMmDGDtWvXkpmZydy5cz2aiSuKwmOPPca7775LUVER/fv3580336Rt27bufQoKCrjrrrv4/vvv0ev1XHbZZcycOZPg4OBmuVNCCCGEEEIIIYQQQojmU1njoON/Fvjltrc+MYKggOOvuVUUhUWLFrFgwQLuuusucnNzsVqtvPfee+72Hx9//DFOp5P33nvPnRCfNWsW4eHhLF26lAsuuICXX36Zhx56iEsvvRSAt956iwULmn4sdu7cyeeff87ChQsZPnw4AG3atHFv11qGxMTEEB4eftz363R23G1AysvL6datG6+//nqj25977jleeeUV3nrrLVatWoXVamXEiBHYbDb3Ptdccw1btmxh4cKFzJs3j2XLlnHLLbec+L0QQgghhBBCCCGEEEIIYN68eQQHB2M2m7nwwgu58sormTp1KgBdunTx6FP9119/sXv3bkJCQggODiY4OJiIiAhsNht79uyhuLiYzMxM+vTp476M0WikZ8+eTd7+hg0bMBgMDB482Gv38XR13KckLrzwQi688MJGtymKwssvv8wjjzzC2LFjAfjvf/9LbGws33zzDVdddRXbtm1j/vz5rF692v2kvvrqq4waNYrnn3+ehISEv3F3hBBCCCGEEEIIcbpZl72OBfsX8I/u/8Bqsvo7HCHOSBaTga1PjPDbbR+PoUOH8uabbxIQEEBCQgJGY20K1Gr1fA8pKyujR48efPLJJw2uJzo6+sTilbYeJ6xZe1bv27ePrKwsd3k7QFhYGH369GHFihVcddVVrFixgvDwcI+zD8OHD0ev17Nq1SouueSSBtdbVVVFVVWV+/eSkpLmDFsIIYQQQgghhBAnqc15m5k0fxIKCsNaDaN3fG9/hyTEGUmn051QKw5/sFqtpKWlHdO+3bt357PPPiMmJobQ0NBG94mPj2fVqlUMGjQIALvdztq1a+nevXuj+3fp0gWn08mvv/7qkSfVaJXdDod/eoCfzI67DciRZGVlARAbG+sxHhsb696WlZVFTEyMx3aj0UhERIR7n/qefvppwsLC3P+SkpKaM2whhBBCCCGEEEKcpF5e9zIKCr3iehFhjvB3OEKI08w111xDVFQUY8eO5bfffmPfvn0sXbqUf/zjHxw6dAiAu+++m2eeeYZvvvmG7du3c8cdd1BUVNTkdbZu3ZqJEydy44038s0337iv8/PPPwcgOTkZnU7HvHnzyM3NpayszBd39ZTQrMlqb3nooYcoLi52/0tPT/d3SEIIIYQQQgghhPCyFRkrWJW5CpPexJP9nyStxbFVSgohxLEKCgpi2bJltGrViksvvZQOHTpw0003YbPZ3JXW//rXv7juuuuYOHEi/fr1IyQkpNHuEHW9+eabXH755dxxxx20b9+em2++mfLycgASExN5/PHHefDBB4mNjWXKlClev5+nimat3Y+LiwMgOzub+Ph493h2djZnn322e5+cnByPy9ntdgoKCtyXry8wMJDAwMDmDFUIIYQQQtTz7e5vqXJUMb7deH+HIoQQQgAwe8tsAMa3G4/daefuxXcTYAhgxuAZ/g1MCHHSmj179nFvi4uL48MPP2zyckajkZdffpmXX365yX2WLl3q8bvZbObFF1/kxRdfbHT/Rx99lEcffbTJ6ztTNWtldUpKCnFxcSxatMg9VlJSwqpVq+jXrx8A/fr1o6ioiLVr17r3Wbx4MU6n02NVTSGEEEII4TuFtkIe+f0Rnlz5JFnljbdmE0IIIXypylHFmqw1AIw/azwOp4PF6Yv5PeN3P0cmhBDCW467srqsrIzdu3e7f9+3bx8bNmwgIiKCVq1acc899zBt2jTatm1LSkoKjz76KAkJCYwbNw6ADh06MHLkSG6++WbeeustampqmDJlCldddRUJCQnNdseEEEIIIcSxW5tdW0iwt2gvcdbGZ7wJIYQQvvJXzl9UO6uJtkSTEpZCSXUJAKXVpVQ7qgkwBPg5QiGEEM3tuJPVa9asYejQoe7f7733XgAmTpzI7NmzeeCBBygvL+eWW26hqKiIAQMGMH/+fMxms/syn3zyCVOmTGHYsGHo9Xouu+wyXnnllWa4O0IIIYQQ4kTUTVaHBIT4MRIhhBBClRiSyF3n3IVep0en0xEaEIpRZ8Su2CmwFciJVSGEOA3pFEVR/B3E8SopKSEsLIzi4mJ3o3MhhBBCCHHirvj+CrYXbGfGoBmMTBnp73CEEEKIRg37fBg5lTl8OuZTOkV28nc4Qpy2bDYb+/btIyUlxaMAVYimHOk1czy53GbtWS2EEEIIIU49xVXF7CjYAUDPuJ5+jkYIIYRoWqQlEoD8ynw/RyKEEMIbJFkthBBCCHGGszvt3ND5Bka0HkF4YDjpJen+DkkIIcQZbmfhTubvn0+BrcBjPMISAdBgXAghxOnhuHtWCyGEEEKI00ukJZJ/9vgnVY4q+s7pS5WjimVXLqOFuYW/QxNCCHGG+jX9V15Z/wqjUkbx7KBn3eOR5khMehOV9ko/RieEEMJbJFkthBBCCCEACDQEEmmOJKM8g73Fe+lh7uHvkIQQQpyhdhftBiAtPA2cDvj8eohMY+p5U5nWfxo6nc6/AQohhPAKaQMihBBCCHGG21Gwg/zKfBRFISU8BYC9xXv9HJUQQogzmfY5lBqeCtmbYfs8WPEaJp1BEtVCCHEak2S1EEIIIcQZTFEUrvvpOoZ8PoQDJQdoE9YGgL1FkqwWQgjhHw6ng33F+wBXZXXhfnWD0w4Vef4LTAghvGzq1KmcffbZ/g4DgCFDhnDPPff4/HYlWS2EEEIIcQYrsBVQaa9Eh46E4ARSw1IB2FO0x8+RCSGEOFMdKjtElaOKQEMgicGJtclqYE/mGv6x+B88/NvD/gtQCHHSy8rK4u677yYtLQ2z2UxsbCz9+/fnzTffpKKiwt/hnZCpU6ei0+mO+O9ELF26FJ1OR1FRUfMGfIKkZ7UQQgghxBnscNlhAGKCYggwBJDWIg2o7RUqhBBHMn//fH7a+xP397qfliEt/R2OOE1on0Ftwtpg0Bs8ktU1ZVksSV9CpDnST9EJIU52e/fupX///oSHh/PUU0/RpUsXAgMD2bRpE++88w6JiYlcfPHFjV62pqYGk8nk44iPzX333cdtt93m/r1Xr17ccsst3HzzzY3uX11dTUBAgK/CazZSWS2EEEIIcQbTktWJwYmAa7o1kFuZS5GtyF9hCSFOcoqiMH3ldO7/9X4Wpy/m420f+zskcRrRZvekhquzfSjY594WaSsHoLCqEKfi9HlsQoiT3x133IHRaGTNmjWMHz+eDh060KZNG8aOHcsPP/zARRdd5N5Xp9Px5ptvcvHFF2O1Wpk+fToAb775JqmpqQQEBNCuXTs++ugj92X279+PTqdjw4YN7rGioiJ0Oh1Lly4FaquVFy1aRM+ePQkKCuLcc89lx44dHrE+88wzxMbGEhISwk033YTNZmvyfgUHBxMXF+f+ZzAYCAkJcf9+1VVXMWXKFO655x6ioqIYMWLEUWPdv38/Q4cOBaBFixbodDomTZrk3tfpdPLAAw8QERFBXFwcU6dOPc5n4/hJsloIIYQQ4gymJau1ikirycr4s8Zze7fbUVD8GZoQ4iS2JnsNn+741P37koNLUBR5zxDN46I2FzFj8AwuP+tydaBOZXV4ZQkATsVJUVWR74MT4kymKFBd7p9/x/gZk5+fz88//8ydd96J1WptdJ/67TKmTp3KJZdcwqZNm7jxxhuZO3cud999N//617/YvHkzt956KzfccANLliw57ofs//7v/3jhhRdYs2YNRqORG2+80b3t888/Z+rUqTz11FOsWbOG+Ph43njjjeO+jbo+/PBDAgIC+P3333nrrbeOun9SUhJfffUVADt27CAzM5OZM2d6XJ/VamXVqlU899xzPPHEEyxcuPBvxXg00gZECCGEEOIMdqj0EFBbWQ3waL9H/RWOEOIUkRqeynODniO/Mp+Z62aSUZ7BzsKdtIto5+/QxGkgPjie+OB49ReHHYrT3dtMZdlEmCMosBVwuPQwEeYIP0UpxBmopgKeSvDPbT+cAQGNJ5/r2r17N4qi0K6d5+dRVFSUu2r5zjvv5Nlnn3Vvu/rqq7nhhhvcv0+YMIFJkyZxxx13AHDvvfeycuVKnn/+eXcV8rGaPn06gwcPBuDBBx9k9OjR2Gw2zGYzL7/8MjfddBM33XQTANOmTeOXX345YnX10bRt25bnnnvO/fv+/fuPuL/BYCAiQn0fjYmJITw83GN7165deeyxx9zX/dprr7Fo0SLOP//8E47xaKSyWgghhBDiDHaorGGyWgghjibCHMGFKRdybcdr6ZvQF4DF6Yv9HJU4LZUcBqe99vfSLLpEdQFgbfZaPwUlhDjV/Pnnn2zYsIFOnTpRVVXlsa1nz54ev2/bto3+/ft7jPXv359t27Yd9+127drV/f/4ePUkXE5Ojvt2+vTp47F/v379jvs26urRo8ffunx9deMH9T5o8XuLVFYLIYQQQpzBxqaOpW14WzpGdnSPKYpCZnkmWeVZdI/t7sfohBCngvOSzmNN1hrsdROKQpyg4qpivt39LcmhyQxOGuzRAgSA0kx6nz2GXw/9yqqsVUzqPMkfYQpxZjIFqRXO/rrtY5CWloZOp2vQG7pNmzYAWCyWBpdpql1IU/R6tfa3bvurmpqaRvetu1ij1n7E6fRev/369+V4Ym1M/cUmdTqdV+MHqawWQgghxGmkxlnD7sLd0jf1OFyUehH/7v1v2rZo6x7bU7SHEV+N4PZfbpfFq4QQDVTUVDBr8yxWZq5EURRGtRnFsiuXcdc5d/k7NHEa2F20mxlrZvDsatcU/ULX4orBcerP0kz6xPchQB+AUSf1d0L4lE6ntuLwx796faabEhkZyfnnn89rr71GeXn5Cd3NDh068Pvvv3uM/f7773TsqBZ3REdHA5CZmeneXncBw+O5nVWrVnmMrVy58riv50iOJdaAgAAAHA5Hs972iZJ3diGEEEKcNlZnrebWhbfSI7YHb5//Nv/b9j9CA0O5tO2l/g7tlJIcloxRb6TCXkFmeaa0CBFCeNhRuIMX175ITFAMi65YRKAh0N8hidNIg7UUtMrq5H6wZS6U59I2tDW/T/gds9HsnyCFECe1N954g/79+9OzZ0+mTp1K165d0ev1rF69mu3btx+1Vcb999/P+PHjOeeccxg+fDjff/89X3/9Nb/88gugVmf37duXZ555hpSUFHJycnjkkUeOO867776bSZMm0bNnT/r3788nn3zCli1b3FXgzeFYYk1OTkan0zFv3jxGjRqFxWIhODi42WI4XlJZLYQQQojTxi8H1C+QKWEp/Lj3R15Y+wIvr32ZsuoyP0d2ciqyFbElbwt5lXke4ya9iTZh6pfkrflb/RGaEOIkti1f7dnZIaKDnyMRp6PDZYcBaBnSUh3QktWJPUGvTkfXl+dKoloI0aTU1FTWr1/P8OHDeeihh+jWrRs9e/bk1Vdf5b777uPJJ5884uXHjRvHzJkzef755+nUqRNvv/02s2bNYsiQIe59PvjgA+x2Oz169OCee+5h2rRpxx3nlVdeyaOPPsoDDzxAjx49OHDgALfffvtxX8/RHC3WxMREHn/8cR588EFiY2OZMmVKs8dwPHTKKThPtqSkhLCwMIqLiwkNDfV3OEIIIYQ4CTicDs774jwKbAW8ff7b9I7rzSXfXsL+kv3cefad3NbtNn+HeNKZv28+9y+7n+4x3fnwwg89tk1fOZ1Pd3zKle2u5JG+x18pIoQ4fT36+6N8s/sbbut2G3eefScAU/+YysrMlTzY+0GGJA3xb4DilPbwbw/z/d7vuaf7PdzU5SZ4awBkbYIJn8KP90NxOkxeBC17Hv3KhBAnzGazsW/fPlJSUjCb5eSQOLojvWaOJ5crldVCCCGEOC2sy1lHga2A0IBQesX1wqg3cns3tTJhzrY5VNor/RzhySe3MheA6KDoBtv6Jagrka/IWOHTmIQQJ7/tBdsBaB/R3j1WaCvkcNlhcipy/BWWOE0cKlPbgLQMaQlOB+TtUjdEt4OQ2r7VG3I2MOLLEdww/wY/RSqEEMIbJFkthBBCiNPCb4d/A2BI0hBMrmnCF7S+gMTgRAqrCvlm9zd+jO7k5E5WWxomq3vF9cKgM3Cw9KB7SrYQQlQ7qtlduBuAjhEd3eMRlggA8m35folLnD60ntUtg1uqLUDsNjCaITy5NlldkolOpyOjPIPM8symr0wIIcQpR5LVQgghhDgtbMjZAKhJVo1Rb2Rip4kAfLjlQ5yK0x+hnbTyKtRe1VGWqAbbQgJC6BLVBYCVGc27KrkQ4tS1u2g3dsVOWGAYcdY493iE2ZWsrpRktThxNrvNfSK1ZUhLyN2hbog6C/QGCIlXfy8+iNVoBaCipsIfoQohhPASSVYLIYQQ4pRX7ahmS94WAM6JOcdj27i0cZgNZg6XHeZAyQF/hHfSOlIbEIAbO9/IjEEzGNZqmC/DEkLUU+OoYVXmKn+HAXi2ANHpdO7xSHMkAAW2Ar/EJU4PRr2RT0d/yvODnyc0IBRy1cU8iXa1nEl09anePBera4HF8ppyP0QqhBDCW4z+DkAIIYQQ4u/SoeO5wc+xJW8LrUJaeWyzGC0MSRqCgsIpuK60V+VVNl1ZDTC01VBfhiOEaMIn2z7ho20fMf/S+ZgMJhRF8UgU+9LoNqNpF9EOh9PhMa61AZFktfg7jHojnaI60SmqkzqgVVZHt1N/dhwL8/8NJYcIOqDO+ql2VlPjrHG3APOXp1Y9xfaC7Tzc52GPfu5CCCGOjySrhRBCCHHKMxlMDGs1rMkK4BmDZ/g4olPDkXpWCyFODsVVxby76V1KqktYlL6IVZmrWJmxkq8u/oogU5DP4wk0BNIpslODcamsFl6R46qsjumg/jSZ4Zzr4I9XsK77xL1bRU0FYYFhPg+v2lHN3F1zGZw0mK35W/kr9y8Olx6WZLUQQvwN0gZECCGEEOIMpCgKt3S5hUmdJnn0na3L7rTzw94f+HT7p9Q4anwcoRAC4IPNH1BSXUJaeBrntzqfVZmrOFR2iBUZK/wdmodISySJwYnEW+P9HYo4hS06uIiPt36sLuLpdEDeTnVDdJ3kb88bAB3GvYsJ1AcA/msF8mfWn0xbNY1rfrjGfeI3pzLHL7EIIcTpQiqrhRBCCHFKUxSF9ze/T8fIjvSK69XkNGCn4iS9NJ2kkCT0Ojlfr9PpuL7T9UfcR6/T89BvD6GgMDx5eJPtQoQQ3uFUnHy962sA7jrnLgx6A4NbDubjbR+z9NBShiX7tp98ekk6H2z5gLOjz2Zs2liPbW3C2jD/svk+jUecfubvm8/8/fO5v+f9pCkGsNvAEAgtWtfuFNEG0obD7oW0N1ipaZHmtwWUl6YvBWBw0mCMejW9kluR65dYhBDidCFHakIIIYQ4peVU5DBz3Uzu+OWOJntSK4rC+V+cz5i5Y9hfst+3AR7Byd5DW6/TExwQDEBJdYmfoxHizLOrcBdFVUVYjBYGthwIqEkxgGWHlvk8QfdX3l98ufNLvtz5pU9vV/hWVnkWUxZN4bX1r/n8tvNt+YBrLQWtX3XUWaA3eO7YazIAH6cf5LMRs2kZ0tKXYQLqZ/iS9CUADEkaQkxQDADZFdk+j0UIIU4nkqwWQgghxCktqyILgJigGAIMAY3uo9PpSAhOAGBL3hafxdaUvMo8Js2fRJ85fbj0u0v5/fDvfolhc95m9yKLTQkNCAWgtLrUF2EJIepYk70GgO4x3d2zRnrE9CDIGESBrYDtBdt9Gs+eoj0AnNXiLJ/ervCdLflbGDN3DL8e+pW3N76N3Wn36e17LPxbnK4OtkhuuGPb8yGsFVQWwpa5Poyw1s7CneRU5GAxWugT38fdBkQqq4UQ4u+RZLUQQgghTmnZ5WoFU2xQ7BH36xjZEYCt+Vu9HtOR5FfmM3nBZNZmr6XSXondafd5wglg0YFFTPhhAk+uePKI+4UEhACSrBbCH/7M/BOAXnG93GMmg4ne8b0B+CPjD5/Gc6DkAADJoY0kD4EHf3uQkV+NZFXmKl+GJZrR1D+mUuWocv+eWZbp09vXktWRlkgodd12aELDHfUG6DlJ/f/Gz3wTXD0rM1cC0DO2J4GGQKKDXMnqSklWC+FvkyZNYty4cQ3Gly5dik6no6ioyP1/7V90dDSjRo1i06ZNDa5L28dkMpGSksIDDzyAzWbz2K/udYWGhtKrVy++/fZbb97N05Ykq4UQQghxStOm2za1SKCmTVgbADLKMrwe05FMXzWdPcV7iAmK4b8X/pfZI2dzU5ebfB6HdjDt0Ye6shDKPSutJVkthP9c0vYSxp81ngGJAzzGz004F8DniyweLDkI1ElWOx0e2/Mr8zlcdpicCllg7lRUUl1CjaMGo97orhI+UHrAZ7df7ah2f9ZEWaKgVJ05RUgTn++JPZkW2YKRjn38uPdHH0VZa0Wm+vfXN74vADGWGIw6Izqdzuex1Gd32vk1/Vep8hbiGOzYsYPMzEwWLFhAVVUVo0ePprq62mOfkSNHkpmZyd69e3nppZd4++23eeyxxxpc16xZs8jMzGTNmjX079+fyy+/vEHyWxydJKuFEEIIcUrLKlcPZo9WWR0aqLazKKsp83pMTdlbtJdfDvwCwBvD3uCcmHOIMEf4JRb3VOsgV7La6YS3BsJrvaCm0r1fiEmS1UL4y5CkITza71HaRbRTB4oOwo/303/Zm6ToLXSM6OCzWBRF4WCpmqxuFdoKynLh+bPgu7vc+2jvZwW2Ap/FJZpPaEAoc8fO5YdLfqBrdFegtpreF/Ir1X7VRr1RbUGlVVaHxDd+AUsLivR6DusVCqsKfRSlyu60syFnAwB94vsA0Ca8DWuvW8vXF3/t01gaM2fbHKYsnsLIr0by4poX/bYApRCngpiYGOLi4ujevTv33HMP6enpbN/uOesxMDCQuLg4kpKSGDduHMOHD2fhwoUNris8PJy4uDjOOussnnzySex2O0uWLPHVXTltGP0dgBBCCCHE36FVVsdaj5ysDjapCwX6M+n63qb3UFAY1moY7Q6ug30roMck7E47Nc4aLEaLz2LRKqu16jkq8mv7gxbuhxg1CaZVVssCi0KcBJY+Axs+oRXwHcCQQT676dzKXCrtleh1eloGt4S9S6EiDzZ9BWNmgl7vTlZri+SJU4+2xsMNnW/gqvZX0a5FO5/ddt3FFXU63dErqy3hBLsWKi6r9u2JaKPeyILLFrA2ey1tW7QF1EWJTxars1YDUO2sZtaWWXSL6cawVsP8HJU4nVTUVDS5zaA3EGgIPKZ99To9ZqP5qPsGmYJOIMrjU1xczKeffgpAQEDj6+AAbN68mT/++IPk5MZbYgHY7Xbef//9o16XaJwkq4UQQghxStN6Vh+tDcjJ0M5iUNIgthdu5+Y2l8CsiwF4pXwn/z34M7d1u43JXSb7LBZtarA7WV1apy9pUbo7WX1luys5r9V5tA1v67PYhBCw5OASwgLD6BTVqfagv/iQ+jMgBKpLYdMXkNTbJ/Gkl6onsxKsCZgMJvUEF0BNORTsgai2ap9haitkxamjyFZEoDHQfdK0W3Q3n8fQJqwNn4z6pLZntjtZ3URltTmcIKdaMVxeVeyDCD2FBYZxXqvzfH67x2JLvrqY9Dkx55Bemn7EZKEQJ6LPnD5NbhuYOJA3hr/h/n3I50OotFc2um/P2J7MGjnL/fvIr0Y2OlNi08Tjb6Uxb948goODPcYcDkeD/Vq2bAlAeXk5ABdffDHt27dv9LrsdjtVVVXo9Xpee+21Btc1YcIEDAYDlZWVOJ1OWrduzfjx44879jOdJKuFEEIIcUK2F2zn8x2fU+Wo4rF+jxFg8E/VwMN9Hia9NL3hgfX+5ZC1CRzV0Otm4qxxjE0dS0xQjF/iBBjZeiQjkkegW/eheyzo8F9UOarYUbDDp7Fo0/TdbUi0pADUVlgDXaK7+DIsIYTLU38+RVZ5Fh+M+KB2gcUKV3uNc65FWfUmlVvm4hj6MCGWFl6Pp0dsD5Zftby2xUdFnYR05l8Q1VatuAZ2Fe7yejyieX2x8wve3fQuU86ewvWdrvdLDEGmIHf7EexVUOl6rTVVWR0YglUtrKbC5ts2IE15fcPrrMxYyc1db2ZQS9/NfKgrpyKH3Mpc9Do9Lw55kbDAMEx6k19iEcKfhg4dyptvvukxtmrVKq699lqPsd9++42goCBWrlzJU089xVtvvdXkdZWXl/PSSy9hNBq57LLLGuz30ksvMXz4cPbu3cs///lPXnnlFSIi/NPy71QmyWohhBBCHLcf9v7Ag789SGJwItP6T/NbohqgQ2QHOkTW69t6cCXMHl37e1kOcSOmM23ANN8G1widTgc7f3b/3i59A8RGsLNwp89iUBSFoqoiAFqYXUmuupXVdZLVQgjfyyrPIqs8C71OT6fITrUbKlwLoHa5nHm7vubhsED6/Xwz74z90idxhQWGERYY5oqlXrK6y+WcE3MOADsKd1BaXeqe0SJOfuty1lFpr8SgNwBqT+Z5e+dxsOQgt3W7zfef89oJVEMgmMMb30enw+qadVDu+kzzlUeWP0J4YDg3drnRY+2J/cX72ZC7wae9vuvLKs8iyhJFC3MLz0WUT0J7ivaw8MBCru1wLcEBwUe/gDhprLp6VZPbtPcRzdLxS5vct377nPmXzf9bcdVltVpJS0vzGDt06FCD/VJSUggPD6ddu3bk5ORw5ZVXsmzZsiav64MPPqBbt268//773HST5yLpcXFxpKWlkZaWxqxZsxg1ahRbt24lJsZ/xTKnopOnqZIQQgghTgnVjmpeWvsSAKnhqUdtv+EXGz9Tf4a7esmtfs+zctgP1mStIb00HaXGpvZ6BQiJp12VOi1yf8l+bHabT2JxKk7uOucubux8o3vavsfjU1SbrM4qz+KHvT+wNH2pT2ITQsBfuX8BcFaLs2r7dCoKlLuS1cGxBCWq7T8qy/z03lY/WY26dkCHiA70S+jnPiEmTn5OxclfOepzeHbM2QAYdAaeXvU07256l0OlDZM73rD44GI+2vqROtOobr9qna7Jy1iN6t9HeZXvWnxV2iv5ds+3fLj1Q/T1UirRQWprLa3Vlj90je7KkvFL+O/I/7rHHE4HRbYiv8XUmG352xj37The3/A6c3fP9Xc44jgFmYKa/Fe3X/XR9q3br/pI+/rKnXfeyebNm5k7t+nXpF6v5+GHH+aRRx6hsrLx9iYAvXv3pkePHkyfPt0boZ7WJFkthBBCiOPy5c4vya7IJiYohheHvEjLEHXat+Ja5MiXMsoy+GTbJ/x++PfaQYcdtn6n/n/Mi9CyN9htsPxlKu2V5FTkUOOs8WmciqLwjyX/YNTXo9i+5TO1x2tIPAz+N9EOBxHocSpO9hTt8Uk8Br2BiZ0m8s8e/6xd1LE0o3aH4trExNb8rTz424O8u/Fdn8QmhKhNVnu0N6oqBe29KygSi6uvfEUTfUCb25MrnuTpVU+TWeaahVE/We36DPhszGe8NfwtkkKSfBKX+Pt2F+2mtKYUi9HiXlBRp9ORHKqe8PVVlfC8vfN4bvVzrM1eWzvbp6l+1S6RxmCSa2qI0gcecb/mdLDkIAChAaGE16v6jrGo1ZM5lTk+i6cpWqXyjoIddP+4O5d+d6mfI6q1o2AHNy+82f17+4j2R9hbCN8JCgri5ptv5rHHHjvisc0VV1yBwWDg9ddfP+L13XPPPbz99tscPny4uUM9rUmyWgghhBDHrMZRw3ub3gPgli63EGgIpLS6lKdWPcWl313q8yTwlvwtPPPnM7z5V51+dAeWq1PlLRGQMhiGPqSOr53FiC8vYNgXw9hfvN+ncWaUZ1BaXYpRbyQtc6s62PZ8iOmIDmhpVxd7ya7I9mlcHproWa1N4y+pLvF1REKcsRpNVmstQExBEBBEkDVWHXbavR6PU3Hy7Z5vmbN9Tu37vNY/G8BWBF9Mgh8fUFsdiVPKhpwNgFqRa9TXdgr1dbI6r1J9jUdZojwrq4/gPHMc8w5l8p/4od4Oz+1gqZqs1h6furTK6pwK/ySrFUVpkGCLMEfgVJwU2ApwOBsuLudrOwp2MPnnyRRXFdM1qisrJqyo7csvxElgypQpbNu2jS+++KLJfYxGI1OmTOG5555zL8zYmJEjR5KSkiLV1cdJelYLIYQQ4phtyN1AbmUuEeYILml7CQAWo4UF+xdQYCtgZcZKBrYc6LN4ssrVg1mPViSbv1Z/drgIDCZoMxQCgqG6jBCDhUKKKKsp81mMANvztwOQFp6GKVf9P0l9IaINACHVNjBaKK32zTTmAlsBGWUZRFuiiXUlvDx6VpdmgqMGDCZCA0LVIR/FJsSZrtpRzbb8bUC9ZHW5q5I5SO1BGxSsvu9V4P3kU15lHlWOKvQ6PQnBCeqgu7JaByiw9Rv114H/gpBYcipyCA8M9+uaBuLYrMtZB0D3mO4e421btGX+/vmszVnLJCZ5PY78SvU1FWmJhFLXjKmjVFZjCVd/VhZ5La76tOR9q9BWDbbFW9V4M8oyGmzzhazyLK7+8Wq6RXfjpSEvodPpaGFugQ4dDsVBUVVRbfsvP3nk90coqiqiS1QX3jr/LelVLbxi9uzZjY4PGTLEfUKn7v/rSkpKoqamtgCnqet68MEHefDBB92/N3ZdOp2Obdu2HUfkAqSyWgghhBDHYUXGCgD6xvd1JyCMeiMjWo8A4Md9P/o0nuxytRI5Nii2dnDPEvVnx7HqT50OwtRWJcGuijFfJ163FahfUttHtIeCvepgZCpYoyAghO62Ks6P60tMkG8WX/n98O9M+GECj/7+aO1g3cpqxQkl6oG2JKuF8K2DJQepcdYQbAr2bKWhJYeD1MXcLCFq0rgSBbxcLalViUZbomsrb7V4Wg/w3Lk0g5sW3MSwL4a5K8TFyW199noA9wKZmqFJarXyH4f/oKza+yd5T6Sy2r34YmWh9wKrR2sDkhzSsLJaq7bOKMugylHls5g0e4v3kleZx77ife5ZDka90b2YsvYY+0tFTYXakxx4eejLhASEUGQrYk3WGpnBJYRwk2S1EEIIIY7ZDZ1vYObQmVzd4WqP8VEpowB1caRKH/VPhdq2Ge5ktaMGSlz9lmM71e4YpiZ8QhT1wM3XB0TbC9Rq6vbhabX9oFukqIn0yDbcUlzCi8mX0C+hn0/iKbCp0/fdvTYddihzTVkODFN/7l8OW78lxKRWPFU7q/1y4C3EmSYxJJHZI2czbcA0z5YaWhsQq6uyOjQRgEq9Hme5dxNQDU4MOp21bUAumgkTv4fYLurvJZnuViGyyOLJz+F0MCZ1DOclnUfnqM4e29LC02gd2ppqZzXLDi3zahwVNRVU2CsAV7JaWzj0KJXVWaZALk+I47JM350sP1JldYQ5grDAMFqGtKSgsqDBdm/bV7wPgDZhbTzGoyzq+4ZWve4v5TXljGg9gu4x3d0n6G9YcAM3LLjB3Y5GCCGkDYgQQghxCsgqzyI2KNbvvUBDAkI4r9V5Dca7RXcjMTiRw2WHWX54Oecnn++TeLQKIa1HJCWH1apgQyBY61QpuyqrQ51OwPdVwruLdgPQzhimxmeyQrArvog26uJkWsW1D2gJpAizWqFJWTaggM4A8V1h/2/w7R0ABI17G71OXQCytLqUQIvvFrES4kxkMVroEduj4QZ3ZbU6hd8aGMZwm52gGhv2skwCQmIbXqaZuE8Mam2DqopBcVVzh7VUZ4qEJ0H2JijNxGqyAmpiSpzcDHoDd51zV6PbdDod5yefz7ub3mV74XZGMcprceTb1Ne32WAmyBh0zJXVRks4OwID0DnKUBTFJ9+TcitzAWgd2rrBNp1Ox9LxSz16f/vS3mL1u0RKWIrHeJQlip2FO8mz+beyOjoomhmDZ3iMtQlrw+6i3ewt2sugloP8FJkQ4mQildVCCCHESc7hdHDjghv5aOtH/g6lSTqdjoGJaq/qv3J8N+270KZO+9Wmt1LkWhgwrCXo63zNCVcrq4Pt1QA+mc6sqXZUk1mu9oNuXeNK7kS0UauqASJSAXDm76baUe2TmLTHLTwwXB2omxQI95zWrF/+IsGu6mqZoiuEH2nV066e1WajmZfsYUzPKyCgwrstELRktbtVkVZVHRAMRtcJLK0CVpLVp5UJ7Sew4LIF3NvjXq/eTpGtCFBn/Oh0utp1FI6SrA5ynaxWwGczu3645AcWX7GYs1qc1eh2fyWqobayurFkNfi/DUhj0sLTgNoT+0IIIZXVQgghxEmq0l6JxWhh2aFlpJem87/t/+O6jtf5rbr6o60fUVxVzJg2Y2gd1rrB9g6RHQDYXrjdZzEVVrmS1YFaslrtI0l4vam5YervIdWVoPNtZbWCwvQB0zlcepjIUlerjYg6B5ERbfgq2MoTBYsY9tuDvDjkRa/HpCWr3ZXV7qRAPJjDanfUmyBvB4+d/W+MrfoSY/FNT20hzmRf7PwCHToGtxxcO2sEaiurrXUWRwuOhtxtUJ7r1Zi0BJe7DUi9/tlAbbK6JJPgGDVuSVaf/PYW7SXIFNTk7C2P16AXpYan8vGoj3EqTrXNjK1Y3RB05MUALUHR6BUFp05HeU05QaYgr8eq0+l89rgcL62yun4bkHNizqHGWePuqe0vWeVZxATFoNfVFhSkhqsn7bXYxcmnsYUDhWhMc71WJFkthBBCnKRuXXgrBbYCHu7zMBajhUNlh9iYt5Fu0d38Es/8ffPZmLeRtBZpjSarO0Z2pGNkR9q3aO+zmGYOnUm+Lb92EbJiV2V1eJLnjq42IF3KSxnbbSwdIzv6LMZAQyBj2oxRf/nxAfVnRJ2DyIg2BCoKTnxXuawl+Wsrq+tUsKUOhZWvQ+p5kNgDls3ggu2LYcDDPolNiDPdOxvfIas8i48u/KjxZHWd5J0SFE2VToexNMurB3bT+k/jgV4P1CaYGomFUK2yOoOgRDUhVlbju1ks4sQ8sfIJ1mav5emBT9d+VvlBkCmo9vuNrc5nYUDwES+nC4ogSFEocyWro/F/Enlj7kZmrJ5BuDmcV8971We3W1xV7F6Ton5l9eVnXc7lZ13us1gaY3faGTN3DEa9kW/GfkOcVa2a1yqr9xTtwak4PRLZwr9MJhMAFRUVWCwWP0cjTgUVFeraA9pr50RJsloIIYQ4CVXUVLApdxN2xU6rkFYMazWMeXvn8cPeH/ySrFYUhX0ljS/ao2kf0Z7Pxnzmy7A4O+ZszwGtDUj9ympX8npkfiYjz30c9AbvB9cYrS913WR1ZGptL+0qHyWr67dPKa2zkFXacLjtd4hup1aqL5sBWZtBUWpblwghvMJmt5FVrv49Nli8rV4bEICLq7ayv3US/y3cwTlejEun0xEWWGfWRWPJ6rqV1a7WQRU1FV6MSvxdiqKwp2gPAKlhqU3u99Lal9hZuJPbu91O1+iu3g+syjX7SW+qbTPTFEs4QU4nZXq9Tyr5f9z7IwsPLGRoq6FcnHpxo/sY9UY25G6onb3kIyXVJZwTcw4VNRU+qTA/XgdKDlDlqMKgM9S2FAKSQpMw6U1U2CvIKMugZUhLP0Yp6jIYDISHh5OTo84MDAoK8vv6OeLkpCgKFRUV5OTkEB4ejsHw9461JFkthBBCnITW5azDrthJDE6kZUhLRqWMYt7eeSzYv4AHej3g836I+bZ8SqtL0aGjVUiro1/AX4oOqD/D6sUYEq8uHuisURcTDE3wWUhrstZQaa+kY2RHIt3J6joVT9Zogg1mAMps3u07q7mu43VklGXUPpd1K6t1OojrrP4erE7536q3s2/n15wV05W2Ldr6JEYhzkSHSg8BEGIKqW1vpKlwJauttclqsyEQHOVUVOb7KkRXLI1VVrveV0szSQ1PZWjSUNqGy/vFySzflk9RVRF6nb5BJW5dG3I2sC5nHePSxnktWb0xdyMbcjbQPqI9vY2uEyOBIUc/SWoOx+pUp52X+6DF16a8Tfxy8JfaGV2N0FptFNgKKKkuITQg1OtxASSFJPHfC//b5Ha7005JdYnPk+ia7QVqm7h2Ee08qqdNehOp4alsL9jOjsIdkqw+ycTFqRXwWsJaiCMJDw93v2b+DklWCyGEECehPzP/BKB3XG8A+ib0JSwwjAJbATsKdtApqpNP49lfvB+AhOAEzEYz7F0Kn1wBF78K3a7y2LfGUUNJdQmRliP3mfy7MsoyWJK+hKSQpNrV44ubqKzWGyA0EaX4ILb83dgCLLVVxV72/ub3WX54OY/1eZTLtWR63cpqnY6Q0JZACaU+agMyvt14z4G6PavrCgwGUxCfhpqZu3Iqd3e/W5LVQnjRwVK1735SaFLD6jVtUcM6CeIgYxBUF1DhmvrvDcVVxTzy+yPEBsXycJ+H1SRTI7G43z9sRYxIHMSI1iO8FpNoHrsKdwHQKqSV+tneBG3BTG9Wyv+R8Qevb3idy8+6nN5Jo9XBwJCjX9ASTqLdjl0HOh8ssKjNfIi1xja5j9VkJdoSTW5lLgdLDtI5qrPX4zqa/cX7ufibiwkOCOaPCX/4JYadhTsBGl2Y8rqO12Gz2+gQ0cHXYYmj0Ol0xMfHExMTQ01Njb/DEScxk8n0tyuqNZKsFkIIIU4yZdVlfLfnOwD6xvcFXFUnYamsy1lHemm6z5PVWgsQd6/qbfPAUQ0b5ngkq7/d/S1TV0xlSMshvDT0Ja/GtK1gG8/8+Qxdo7uqyWqnA4rVqsQGPatdY2ursrlh2Z20Dm3N95d879X4NOmlagK9lT4QnHYwBEKIZ2V3SGIvyFtEqb0SRVF8P8VSawMSGt9wmzUaq1Nd6KqsWvrPCuFNB0vUZHVySL1F0OxVoLUJqpMgtriSiJW2Iq/FlFWexdL0pbQIbMEjfR9RBxtbYNEcBqYgqKmAkgyIbLqthDg57C7aDdT2DG6guhw2fYnVEAB4d8FM7bqDTcG1r/VjSVabLLyZXwp2G4Q03qasOWVXZAO4+y03JTk0mdzKXPaX7D8pktUtzC1QUCitLqXKUUWg4SjtVbygqcUfgSZbqoiTh8FgaLZEpBBHI53rhRBCiJPMe5veI9+WT3JoMucnn+8e7xLVhR6xPbAYfb/AiVZZnRLqmiZcqCavObxOTRK7xFnjsDvt7qme3qT1XY4IdCVLSrPUZLDe2LBCGCAsiRCHqze0D6YKgzrl9nDZYQBaOVyrY4e3Ar3nV7CQNuep+6Ng83JlWHlNOZtyN5FZllk72FRlNUBwDBbXyt42h82rsQlxpqtbWe1Bq2TWGcAc7h4OClTbC1RUee89TUvO1e0x22hltU6nthIC93uK3Wn3Wlzi73P3qw5v4sTCoifh+39gzVc/8725YKZ23VaTtbZn9bEkqwEsrplSXjxpo9Eqq4+WrI62qAs9FvqovReoC3Nf8OUFrMxc2WBbaEAoJr264Fm+r9sGuewtUpPVTb7ehBDCRZLVQgghxEkksyyTj7Z+BMB9Pe/DZKhdSfm+Xvcxe+RsBicN9nlcWgLF3dNS671cXQp5O937aVM7D5UdospR5dWYtAPAcC1xU6TGSGhi4wsohrUkRPFtsjqrPAu7006APoAYbepkcMOpw0EpQ+lbWcX55RXY83d7NaZt+du4+seruWXhLepAjQ0qXQfTIY0cfFujMbv6gdrskqwWwpsyyjIAaBlcr2er1q86KMLjZJfFtehhRU05uBZqbW45FWqfUo+2B431rAb3rJENmX/S/aPuXPLtJV6JSTQPbeaP1mPZg6LA1m8BsJarJye82QZEm7kTEhBy/Mlq7XtApXcTwzWOGvIq1b/FuKAjJ6u1BQ59seijJqs8i8zyTPSNpHl0Oh1RFrXfvXYffKnKUcWhMnX2W1MLdW/O28xXO7+ShVmFENIGRAghhDiZhJvDefeCdzlcdpjBLX2flG7Ky0NeJqM8gxBTCDjstYlhgEOrIUbtMRgeGI5BZ8ChOCiyFR2xp+PfVVilHpS6e0831a9aE5borqyudlb7ZBqsluRvGdISfaWrErHO4mganTmEdwPT4MDvkL4a4ryzgBU08rhpVdVGs0fFpps1GrOrsrrSB/1AhTiTPdrvUbLKsxomD4tc72/WGI/hIIs6s6RSh5qoszb/WgFaZXVsUN1ktSvZZam3UJurlZClspgaZ41XK3HF33dFuyvoEtWl8TYVGeuhVD15Yq0ogCC9VxOvHpXVxa7WVMeYrJ4dZOTHhDguObCACW2GeClCyKnMQUEhQB9w1EUKY4NiSQpJcvf79gXtRHxIQOOPW5QliszyTL8kq6sd1dzQ6QYyyjLcSfP67llyD9kV2aSEpdA9truPIxRCnEyksloIIYQ4iViMFrrHduei1Iua7Ftc4/D94iYGvYGkkCS1irnkkNpuQ3Nojfu/Op2OMFelX3F1sVdj0iqrWwS6kq5aAj2skX7VAMFxWBUFnasbhy+qq9NL1ARTUkgSlOeqg40kqwFoM1T9uXeJV2NyV6QHhqsDWr/qkDh1Gn99wTHuZLVUVoszQYGtgHuW3MPcXXN9ftuJwYn0iO3RMJmz/zf1Z1Ivj+EOUZ04z1ZDck0NlOd4JSZ3ZbWWrFYUKFbbGxHq2X9fayUUVKG+z/iyqlQcv5GtR3JPj3tqZ03VtX2e+7/WSvXz3Jszpjx7Vrs+nwOCj+myeUYj2wIDyHS16PCWQlshAfoAYq2xR11b4vazb+fHS3/kuo7XeTWmurTvNaGu9kD1aQtfayegfCkkIIR7etzDc4Ofa/KxaxfRDoAdhTt8GZoQ4iQkyWohxCkjpyKH7HLff7kS4mRRUl3C8C+G0+uTXlQ7qv0XiNYCRLP7F3h3GPzxGqD2RQQorvJRslqrEC5zJWoaa2UBEByLHgh2JV59sVhgVoV64BxvjYdyVyWTNbrxnVsPQAEch9d7NSbtealNVmv9qhMav4A1BourfYr0rBZngn8u+SeLDi7iP3/8B8X1fuF3+5apP1MGeQxf2vZSZtaEMqa8ovaEWDPTqjDdCfSKfNBmWYTVa1fiSl4Hu97vKu2VOOqsayBOIdt/cP/36pJS1g96k2kDpnnt5rREa3DAcS6wSO1CoxU13j0J3TmqM2uuXcNnYz7z6u2ciGpHtfszuqnKaq1V2+a8zT6L63i0a6Emq3cW7jzKnkKI050kq4UQp4TiqmJGfDWC8fPGe70PrhD+oigKL6x5gbm75jZawRpiCqGkugSH4nD3NfWF1VmreWDZA3y962t1oMC1uGJ8N/VnyWE4vAb+eAWoTYJ6PVldVa+yusx1MquRntAAhKjjIa7EiS8qq8e0GcNTA55iTOqY2kRS/R6vLndtfYezWyexUO/dhLC78sp1UsGjsroxwdGcbaviKWcLJneZ7NXYhPC3JQeXsC5nnft3X1YglteU89r61/jf9v95JsnLciHblVxKaaQ9lNn1t2wr8Upc2ok9bdaMexZLcBwY67VScrVhshYdcg9V2KX/7MkooyyD1VmrG28JkbkRcrerCxYn9cUEGPO8W+06bcA03hr+Fu1btK/Ts7rxCuH6glxJ7cpq71fy63S6JpPB/lRSrf7969Cp1emN6Bvfl/OTz6dvfF9fhgbA7sLd5FTkHPEEYHywOjPDXwtACiFOHtKzWghxSpizfQ52p50CWwGZZZm0Dmvt75CEaHZZ5VnM3jIbo87ImDZjGmzX6XQkhSSxs3An6aXpPvs72F20m5/2/US1o5pL214Kha5kdatzoaoMCvaov7uSxecmnEvLkJZN9iRsLv/p9x+yy7PpFNVJHdCSwcExjV/A1et1eHkFRV2vwBrg/T6SqeGptaveH6WyWqc34dTpKHF6t82LdkDrPth2V1bHN34BawxJdgdJpWUQ16vxfYQ4DTicDp5d/az794d6P4TZYPbZ7WeXZ/P2xrcJCQhhQvsJtRv2u6qqYzs32kZIMVlxAEYvzRaZPXI25TXlBBgC1IFiVyK6flU1QIvWAAQUHcSUEEGNs4bymvKTMrl3plt4YCHPr3meka1HMmPwDM+Ny19Uf3Ycqz7P6SshZ5tX4+kU2an2l+NcYNHiOvlacRKtq7AiYwUvrX2JtPA0nhr4lNdvr25lul7XeE1ir7he9PLT5/i/f/s3Owt38vqw1xnUclCj+2hJdmkfJISQZLUQ4qRXUVPBnG1z3L9nV2RLslqclrRpjynhKZgMpkb3aRnckp2FO90rqvtCboWaBI62uJKsWmV1RApc/RlkbYQvb1THqsq4/ezbfRJXp8hOnge37srqJpLVxgCwRHB/QQF0uBGaWI3eayqOnKwOMatVi2U6J9ir1Xi9QEtWu3taupPVTVRWa/F6qcWAECeLXw/9yuGyw4QHhvPz5T9jMVp8evv5NrWaMNJcb/ZFEy1AAH7e/zP/Zi894mJ4r8o7s0V0Op3amkHjXsy2kfUBwl0LQ1YWYjW2pKi6WBJPJ6n00jprKoDai3z/b2qF/pZv1LEB90L2Zg4YjbyW+xvWP6Yy9dyp3g9OO/ESeGw9q4Nc7cAqvNyq6oU1L5Bems7EThM5J+acI+5b7ahmW8G2JhPHzU1BoWtUV5+/bx0Lh9PB/uL9AI33R3fRFqOUhVmFEJKsFkI07uBKdWEVWwn0uRViOx39Ml7y9a6vKaoqAuCaCjtRjpOkf6QQzUxLVms9BRvTMkStZNMOMn0ht9KVrA6qn6xuA1Ft1X/f3gU15WrC+BgPLpud1rO6qTYgoCZkKwugLAtiO3o9pG93f0sLcwt6x/XGfJQFFkNc7VNK9Xr1sfRSsvqC1heQHJpM58jO6oC7DUgTldXB0ZTpdKzR18C+nxmScoFX4hLC3/YV78OoM3Jp20v9kvDRktUR5gjPDfuXqz8bSVab9CbsQIVOV1uN6m3uyupGktWBwRAUBRV59IvoQKXRjEnf+MlX4V8HS9R2Lq1C1dYt7PoZ5oyv3eGsCyGuMygOKvU65usqiDr0q1diqXJU8fmOzwk2BXNx6sUYjrOyOsi1cGCll1sFrspcxbaCbVySdsnRYzIFAb6rEm4T1oZPRn9y1P0URSG9NJ3iqmK6RHfxQWTq+h3VzmoC9AEkWBtZH0NR4KcHCK5QW9zJCS4hhCSrhRANZf4Fsy4E14Ja2Iph/Id+C+en/T8B8EheAVeWlsHyV+HKPnCUVbiFONVoyeq24W2b3EergPJpsrpuZbWi1LYBaVGnOiYkVl14sSwbIlOpcdRQ7ax2V8k0t+KqYubtnUeUJYoRrUdATWXtgkxNVVa7tik5W6kqOYzeUV07rd0Lqh3VPPL7IwD8dvkizDZXD+8mKquDXf1gS/V6qK4ASwuvxDWy9UhGth5ZO6BVVoc2kaw2h5MVaOGuuCharHycZZKsFqepm7rcpCbK9AYURWF30W425W3iotSLfJJwLagsACDSUqey2lYC+bvV/7dsOH1fS4hV6nW11ajNyGa38dBvDxEaGMojfR5RZ/1oPasbS1aD2gqkIo/nksaobSTESelgqStZHeJKVqf/6dqiA5MFhj6k/hp1FlZXnUi5l1rNFFcV89zq5zDoDIxLG3fcCywGB0UT4XAQ4vRKeG5aD/s4axMzkeqwuhd9PLl6tv984Gfu+/U+OkZ29NlCkdo6KwnBCRj0hoY75O+GP9+htV7P9OSziTjnnz6JSwhx8pIFFoUQnpxOmHevmqgOcZ35Ltzv15DePf9dZqRczohy15e97fNg23d+jUkIb9hVuAuoV1ldXQ41tdNatYPKfcX7fBaXR2V1eS7UVAA690JaQG01c2kWn+/4nO4fd+eR5Y94LaZDZYd45s9neG71c+qAVlVtNB95QabgOB6IjqTXxuf4YucXXosPcC9aZdKbCLPb1UGdAczhje6v9XRVK6t9eHB7tMpqnQ6za4p1Ywt/CnE6iQ6KJsIcgYLCxPkTeeyPx9zvzd7WaGV19hb1Z0hCo7MygoxqsrpCp/dKZXVxVTG/HPyFb3d/i1HvqnM6UhsQcPetpvBAs8cjmkeNo4bMcvVEpbuyWltAccR0eDC9dhFlkwVrkPoZX+mw4XAtUtyctEU8rSYrurqzBBr5PLc7nGSX2DwW6uvbcgC/HjzM67neW9i5ylFFgU09oXQ8yepy+8lVJdwtWn1edxTsoMbh3TUyNIfLDgNqsrpRe5cCEOF0cvG+dQzY5Z0KfiHEqUOS1UIITxs+gcNrICAYLpqpjhX7rjduY4JMQYyshlCnk7xAKweNRljzgV9jEqK5KYrCgVL1wL5NuKuXclUpvNoTZo1UK5qBjpEd6RjZkX7x/XAqXi4hcvGorC5Rq2MIjvVsU6Elq8uy3UnX4mrvHTQW2goBaBHoqj7WktXWmCPPugiOwex6LCu9vBCTO8lviUanrWwfFAn6xr9+eSSrq713cLstfxsHSw5id9rV15hWKXeE9ilmbYq1s9ojQSDE6aK4yvP9Sq/T0yVKnSK/IWeDT2LQEmEePauzNqo/47s2ehmtsrpCr1MXvG1m7h73AaFqEhGO3AYE6iSr9wPIe8ZJ6HDZYZyKE4vRUvt6y1VndxHdDgyeE7CtdWYsVdib/2Sq1qNYW2CvsQUWHU6Ff362gW6P/0yfpxYx6/f9tVcQ5LoPVcXgpQRsdrlaVW0xWggNOMJJcZe6ldW++Bv4aOtHXPDlBby2/rUj7qetP+JQHJTW+KZ1UN3K6kbtcyWntRl7WZt9EFXjCmwFXv9+KIQ4Oq8kq0tLS7nnnntITk7GYrFw7rnnsnr1avd2RVH4z3/+Q3x8PBaLheHDh7Nrl28qFoQQR7H6XfXnoPshyTXdtCJPnZLuT9lbWG4xMzQhkvtioiBjvTt5J8TpoKiqSE0eAjEW10Fh5kYozVBf765KtnBzOJ+N+Yz/6/t/Plm0p8ZZ4046RwdF16nCrZfY1BbnK80iLEBtZ1E/+dOctD724VqV8tEWV9SExLmT1d6uEtaS/FFBUbWLEzbRrxogMTiRvnYd7aurvVZZrSgKE36YwOi5o9XEWImrBUhg6BF7jQdZax9Xm5cXsBLC14psRQz6bBBXfH+Fx/tCj9geAKzJXuOTOPJdJ7U82oBoyeq4JpLVrsrqSp0Oqps/8dRgQdbqcqhwnXwLa+nez+lU+GVrNn/sznMnq6fmr6L7R92Zs30O4uSitbOIt8arJyEcNVCwR90Y1a7B/gHWWIyuz05v9BPWktXWAFfrMC1ZXWdhzw3phcxdf5jyarWy+93f9mJ3uE7am8NA+05UUdDs8QFklavff2KDYmtP3ByB9repoPgk+ZlbmUtmeeZRb8ugN7gT6aVeeM9ojFZZnRic2HCj0wn7fgNA6TKeXy1mfqw85JeZXAdKDjDiyxGM+HKEV7/DCiGOzis9qydPnszmzZv56KOPSEhI4OOPP2b48OFs3bqVxMREnnvuOV555RU+/PBDUlJSePTRRxkxYgRbt27FbDZ7IyQhxLHI36P2q9YZ4Jxr1anqASHqwU/xIYhuetE3b0gvTefuJXczKmUUk7M3E+tQv5xmG41qH+2CvRCZ6tOYhPCW0IBQFly2gAJbgdoTFCB3W+0Oh9d5tt3wEZPexJpr1pBvy1ermMuaaBlRp7I6zKwmq7WEsjdoBxFaYpzyY1hc0bXd4vRRstpVWR1jiYFytSXIkZLVfeL70KcmTJ0676XK6gp7BQ5FfS8NCQiB7fPVDS2Sj3i5QGsMlKhVdza7zS+LzwnhLSuzVuJUnNiddszG2mOR3nG9Afgz60+citPrJwgf6v0QkzpN8kzoZGrJ6sYXQtP+Fqv0euy2kmY/uCupqq2sBqBYTToRGAqWcADSCyq4c846Nh4qRq+D5eNjSACoLqUmQJHF0k5CyaHJPNr30dp1Gwr2gdMOJqvHSQiNLiQOa+5Gig0G7ySrXTN8QkwhYK8CR7W6oU5l9cq9ahJ68FnRbDpcTGaxjcXbc7igUxwl9nL+kRBPlWJnTkU+uvon1JtBVoUrWW09tuvWqtYtRgtVjir3LAhv0f5WtVlaRxJsCqa8ptz9uHvbsFbDiLRE0j2me8ONWRvBVgQBIejajeRfBz6hSl/JfFt+48ltL1p8cDE2hw2bw0aYax0RIYR/NPs3rsrKSr766iuee+45Bg0aRFpaGlOnTiUtLY0333wTRVF4+eWXeeSRRxg7dixdu3blv//9LxkZGXzzzTfNHY4Q4jgsX/0a0yNbcF/rs8jVKepUeq0fYbHvFnPTrMxcya7CXSw/uBRKDhNrVxMsBQY9VTrU5J0QpwmD3kBCcAKdozrXDuZsr/1/hufrvcpR5bO+1SaDiThrnFpJpFVW108Ka5XVZdnuBLJ24OQN7mS1djChtQE5WmV1cGxtZbWXK4Td7VOCouskqxtfXNFNqyLzUrJaq6Iy6U2YDWZY/4m6ofNltfvYanh9yW62ZdY+f4agCAJ8lOQXwtdWZKwAoF9CP4/xTlGdsBgtFFcV+6RvdXxwPN1ju9cmw+zVkOv6HDhCG5A+oWkMLa/A7oXEU902IAAUN1xc8ZmftrPxkPqe7FTgk53qIWaQTX2/0apmxckjzhrH+Hbj1cUMAfJcLUCi2jbeSis4FqvTe5XV2nVaTVbPdjZ1ktV/7qtNVl/RU02of7xKfT0adAbWBhjYHBhIlXZS3QsxBugDiAtqul+1oijuam+dTsfSK5fy02U/0cLsnQWT69I+348lWe1uO+ajNiDntTqPe3vcS/fYRpLVu39Rf7buD6GJWF3f0cq8+B2yKSszVwJwR7c7fH7bQghPzZ6sttvtOByOBhXSFouF5cuXs2/fPrKyshg+fLh7W1hYGH369GHFihWNXmdVVRUlJSUe/4QQzeuHvT9we/YvfBoawgLK+XTHp+oGrbrCD8nqtdlrAegVpJ5VDwttSaAhEIAcg6FB8k6I005unWR1nZMzOwp20PeTvtww/wbf9wItdbWNaFBZ7UoSl2a7E8g2h81riU0tWR0eGK4ONNIGZPPhYg7m12unERyLxdXr25c9q91tQIKarqwGIMBVeeWlNiDa4xYSEIIufw+kr1SnTne9yr3PY99uYcaCHVz59gp2ZbsOZE1BmLXHzSG9HMXpQ1EUd7L63IRzPbaZ9CZ3K5BVmat8Hht5O9QK08AwCG989kOAIYD3zv4nr+TkYfZyz2oAilzfB13fDxVFYZUriXjP8LYAfLCpGkVvJNg1I67ClwvGihOjLa4Y3bAFCAAhsXx1OJP1pk50jW78xMnf4dGzWktSmqygNwDqooprD6hrVfRpE8E1vdW/h2U7c8ksrlRPvrpUeClZPaH9BNZcu4ZH+ja+eHRFtZ2r3llJ36cXuxPrvqQlq4+ln7bWG9xXldVN+v0VWDJd/X/acLBGEexUv2uUlxz2aShVjirWZavftS9ofYFPb1sI0VCzJ6tDQkLo168fTz75JBkZGTgcDj7++GNWrFhBZmYmWVmu6TOxnhVZsbGx7m31Pf3004SFhbn/JSU1sZiHEOKEFNmKeHbVUwCk1KiLkvyV85e6UaucKfJtslpRFNZkqT0iezjVSa262C7EulYjzzYapbJanFaWHVrGS2tf4o+MP2oHc+q0Acn8S+3rhzp9FyDflu/uoegtSw4u4cHfHuS7Pd+pA6WupHBIvcqiYK2yOotgUzAGnXqA6a2ef1of7aYqqzekF3HRa8sZNGMJN8z6k6IK15TikFjMruqwSi8fpF3T4RqeHvg0g5MGq73/4YiV1XmVeZzr2EOv5JYoXkg6Qb2D2Q2uquq04RCqnnz4Y08eX69XDxBLbHYmzVpNcUUNBFi5v6CIJ8xtPRd/E+IUl1meSWZ5JkadsdEp6lorkNVZqxtsa042u41X17/KnG1zcDjVJC9Zm9SfcV2OvHCse0aGF5PVWs9q7YRlqLpQ2sGCCvLKqggw6LltcCpdEsOotENxQDxW12eWVFaffDbmbmR11mr3YsXuxRWj2jZ+geBYghUFo3ZiuJkNbzWcN4a9wcROE+ssrljbr3pbZillVXZCzEbax4XSKjKI9nFqdfCWwyUY9AYsqH8jleXeiRHUaum6rYI0DqfC3Z9uYNW+AvLKqrj+g1Us35XntTga0+DE0hFc0vYSppw9hZSwFG+HRXlNOetz1pNTkeO54cAKWPgoKE7oNgG6TwS9ASvq98fyskyvx1bXXzl/YXPYiLZEszF3IzctuIlPtn3i0xiEELW80njto48+QlEUEhMTCQwM5JVXXmHChAno9Sd2cw899BDFxcXuf+npvq/wFOJ09tK6lyisLiGtuprn9Ymcn3x+7RlldxuQQz6N6XDZYbIrsjHqjHQrciXjYju5p8ZmGwxq8s5h92lcQnjLHxl/8MHmD/gz8091oDzPleDUgdGsVhrl7wbAbDTTtoV6QLkpb5NX49qUt4kf9v7AxlxX31R3ZXW9ZLX2e0U+OkcNFyRfwJg2Y7zW43Vy58m8et6rDE0aqg6Uefas/mFjhnsN1iU7cnltsfrYERhKslPPsPIKuoQcuU/z39U+oj1j2ozhrBZn1WkD0nSiN9AQSCkObHo9NV5K7ngczO5coA52U6uqFUXhP99uAWDc2QkkRVg4XFTJvE0ZEGBlXFk5l+iCpY+jOK3sLlLfG1LCUxr2lC3NZkRFFa8NfomnBj7l1Tjybfm8s/EdXljzQu37pnZSvokWIG6uRLI3TnLd0e0OVkxYwd3d71YHyjxPWK7ZryY7OyeGYjYZuKaPurZCjiMYq2s2hvSsPvm8tv41blxwI78dVhe2c1dWN7K4IlDnhHRO49v/pvjgeAa2HEinqE51ktW17SxW7VMX9ezVOgKDXk1KnxWrbt+Zo+5v0anFLRWuFly+9L8/D7JwazYBRj29W0dgq3Hy2HebeXLFk4z/fnztdzsvcp+MDjx6svrStpdya7dbSQ33/to/W/O3cv1P13Pjghs9N+x0rZnRcRyMexOMav/0YL26bku5lyrkm6K1AOkb35fM8kz+zPqTvUV7fRqDEKKWV44gU1NT+fXXXykrKyM9PZ0///yTmpoa2rRpQ1yc+kGXne15xjM7O9u9rb7AwEBCQ0M9/gkhmk92eTYB6Hkov5CzYs/mxSEvMr7deHVjmH96VmstQDpFdsSye7E6mDKwtrI6MAjslZ5tEoQ4hXn0N4baquoWyRB/tvr/Oq1vWoe1BvB6ZbV7kcAgV3uNsiYqqy0RoHct7VWey3ODn+PpgU/X3p9mltYijSFJQ2gV2sozLqsa56Jt6gH12LPV6r9v/8pQ+0jqdJxrasHLOXncENvfK7E1qpGe1Qfyy/krvQinq9K77qKFFTbvtDzz6GmpVXtHqic+DhdVsjunDKNex+NjO3NFD/X9f9nOXNCSeNUynV+cXrRe1GnhaQ03/jKVhB//zeD8w8fUB/bvyK9Uk3GRlkh1fQCAw+oMM1r2POJlr/njIbq3TmKNrgqauTWUTqcjOCC49v7Xm8WyxtWaoUey2pO3c6J6MqugxujVHsfi78mzqe//UeYo9TWT5zqh21QbkOAYvgix8oC5il/Tl3o3OG2GQJ1k9er9aluN3ikR7rGzYtXK613Z6v4WV5KzoqLQK2FNXjCZe5bcQ15lw4rpJdvVv4t/nJfGe5N6YtDr2JNbzo6CvWwr2Ob+LuVNSaFJtA5tXdse7SRxuEydrZVgTfDcsHep+rPdhR4zR6yuli5lPj7poLV66pvQ11097+21TYQQTfPqktZWq5X4+HgKCwtZsGABY8eOJSUlhbi4OBYtWuTer6SkhFWrVtGvX78jXJsQwlveOv8tVujb0NNWBTEdPTf6OVndwxIHlQVqIqzVuQxMHMj1Ha+ns9W1OnSBnPEWpwft4CfK4upprCWroztAwjnq/zP/cu+vTfPU2mF4i0ffZaejTm/oeslqvb520UUfV8OgKB4JlD25ZezNK8dk0DH1ok60CDKRW1rFH3vUZBAW10JHNu89djXOGr7c+SW/pv+qTumv17M6s7iSUTN/Y+zrv9P/2cWs2JOPUW8k0PXVrKLaO8nqtPA0JneZrM6e0e6/WU0ubclQb7NtbAhhFhODzlIT63/szsdutLAtwMRvNfkNp/IKcYJ2Fu5k2aFlfo2hXUQ7Lkm7hP4JjZy80k6Ia0ljLyqwqcm4CLMrGVdTWdsGJPHIyeoaFGp0Omw6vNbv3s39GaC+3689oMbdI1mNOy0mGL0Oih2BxNod9AxKpF2LJhKgwm/qnhyhqgRcJzLrLpzpITiGTYGB/GS1sDPnr8b3+RuWHVrG3F1zOVhysNHK6l05akK6c0LtzJ62WmW1a20Fi2tdm0pb8/eLrqipYFXWKhYdXOTRHxvA6VTcyfSBbaMJNZvo3ipcvZxNPYnvixM2bw1/i+8v+f6YWnsUVxWzo2AH6aXeP77LKMsAICG4TrK6oqD2O22bIR77B7tOjpc3clLAm54Z+AwvD32ZAYkD3GskVTmqfBqDEKKW0RtXumDBAhRFoV27duzevZv777+f9u3bc8MNN6DT6bjnnnuYNm0abdu2JSUlhUcffZSEhATGjRvnjXCEEMcgIMd1QBbbCUVRSC9NJ6cih57aAoslGWqiyrXQibc5FScJ1gR6lriqI9pdCAYjo9qMYlSbUbB7PfBXbQJIiFOclgCMtrgqb3NdyeqY9rVJ4JIM9/5aK4YSL6+W7lHxXZ6r9hbU6RvvvRwcAyWH3X2taxw1OHG6v/Q3p893fE6QKYjzks4jyGFXZ1q4Yli0Uk2W920TSQtrAGO6JvDRygPMXX9YTcAGWFEAe1UJpmaPTFVkK+LxFY+j1+lZf936BpXVz/y0nfJqtS9tZrGN/3y7mZ//OYggvYkqZxUVWuKgmXWK6qROs66xgbb4pStZvdWVrO4Yr54I6ZIYRosgE4UVNewtVngxIpyV+jyeyVrN6DajvRKfaH7rc9bz8daPSQxO5N6e9/o7HLcdBTu4/PvLAfjxkh9JCvXPmjQDEgcwIHFA4xuLDgIwN2c1GRte55K0SzwTLs1I6x3sTlZnbgSnXZ0tEt7qiJe1uJI7lTqdmugLsDZbXDPXzaTAVsC1Ha5V20/VablUXFHDTldVq1ZZbTYZaB1ppbzYzIiqKmYljobedzVbPOLvq3HWuF9v0UHRtc9pYGjtIr/1GQOx6tU2DeVe+O49Z9scfs/4nWn9p9FK+17jquZ3OBUOFaif8cmRtfFpbUB255ThcCq0MAXTojIPpxe+F2VVqN8rgk3BBAcEe2zbkV1Kic1OUICBTi0cUHSQQW2jWb2/kKIytWL4ZFhkVFEU96yNL3Z+wcx1MxmXNo4n+z/p1dvVKqsTgxNrB/f9CihqQUa9mXqXhran3/btdI5svvexY5EUmuT+HNJOSHhrkXAhxNF5pbK6uLiYO++8k/bt23P99dczYMAAFixYgMmkHhI+8MAD3HXXXdxyyy306tWLsrIy5s+fj9nccLECIYR31ThroLIQSl1JsJgOrMlew+i5o3lo+UPqFwi9UT1gKvXdQhfTBkxjwWXzGbjPtaBR+3qJEaur+rTct2fdhfAGRVHcldXuZLWrPzVR7epULNdWtPqqstojrlJXxbQ1BgyNnO/Wqq2LDjL1j6l0/7g7c7bNafaYHE4HT658kod+e4hKe2XtSauAEAiw8ourBcjwDurjNu4c9QBp/uYsquwONhl1nNM6iYs2v9zssWnqttvQ26trq9asUazZX8C3GzLQ6WDO5D4EGvXsyilj46FigrRpzN6uwnJXlevc/W61yupOCervBr2OAW3V1+O6zGr3wpRy8HZqeH7180z9Yyrrstfx84Gf+fXQr/4Oya24qpi7l9zt/l1LBJ1UqsvdrXL+qxTx1l9vsb9kv9durrBKTR62MLtmfhxyff9p2fPIiysCFqMrWa3XQzP3rV50cBFf7/qaoqoi1ywWrbI6hs0Z6vtIq4ggokNqT0qeFRtCheL6vVpagJxsCioLUFAw6Axqywjts137rtGEIJOaPCz3QuWytghnsCm4QWV1ZnEl1Q4nJoOOhPDadlmtIoIINOqpsjtJL6jgg85TWHbwMOdWNv9nlNZyTWtHWNef+1yzC1qFY/zkEnitN8Pj1OR6brH6t1tu9+/fwbqDhfSavohHv9kMQIhJfWzLvLzQNDRRWb1nifozdWiD/XtFduLisnLa2PyX4Jc2IEL4n1eS1ePHj2fPnj1UVVWRmZnJa6+9RlhY7ZQdnU7HE088QVZWFjabjV9++YWzzjrLG6EIIY7i0m8v5dIfJrDHZFSn/pnD6BTZCR06ssqzyK8qglDXmXAfL7JIzjYoPqj2Sk09D6hN6m0yuSq8y2U6umgeiqLwzsZ3eOyPx3hv03sUV3k3CVxXWU2Z+wtxlKtNhPvgMTShTrK6dr2HjpEdubLdlY1PXW8miqK4HwePA9qQ2oO17//K4Ml5WymurKntq7pzvrv/clFVUbPHVVKnRUZYYFid5Ek0TqfC5sNqzP3T1MUMu7cKJzzIRGWNg51ZZQSYgnDodNgcNc0eW/0YQ0x1ekPrTWAOY/Yf+wEY3yOJc9OiGNlZTfJ/ufaQexqzt5LVh8sOc7DkIBXaY2YOVVu4AFtdiSctWQ0wqK36elx12IbF1QtXDt5Ofk7FyXd7vuOrXV+5q9n2Fe87Kar7AD7a+hGHyw4TZYnityt/o1dcL7/EUVpdys7CnVQ7qhturPOdJ9SpzoIo8VJ7HlBnYwC1/Wa11iOJPQD1/fijFfv5fHU6xRWe713a+22lTld7YqyZaJ8BoQGhYCsC7bGyxrAvT32fahvjWWl6VlwI5biKkHyQDBPHR+tXHWmOVBfzrNfapSlaRXG567XanCrs6nuTxWRpkKw+mK9uS2oR5F5cEdQTqqnRakw7s0shyLWAcUV+s8eXXa4+RnHWhmts/elqAXJ+XLna2sJeSbvCpURYA6iqcS0W6OUT0HuK9nD+l+dz04KbGmzblV3KjbNXk1dWxSerDpBeUOF+Lku9NIurLi1Z3bCymgYtQAD32iN1v/N62+KDi3ln4ztsyVcXmZbKaiH8z6s9q4UQJ7f8ynz2l+xnV/lhoh0OiOkAQJApyP2FYm/x3jr9Xb3bbqCBwn3qz5gOYHIdiNkrGfr5UK7O+YUSvU7agIhmsz5nPa+uf5Wvd33NzHUzeW/Tez67ba0vdLApuHaRvVJtIcP4RpPVveJ68UjfRxibNtZrcVXYK3AoapImNDC0dnZFSDwAthoHD361kfeX7+Pi15azL+4Cdfu+ZYTp1AM0byT9tesMNgVj1Bs9DrQzS2xUVDsw6nUku6aQ6nQ6d5/LzRnFBJnUg7RKZyMJqmbiTlYHhNRpARIFOh3rDxYBtYs/XtZdbbf03V8ZdA5KpE+ljSC7dxLpz/75LKPnjuaHAwvUAVcLkMLyajKK1YOyjnWS1dpiVtvzHJhdyepKreWKOGltydtCYVUhwaZghiUPI9oSjYLCjsId/g4NgNVZatXwP875B+HmcL/F8Wfmn1z23WVM/Gliw42uFiAAYQ4n4N22S1rP6trKanXtDlqqifxF23J49NstPPDVRs59ZhEbDxW5L6t9bti0NiDNRFEU93tZaEBo7ewecxiYzBzIVxNwyfWm67eLDaFCMZNtMDAw60cGfNpEmxXhFx79qqHRE9GNsbpOpJR74aSNlhQMMgbVzg4IVD+r97uS1XVbgGjciyzmlEGQq4VOZfMvsKjN/qifrFYUxV1ZPVC/0T2u3/kTfVIiwKmdgPbuicKiqiKyyrMaXVPin59voMh1gsupwMcrD7gXTC2t8W6y2u60k12hfkdzV1YXH4LC/aDTU5XYm1m/7+Ou/60ny/UdJMcUwDKLmXWVvpvRO3//fF5d/yorMlYAEGgMxKQ3YdD5pv2lEKIhSVYLcQbbmKt+qUo1WAl1Kh6LK7YJbwOolVju3oc+Ws19/r75DPtiGNN3/U8dqLOQW5ApyN3P8bDR6Lc2IPmV+fx26De/3LbwDpvdRrsW7dxf4DfnbfbZbSeHJPPzZT8za+QsdaC6ArQkb0hs7QFkdVmzT/E+EqvJyrpr17Fk/BK1yqRe9dWynbnuvssH8iv4x4ISiO8GioOQAvVkkzeqibRqba1vd93FFXe7FmFqHWXFZKj9mtMpUU3Abj5cjNlVUWRTHCiuBGxz06qVQgNCa9+ngqLIKbVxuKgSnQ66tFTj758WRWxoIMWVNUwIGsl7WTl0tTu9Epc7ia7dbVeicGumOp4cGUSIubaTd0K4Bb0OiuwB0gbkFLL88HIA+sb3xaQ30SFSPRm9NX+rP8MC1NfPpjx14cCesUdeONDbdhXtAmq/83goOuD+b6jTlaz2YmX1lHOm8NGFHzEqZZS6+FixK1nuWmB3yQ71fc6o11Fe7WDW7/vdl9WmrFfqdc36GVFpr8TutAP1Z7GonwH78tQEXEqUZxKxnauy2qQoFCk1FFcV41S8854mjl9aeBr/6fcfru90vTrQ1MLJ9QS5ile88bmunQQ1G8211fiuz+oDBY2fFAHPRRbnHF7KjXExfG1yQDPPnGqQ4HfJKLaRW1qFyaCjVcGK2g3pK2kXUoPiCCJAF0KAIaBZ46lPO5GmfYfVlNpq2HxY3fbkuM4AfLo6HZNO/Zv1dhsQh+Lgwd4PckPnG2oXEN//OwD2uG5c+NZfPP79Vr7/K4NXF6vvx6tsWdwZF8NbBt/NBNpTtAdQ/zYA+if0Z9116/jwwg99FoMQwpMkq4U4g23MU5PV3WpcWYvYTu5tKaHqStJ7i/e6q5qp8U013aGyQ+RU5FChVQcFx3hs16q+M4xGjx6+vrImaw2XfXcZP+37yee3Lbzn3MRz+fLiL3lr+FsA7Czc6bVEZn0GvYH44HjaR7RXB8pcVU5Gi2vBo2C1HQ64W984FSdFtiKvr+RuMpiIskSpi/LUq6yev1mNc0zXeHQ62HS4mLLUiwCwZKnJKG9U4WoJo4bJ6lh3sjot2nNaem1ldQlm18GcE0Xt2+8FdXtWu2eAWKPY4KqqbhsT7E4KG/Q6zk4KB+BQuWuKs5f6vLqT6K7km1ZZvaWRFiAAJoOehHALFQS6K6ttJ0krCdG0lZkrAeifqLYJ6hipnozelr/NbzFpNudtpsZZQ4wlhoOlB7l78d28s/Edv8Syu0hdG6BteNvawdIsdSq/VlkdGOqTZHWcNY6zY85Wqw+1SldLBJhDURSFX3eq7yM3D1IT679sy6badVKrTVgbemEmzu5o1rYb2v016oxq9Xad91qgycrq1pFBVOkt7vcMkJNcJ5OE4ASuOOsKxrQZow5oyeqjVVa71tTwxue69vqwGC21n3+uYpkDeU1XVqe5WtDsyyvnkC2f1RYz+00mr8wGNRvM7vVCNHtz1b+31IgADAeWu3YMA8VJj5rV1BT1pafuFR7u83Czx1NXvk1NprsXaHXZnqV+5seHmbm6dyuSIiwUV9bw10H18dZ6hXtLoCGQq9pfxb097lVbzgC4Hqc9QWezN7ecoAC1evm7DRlUVjuwBqvfMcsVB9irvBofqNXf+4rVAovU8FQA90KUQgj/kWS1EGcwrXK0c4mrt1t0e/c2rcpob1HdZLVvEhSHStU+kYmuKr76PfS0aWSHjEaftwHJKs/i1oW3km/Lp4W5hc+SmcJ32ke0x6gzUlJd4p666HPuFiBx6sJaOl3tSRvXtrzKPAZ+NpAxc8f4rmKttPaAttruZOE29fdJ57Z2J4OXBw4EwJy7E/BOgsJdWR2gJatdcVlrK6tTYzyTJ50T1X23ZZZgMtVWHnmrpYVHsrqitg3I+nQ19nOSWnjsnxKlHnCna8eN3k5Wa1VnrmS1dkDbIS60wWWSWgRRgRmL63VW6cWEnfj7apw17grq7rHdAegQ4aqsLvB/ZXWP2B58O+5bpg2YRk5FDovTF7MuZ51fYjlYoiakW4e1Vgf2L4fXe8M7Q2DXQnWs7fm1yWovtgHx4D7BpSYH9+aVc6iwkgCDnjuGpBIdEkipzc4fe9T3lms7XssHgWdxSVk5NGOM7hYggaFq8qZOZbXTqXCgQP1e2Lpestpo0BMcEkZgne9IVQ7vJ53ECTrGBRb7x/Rg+YFDzHJEHnG/46UoSm1ltcFce7yhJasLmk5Wx4WqswpyS6sIclViqzMMmrcF2SN9H2H1tau5vuP1HuNa3/Zh1v3qDNSgKOh1MwDtCpcBcLjI+8U+Wju56KBoj/EtrjU8OsaHYtDrOL+DWj1/IEd9TyutLvX9sYyrsnqVUz3uvLp3K1q2sFBaZWf+lkyCXa/DMr3eJ8d56aXp1DhrsBgtnn21hRB+JclqIc5QiqK4F5HoXF4E6CAyzb29TZgrWV28F1yrf1Ptm2S1e9XoGlcy5UiV1bYisHuv72x9m/I2Ue2sJiUshTvPvhNQp1X/uPdHn8Ugmt+WvC3ufoIBhgB34mJv8V6f3P5P+37ixbUvsibLtaCWu4K5zpTcen2rteoep+L02sI9G3I28NBvD/HfLf9VB7Q+kEGR/L4nj1KbnZiQQLq3asFA10J8CzLM0KI1FldyxxvJYI9FH8GjDcgeV5VTWr0Fv5IjgggONFJtd1JcY8Lo5f7Lw5KH8ezAZ7m07aUeiSetsvrsVuEe+2vT6H+oXEb/Vom8Y/ROFaK7DYjWE9uixpHuSgakRDecZp0UYaEGI/0qq3kwv4CRCdJ/9mS2p2gPNoeNEFMIrUNbA2pltVFvxGww+70dg06no01YG/ol9HNPqS+oLPB5HIqiuGemJIUkwaE18NElYCsGxQk5rsR+2xGEaj2rvRjnW3+9xSfbPlHfz7X3DNf3n193qL/3SmlBiNnEBR3Vz4MFW7JqryDQdaKpGduAaMl5dzVpvfUBqu1OTAYdCeHmBpcNDArFAJhceTBJVp881uesZ3XWaveinse6wGKAJZwwp5MALxwPvHLeK8wYPEPt2a6drDUFoSgKB5uo4AeIDlF7QueVVbl7t1fodOrfsRfUr7jVktWjq12zLVPPg44Xq7FlLiGSYjKKvD+rILfClay21EtWZ6h/w9qsqXZx6nejg3kwqdMkbu16q1c/E3YW7mRDzoba11ppFhTsAXR8X5AMQI/kFlzRIwmAz1cfwuo66VCm1/lkkUWtBUhKWIq7+ju/Mp+7Ft3FlEVTvH77QojGGf0dgBDCPw6WHqS0upRAvYm06hoIawUBtRULqeGp3HH2HbQJa4Oy8Ud04LM2IBnlrlWjba4vq/W+PGvJ6sMm11tYRR6EJvgkNq3qu0NEB4JMQWzJ28JVP1xFkM7A0IAoLC17+yQO0XzsTjt3LLqD8ppyPrrwIzpEduClIS8RaYls0PvPW34//Dvf7vmW0IBQesb1bPzA0Z2sVhOzZqOZQEMgVY4qSqpLvBLrvuJ9zNs7j+KqYrW3pXawYQ5nxXZ1RsawDrHo9ToGto3mjaV7+G1XHkqH3sTumMsQSyIpsT2aPa5hrYaRFJJUuxBZncdrj7sNiOfjodfr6JgQyp/7CjhUrmdARSUEx3pt8Zw2YW3cJ/0ofxcAZ1CUe1E0re2HRqusLqyyUxJsoFRp/sSO3Wl3n9gIrXa9n7t6Vh90JatbRTSsXEtqoY61qzFydlUZhKY12EecPEqqSmgd2pp4a7z7wDs2KJY/r/4Tk8F0lEv7lpas1vrB+lJhVaF7CnxicCKsfB8c1Wrf3rI6SeCYDgyr1tExI4uY8yZ4JZZqRzWvb3gdQG3NUKd1EMCyXervg89SE1EjO8fxyaqD/Lwlm+njFPR6nXsxuuZcYLFHbA9WXr2y9qRenRODB1xJuqQWQRgNDeufLNYQyIMABWp00gbkZPLy2pdZl7OOFwa/wAWtL6jTBuTIPatx9UZv7tYMOp2OQS0H1Q6424AEk1dWTXm1A50OWrawNLhsZLDaC7rGobgXM6zU672WrK5vX145w/Rr6VjwC+j00O8Ode2OxB7oDq9lpPknvo4s4c5fvuP14a96LQ53srpeZbW2HkVH1+w3rcf37uxqPun5L6/Fo/lwy4d8t+c7/nHOP7i5683q7BXAEduFtQfVJPk5rVrQNSmcl37ZyYq9+Tjt6vteuV4P5d7/bNhfsh+oLdQCtRBk6aGl6HV6FEWRtiBC+IFUVgtxhlIUhTFtxnBeSComgKi2HttDAkK4vdvtjGg9Ap17gUXvV1Y7Fae7sjqx3FXF2VSyOkD9UurLViBaFVbLkJaAWq2WYAymQnHw2093+ywO0XzWZq+lwFaA2WgmrYWahGsd1tpniWqorRR292Cu1xsaaFBZDbXVbsXNPN1VU3cKOACVRepPcxi7stWEiFat0yO5BUEBBvLKqsgM60bH6hpetQVyb897mz2uhOAEhiQNoVt0N3XA9R5QYmhBfrk606J+GxCo7Vu9vwRezcnjVaIbHNh5hSu+HEcw5dUOggIMnBXr+fpq7aqsLq5UD7wrFHuzh1F3IaXgKtf7uTkMW42D7BI1+dBosto1VonrPddHi+2KE9M7vjffX/I9bwx/wz2m0+lOikT1lvwt3PfrfXy35zsAIs2uympbgc8rvrXP85igGHVRt0K1Zyl9b1fXC9CEtyI2KJKzq6pJULyTsNBaGxl0BvWzR0sKW2NQFIX1rhkZ56aqSZy+bSIJNOrJL6/mYEEF8/fNZ2D+Yv4ZE9WsPat1Oh1Wk7V2YbQ6Jwb35zfdmgEgKFj9bNBagdgckqw+WRRWqd+vW5hbqInnysa/b9dXpNiZGhnBYyYvL/TsTlYHcdC1uGJCmIVAY8OTy4FGA+FB/8/eeQdIUtXb/1NVnfPkuDmzsMASlpxRQEAxoegTA/r0meNTRJ8ZRZ8JA0aeIgYEAUkSlpyWhV2WZXOamZ2cp3s6d1f9/ri3qmd2J+5U97I/5/yzMzXpbnfVvd977vmeI+a2XF78Wwxl9Wce/wz/9ch/HZQT0tozyLecMhz7tI9bgaicdA0AFzuex+Hfy8s9m2wdz4Go8lUxLzSPOn+hbszkdHYeUKstkV1nXdE0g4nid6Za3bKBejAMeF6sS52Vp6IbUB/2UBv20BDx0hAR827HgJgz4qqKbt6bRURnvLMwRgkztFY3dFIl7OCdxSxmUcAsWT2LWfybYn54PtefeT03eJeKCweQ1aNQwoDF3mQvWT2LpmhURwsKnpFYFFnEfxz1H1yVl2TUcOnIalNZPSco2tUUReH1iiCd1ma6oHd3ycYyC3vwYNODAFww9wKc6uEhc4YyB9hajPCGBtjQMsAfN5vKtoLizyS3ixX6ZZLgVgu4qaz2RtglFczmxsflUFmzQAT7rMvK+aT1RdDzRRmbBV23iJ19aTEnNES8+FwHN4+Z7a+tw8UNMQR4tu1Z1raspTfZa3lW708H5DiCaOpo0qsq4CbgdpDVzTZmbLc40lSNDx7zQd694t04TfWlJ0LrgCCdgh4HYe/Bz4BJVncoLl5yu3m1d4ut45pFceBQx26gbI42W23Ppcbz7c/zYNODrG1eCxTCwHJGrnR+0BJV3io+cfwneOdyqZYeaBL/1hwNS18vPnaHhVWOX9YhRQp1HkgJQibsDgs1/AjroL54hqFkFkUp2Bs5NZUlNeJj029+UM8wqKq22oAchBHK6iZpzTC/8uCDQQB/MALAUekcq6tX41JdxRvXLKYF8+BSHIzIekNzgbdsgp+CrObgjlCAu5y6rT7H0UyUu3ffzdqWtfIPFTyrJ+r6MVEVEAepmYyY85Kq/WT18+3P81TbU+RH1DSZnE5oaDt1Sj+6pxzO+VLhB1ZeAZ4ICxDK4GSRD3m/eupXufeKezmjoWDTtas7RjZvEPI4LFV60OO0SOF1LfvY0b+jaFZyUCCrGwINsO2f0PYSOP08FH4LIFTVJlbUif1Uc0/hNU6UQJD0mRM+w91vvJu3LX2bdc2jFayNLvv5o2Tzh9c+axaz+HfELFk9i1n8u6NPkqtjkNW9yV6ebH2Sl/KS1CiBmi6VS3FizYmsqjgKh9kyegBZXeuv5QsnfYG3eeQJ+GFQVptkNcDxg5Ioczrh1dtLNpZZzBw5PccjzY8AiFZYiWw+y/de+B4fePADRfM0HglLWW0FBpphR6Il92eP7ubVmNhc9HQWVD0lU1a7QpBNgXwmE1qQ1gHxuiwZoRA+Sip3XkzWgCsImWHyXa/aPq61zWu5Z889dMW7BIGuC//l7VGxuVh0gF+1ibqweA3bk7L8ySSKFix048Yb+dRjn2JL7xZrjmpOib+/YAzfTUVRWFDpJ6OLDXlcUWyfc4OuIJ9Y/Qn+++T/LmzkPeFRZMBYra5zysW4X3K6eG99Dd/Zeaut45qFfcjr+VFkyoG4feftXHbnZfxs489KOKoCXup6CUDYHSEyAswulr5Uaa1A6gP1fHDVB7nmmGuE4s8kq8sXwNGCSKFKHOgP+8q5JRTkN033FWUsltLVLYmbeCGU1bQ2aizz4nEWlKXLasR8u6MzZnn1plTF1oDFp1qf4mvPfo179twjLoxUVksbkAPDFU2EQhEAftzVzx8u/oMV3D2Lw49RAcCxwnvKJFYHHjMrQ1HI6PYdpnYMd3DdM9fxree/JS6Y3QFOv+X3XB852ALERHVIkNWpjAMnCqqBrWS1buiWZVDAVagv9g8kWEYTAErDcQVxD4iPF52HX4bFZ40MOd3+jqmJYPpVH1UfGrW2L5UHXd/b+Dnees9b2dRdHNV3Ts9ZQeX1vlpY+03xhVM/yjMdYi47fkR+x3IZ8Ly7K80XfUv4Zk8fjhLYuficPhZGFlLrL9jg3LupC8MQteKe3kE2yXDsWcxiFqXDLFk9i1n8GyKv59k1sEtsaHt3iosVB5PVD+x7gI+u/Sh/HpbfUwJl9dzQXG6+6Gb+uObr4oI7PLr4GwmTxC4hWX3DWTdw/ZnXs6RMvl6pIRoHhNq6zaHB5tvFpncWRwRe7HqRgfQAZe4yTq4t+I07VAcP7HuAFzpf4NVe+8nWA3GwDYgkq4O19MTSPLGzhx4jAkBXewvdUbF5M+05iqWsHkVWWxsGhd1DYtNTGXBR7i+o5UzV3+6eJN0Nx3HCvDmc+NB7bB/Xr175Fdc+fS07BnYUyBNvGfsGxUZw4ThKPzMErC2u8sHaKo73xXhs/2O2jw8glh1BBkjiaXdc/P3xlIjzK/3kTWW1qhY31NbyHw/TItv5TW/qA1EVcONxqhiGUF0nZ4PSXrN4qeslTv3LqXzhyS+M+fV6fz0GhuXRWUrk9TwbuzcCwgvZRIWnApfqsgi0w4LhLqHmVFQIz4EVl8EVv4LLhcdsyl/ODRVl3Njz7ISHAYcKU1lt+fDHR4bGClJ4UdXoQ7jltYLk39EVtcjqpKLYagOytW8rd+y6Qxwy5HMFEj1QQ/MkNiCRSAQAN+nid9jMYsrI5rOWJUvAGRhxOD6xBQiA17QEw14PclMUYKlZMwVldceQ+NpYIZ4mTGV12DiaDZUXcnNnN6Tsq4vi2TgGorYfaRHX1BtnhdICgFJz9ME/6C3DO8LeqNS+7eZBl0kCm1gq5w49L143s16xG12JLvJGHqfqpDKbgr5doDrhtI+zpV3UlCPzO1bUiXFu74zxrrJVvGk4jsfG+Ww6+PMLLaDL7iQly9O7ew/LOGYxi39nzJLVs5jFvyHahtt48z/fzHl/Pw9joFlcrFx60PeZlgRDUrVYqoBFoEDWHaCqNtEV72KLy0m/qhY2dSXAMVXHcOnCSwu2CB2baMgJgiyqaQwN7IaOl0s2nlnMDBu6NgBwesPpo1rmFUXh9IbTAYpGZpowDGNCsvqfm9rJ6waRauHVXsUA25+7D2KdnFF/Blcuu5IFoQVFGdsoz+oR5OaubrGRXHyAgtkkU/b0xHE3nkhGVcihk81nizKusDs8ytvVtLMYK4QJoFYqq3vTDgwUckUM/bKUa4rDamneOiTI3vHInQWVftAF+S9IJ3uV1UPpIVqiLeL1Mw8fvBFa+sXcPneccSmKQmOZDyMvxpaaJatfs2iKNpHMJUmMkzFR7hW2GyY5WkrsGNjBcHYYv9PPsrJl1vXbLruNF9/9IsdVH1fS8Wzs3sjewb1ifuqXftXhRnC4hML02HdA9QpxOSB8YA2wFJZ24mCyumADsqdH/L2DyGrZMr+9I2b5qyYV1daAxURO3Edeh1ceDBqgOjC8ZdZ8O2cce4byshGWEkW0XJrF9DCSmBRk9RTDFQGHK4BTCjLs7Dozf5fX6RWHIuYa4/LTIZXVZmfUWKgKCtK1N54Bj6yjbFTkmuu5S3Xh1tzW9X29cZargqxmTLI6gssAyXMXzbd9e/92zrvtPD788IdHXW8dFK/rgTXRMtkRl86I/8twkQjhkX7VakJ2zgRqSGl+OobEazFyXjPntB1dMXTTFq/IntWZfIZvPPcNfrXpV2TlfjeVzbNp/xCGIWoeRc3yzCxZPYtZlByzZPUsZvFviJaYKKzKHX4UIw+uwJhFquWHa7b6lWCzYQUsjWg1HQtfffarvKPvSZ7yeQtKn8OB9o34DINKBNHZ5nDAy38+fOOZxbSwuXczAKuqVh30tXPnnAvA4/sfL5pVBAgyICfD9MLusLDbMInhQA3/2CCU+6cduxKAGmWQs557P9x8CVcuupzrTrnOaqm3GzFJeoRcodHhipZf9eiQwIVy09E7nIZgoeU7mbf3oMv0tg25QqM8VE1rkvHI6oDbQdDjII4bTxFDvwzDsAj1YE4S9Zqbbf3iwwXjKKsXVvrRc0GWpfMszGZttwF5uPlh3nDnG/jyU18e0wZkPNIJYE6ZF11u3FI2tn/Pwl50J8TzUOMbe+20DqHTQ0Wd18aCaQFyfPXxaGrBzsLr8I5pP1NsfObxz/DGu98oOjTMcMWy+WN+rzNQi1cX9UkxvLVH2YAYRiGLYwKyeplURzb1xVFl+GlSVWz1rDZJRJ/TB0NiLSJUTzRtEM8ItXTDOPYMlZEQOUPly5XlnH3XpTyw7wHbxjWLQ4dJvPqdfvEcxg6ut/f0DPPndS2kcwco4h1uPNLWImHjc2AeGns17+h1z+WnfcgkqydQVkuyuieWLipZPdICBGBfzzDLpbKa2rGV1QrgksGsySKJfroT3fQke+hP9Y+63j4OWW0GPMeTYu9SrK6W3qTYn1V5q0ZZG5k1R9DjsMIxQVgKeZwqqazOc8lhnvJ66E0Ut3u2K9HF33f+nd9s/g0ORbwer7YNkcnrqDhRUUHJsbFlkOF0aW1cZjGLf3eMnbwyi1lMBYYB931GFPanf/Jwj2YW04DpuzzXKYmmyiVj+tSZ6uGoLhUOJVBWf+SRj7B7cDf/EzmRs2BcZbU1NlUtWuDRgXi5+2W29m3l2OpjWVkhiEPaRUvzN2vPJVC1ggVNn4fNf4fXfQsc7gl+2yxeC/jciZ/j/Lnns6Z2zUFfO63+NJyqk/2x/ewd2suiyKKijMHr8PLgWx5kMD0oWmAHZbeD5qYt7WFLexSHqnD+CSvhiRE/2L8HHr8eLvxGUcYFcPNFNxPNRPE7/bD3KTngCLtkurzpe2gi4HZQG/LQGU3RmYugGQZ5RSGVSxW6EWaIkd6RgqwubLTb2syN2fika33YS1+XB48knpJFOIRL5VOWN2UoKzbaur+Snm5B8s4bx+N1XoUPPTWXH7TDfPpttwExN6QhV3DU4cP+frEZnCjAak65j9x+QRakdHuV8rOwDz1J8V5W+8ZeO02yOmfkGM4Oj2ppLzbMTpaRFiCHC4lswiJS5gTnQP/d4gtl43SpBKoI6jpJVS2K7dKVy67k9PrTRRdLJg6matVfxZ4eQaQvqho9b1QF3JT7XfTHM3QNyvlMsdez2lToex1eGJJ5CeG5tA6K6xV+1ygf7ZEIepzE8BBTVfrTA4fX5mUWFiLuCNetuY68IYnoESp+E5/4y0a2tEd5cmcPP7vqeBya1Lc5vXgNnRgqKRvvM8sGxOEpCGMUDTSXZQNSN5ENiCSrO2L9fLzrUZK11fwmOYhdR2Cjao4RiHfvJaQk0RUH6hh2ingiAPjzChm8lnLXbpiHlFW+qlHX2wZMC5XRZPVCOZekMy5cFM8GZEX5Cr508pdER09/QVhgWgjNr/CPOqjUVIVlNUE2tQ7xg96n2F1bzY/TvZxflNEJdMVFDVnrr7XGsr5JHB6e6vw+v/qPkznnB4/TnErwwr4+zls+uV3OLGYxC3swq6yexaGjdye8+Ht45GvFTR6fhe2wQgJ1OQWMVWAxwg/XbJMvAVndGmulO9GN12xjDVTTN5zmF4/v5lN/3cjPH9uNYRijyeoSeVavbVnL9S9cXwgaAousPmPxZRx33PvxButFy9qO+0syplnMDIsii3jr0rcyJzTnoK/5nD7W1AkSu5hWIKqiUh+o56iKo0ShbKqcgjVs6xDPweLqAOUhP7rsdtilC0uQ/LM3Mrj26/T27SzK2Fyai0pvpSAqLBuQiKWsXlx9MNFlWoPsS4cs9bKd7cLD2eHR3pGSrM75qoSqivGVfiA2vAnceM2xFaGl3yRlNEXDmxIfp12iJb7c7yLsdY75c7VSOTYsrUAYx8rhUGGpvR1ekESF4Q6NClgcD9VBN7m8SVbPqoteqzDDrMYjqz0Oj+VvPJgeLNWwAHGI41AchcNeiSdbn+QTj36C327+bcnG0josVMIhV0h0tIwMVxwL/mpC8oBrKGN/4Felt5Ljqo9jYXhhoaZxeEkpHqtj5MDgWEVRrHb+1j6do8KLOTqdwUiMVlfOBJay2uGDQakgDTdaoXcN43SxmONLKV5rHUjP2ge9JhB2h7ly+ZVcteIqccG0gHBLC4bOmBXM968tnXztni2FH9ZGrJ02BjubHU5eh3eUX3UyqzOYEATvhDYgAbE29cXyPB7byzqvh2Eb57d0Lo3X4RW2KSPgG9gOQDKyRNgHHQhvBIAftzhI7Pof5hXJss08pKzyFsjqdC5P9zg1kc/lIOh2YMiMjGLZgMwPz+eqFVdx0fyLRh2KNPeJA4mxrMdMf21d2o7Fi1CjjYS5Zo7sRnqxScyhJy+oQlEUTltUCcDTu0obAjwLe5DNZ7lp001c8+A13LX7LjL52e7AIwWzZPUsDh2mwsLQoX3D4R3LEYZHWx5l0CR+DgP2RyVZbbb3ReaO+X0mIRzLJ8mD7cTJgdANnfa48DdrTEtyK1DN9Q9s54Z/7eCul9v5/oM72NIeLRDpqgqJ0hQPrTGxuZ0TlMTmcE9hg1t/HKia8LgE2HhrScY0i+LCtAJ5rv250v1RK+yolh1SwWwGaalX3MQf3VdxceZ6Wue+kX/5PJzZejtfvPMtxQ/2lErcvDvMfulVuuQAZTUU1H9bh314Zbtwysb5ziSCPZoHl+ayNkBDmiCD/S5tVFvpgagLe0niKtiA2OjvasK0CQi6gigJod6MyfGN51cNUOEX6rC4bOm323qp4KMtXx/VSW/aQTKbR1EmJvkrA25yhiAEchhFU4jNYmYwFXbjkdVQsPgqdR3yywt+yQvvfuEg26KuRBeP7X+Ml7tfLtlYrEN7cz23bEAWkMjkaO6Lo+sj5lR/lUVWFyvQ1oJJ6gSq2NeXwDAg7HVS4T+YDDM9Xlt6Ff528R+5ubMbJZe0rStjlGe1WfdH5tAm14D6CQhEgKzmmSWrX+swBUdusZ7f9XIbUAgq/ssL+0lk5AGlqnJz1yBPNrdybMi+brPRymo5nhHhij6XRsgzfkO45VkdM/Cq4jkZtJFMP63hNF541wv86ZI/WdfyukFNYhcAylgWIGApq8PEyesGQ8nirJs90ipjpLLa9Pr2ONVRQdgmKoNukAfQxfDhPwgWWV05Qll9cD1khj9m5NjGy1+wC51xUXObZLWuG7zYLJTVJ84XGQ/HyxDIXd2z3SFHGgZSA7zr/nfx85d/zrrOdXzlma/wwYc+eLiHNYspYtYGZBaHDtO7DmD/C7DgrMM3liMIT7c9zWce/wyNwUZuufgWEaazf70gOhtWl2QM1ibNJIRD9WN+X9gVtj4eVlXCRS4YehI95PQcDsVBVXwQAMNfzdO7BNnTEPHSNpjk9pdambdQktWaCvHSKPtNJVZjoFFcaH4agHhkGW3xOBubH0IJBnk7QOsLJRnTkYbWWCs3rL+BTT2bWFW1incufyen1Z92WMZy/977iWainNl4Jg2BhjG/Z2nZUhZHFo/r/2oHXu19lYeaH2J52XIuWXhJ4fDFX8n2TlEYLzOT3Jdfwq4Vc8k938zvKz/HuUuWwt6/CV/5XAqcExMH00Eyl+Trz32dsCvM50/6PA5JbMXwYxgQ8jioDBxsdWOq/7b2KZhNu8loO1Qfa8u4DvKOlD6IvbrY4DSW+Sb0v60PezBQcRnivD5VhPbXKl8V3zvze6LNunMvAP2I93DBOBYgAC6HStif4wt1KXS1gUczMcan3acPi0RXZNu+J0yLVG3WhTy4HONrGCoDbtp1D5/oH8TTeLIVGDWL1xamQla/ecmbSeVShTC/EsKpHnxHm2rAfUP7MAyjJP7VZvCXNfebAYvlC7j69y+wvmmAMp+TT1+4lPecOh8CVYTykqy2Ubls4tZtt2IYBq+f/3qqxgxX9I/5upidLM19cZE/orkgnxHriGv8g7GpYkzP6vAc2rsEEXagvcCByGk+3IaoHYsVZjuL6aF9uJ3WWCt1/jrRVWaRwwF03eDujYKs/vzrl/Gt+7bRNphkY8sgpy8W6tIq1SU6LW3ssDmj4QxuOOsGMRek5V7D6bNC+OrCngnnBZOsHkhkWeoMkkz3MZAd5uCeuZlhpNd+dyzFEkS3gbvh4NwTwFJWR1Txf+qPZ8YkjmeKsZTVbdKvuiEiMwF0HV69A/Y9AfEejvK8g5a+OZxZ/VbObDzYCs8ObO3bSjKXZEF4AeXWvFZNU4s4iJ9XfnA9VC87zNI5DzghYWNn3liwlNV+Uefv6RlmKJnF41R5of/v/N/uLawMXCy+Nzo7hx1p+M3m37Ctfxthd5jLF13OLVtvYUP3BuLZuLA4nMVrGrPK6lkcOobaCh+3rj984ziCoBs6//Ps/5A38hxbdazwjtxwC/zuQvjDZSJYrQRjsMjqYUmKhcYm6pyak2vXXMt3jv0ELsMourLaVFXX+GtwyKKm24jQGU3h1BS+culRgFB9+BxigxZTVcjEiq8qBSu4pNIrCvb8PkFW/713Hhf//C6+te5b3NzyL/HNqSHIzyoPD0RLrIXH9j9Gf6qfx/c/zmcf/+xhU2j+Zftf+Pa6b1s+qmPhuOrjuPONd/KdM79TtHFs6d3Cza/ezEPND4kLJhHiLWdHpyAXTWU1wEkLhNLjpf0xwktEAT2kqpCzV7U2lB7ivr33cdvO29AUzQorGkIUd+OF8ZkhYHt745yY1zgzkcRno0K4PlDPjefdyHWnXCcuSGV0V0ZscCZqSweok+RKXU7h5GSKRne5bWMzEXaHuWThJVy26DIryb4nJ/7ueH7VJqr8AfqdOoOaRtLGgCiAaFYGU8qwJzxhOoemRjpVBd2kDC8fHIryH44qnJqdNPrUsa83zoNbOkerXmcBQF7Pc3TF0SyOLJ6QrP7IsR/h0yd8msZgYwlHNz5OqDkBn8NHS6yF5zpK08ViktX1gXoxh8gOiA611vIrHUhk+eHDO8nldfBE+NhQnFvaO7mgYhxiagb43ebf8b313xM+2mYOh7+afT1i7lxYdXAXC0BtSMx7ndGUyB7xyvksaQ+h/rPzfsbDb32YMxvOhEHTs7rR8sKdbL7VnX4rkG9WWf3awMPND/OBhz7Azzf9XFwYYQOyvqmf9qEUQY+Dc5dXc+J8caD1wr4R95OZx2IjiTgvNI+LF1wsui7MesHlt8jqydaniNeJQxXrWtApDoYHc8UNhW8bSDJHEc+qVjW2naKprL6lTMU79zc83fpMUcZiKatHktXWM+qDeB/c+lb4xzWw8RbY+S8+Hv8p+eQCTg69R9h0FAG/ePkXvPdf7+Xx/Y+PmNeqCtZjYyirq+WcFpc1XQK9qDaUpme1KUoxOxpX1IXY3PcKa1vWklHE62vWS7M4clDtrabMXcZ3z/wuXzjpC9Yzsntw92Ebk27oh+1vH2mYJatnceiIHkBWlzhV/kjExu6NdCe6CTqDvG3p27j1oU/yyoOfAQxRLJrBakVEVs/y3qPfyyULLqFuSHrjhscmqwHeufydXLbgYuFRV2TPatNmoyHQAFHx8cZBUawcNyfChUfVUBNyM5jI0twt7reoqggrmhIodgrhZKIQzuwRgXPr9BXoWbFB7Eh0kVPk1Foie5IjCafVn8YnV3+Smy64iYg7wnB2mFd7Xy35OHRDZ3u/8BpcWblyku8uLkz/U7M13yQ3854IeyVRsWwEWW2GGjb3xQlJYiKqFYesBnG/K4pi2YD0StL1wHR5E5bSrz/B17V6ftHVw1Jj7ACuQ0HIFeKcOedw/lwZuSPJ6o6UY8JxmTBVO+fHVH7X2c07as+wbWxjQr5uHWnxd+dXTqx2rAr4UeVymrCxjRlG2ICY67U3YrVZm37Z46Ey6CYhtfJGkfwtJ4JhGPzmyb28/kdP8p+3vMQvn9hT8jG81qGpGjddeBN3vvHOwnzyGsEft/yRd977Tm7feftBXwu6glyx5AoA/rT1Twd9vRjoiHcAUOevKyiGPWGeahFelqsaw0R8TgYTWTbuHwRFYZmrjOPSGcpz9vtdmm34AVfA6hbBX2mpI8eb12pMsnoozZX3XsnZlW72Oh221R8BV4Bafy2+UTYgc0eoNieeN3D5cZuWS7PK6jGxqWcTP37pxyUj863uJNN/OV2w3djQMgjAWUur8Dg1TpI2CC82F8jqu/wevllRxgvFsu0ZSVbL+8w8lBkPqqpY6mqvIwLAgJ4GPW/LkG7bcRsfXftR7t17r3WtdSBJrSJfl3E6VE1l9W6XA4d/Dy3RdlvGcyAag43MD82n1l9bGN8IZTV/exfsWQsOD5zyX+DwsDy5gUvV5+kZLt59Z+YihF1ha17L+SotIn3+GIf31fJ9jMqaKaEW6s9i4EDP6qZecf8tqPSL0HPA7ZRdNakcyYw999QsSoP3Hv1eHnzrg5xefzoAnz7h0/z4nB8zPzT/sI3pjXe9kUv+cQk7B4qTN/T/E2bJ6lkcErb0beEXQ5tF6jiIorh/7+Ed1BGAB5seBODcuedyz/Pf53udj/GozysSr6Hgf1xEuDU3Hz/+43zv1K/jkEqi8ZTVFpySXMlnIF+8YC1L6eStsgi7J7rEBu2UhRVoqsIVxwsl2Lb9Pj6w8v1cEZNFbZFDPrP5rNUOG3KHIN6Hd2AHALnGU1HyQQzdQd7I0xGoED9kbjhnMQrXHHMNpzecboUXPt/+fMnH0BnvFGFfqoO5QenZns/B/Z+Hp34oPjcM2zY6E8EkhS3bHams7tMD5HSDoMdB3QgicU6ZeB4HE1nQRaE/rKrkc8UJ4zMPZ8yARVPBbI7jQFQF3Dg1hbxukPZIlU+s09axjYIkq1sTgqyeyHcZCsrqmC7VYVn71Vd7h/aytmUtuwZ2Wa9ba1L8vUmV1UE3Lhl+azdZffH8i7ly2ZXMV+X95Albba2TkQGVARcJw00WeCbVwwP7HrB1bJPhnlc6+Pb928hIK4YfPbyTl/cPlnQM/78gmUtaYcalwpa+Lbza9+q4oY5XLb8KBYWn2p5i39C+oo/nLUvewseP/zgn1JwAJoEUrOeJXUJBd+6yas5ZKuavtdvk6xSQ85nNoc55PW/VF36nf1QQmUkKj6csNQ+Z+uJpBlKD9CsGcUUtdOjYhdRgQYEbbqTdIsImPnxT3QFq8zlq8qEJ1f7/zuhJ9HDL1lt4pq04qtsDYR6MWGv7CBuQXWZOhgzuPFl2cm1oHiQr597nXCq3hYJsG7LvwPCVnld4pPkRWqIto8jqdtMGZJJ1HQpWIA41AsCgqkLaHn/5bf3beLL1SaszFaC9b4gqRf7+8fZRrgCoDjzS734wVRy19w/O/gH3XHEPKypWWNdMQniFdxBangNFhQ88DBddD2d8BoD/dv6J/YPN4nUvAizRgztkzWvd+SA53cDtUC1ieiSqQ+JaPie6txKKau0Ji4Hfvu633P3Guzmp9iQA9vWKWnpBhR+3JsenZPA6xV591grkyIPX4bVshC5bdBnnzzv/sB3oZ/Us+2P72R/bLzrsZzEhZsnqWRwS3nHvO/glg9wX8IE5kc9agUyIvJ7nkeZHAHh9YBHLdj0OwPbqxbBMtPKXgqy2EJObM4cXvGUYhsFt6/dzx0ut9I04Zd81sIsnul+izSEJ9SJagVT7qjmh5gSWe8SGxnCHeKJZjOWUhYIAPm2R+LepI8CnTvw0V5hDLbLSz1S/KihCjdLyLAC79AZOOnopxzSWo2dFu2SrPyJ+KDFLVpvYO7SXLX1bMEZ0YJxSdwoAz3eUnqxuGmoCYG5wLg5Vxjdsuxte+DWs/Tpsvx9uuQLjp8dxxR2XcN5t59GXLI5S3lKeWMpqQTK0pcXmbHltcJRXo99d8IruG7EPS9scFGiR1TLM1FS2tEm1y3hKP1VVqJLjizmFZY6dZPWO/h3cs+cetvZtFRfkZqh5WJPjmpg8MYn/uFGcEEOAR5of4VOPfYo/bfuT9bq1plxyfJPbbWi6+L/YbQPy7qPezXWnXMciQ1p4eMJWm/Vkymq3QwOXjxe8Hj5COzesv6GkrYx/f1GQBO87fT6Xrqojpxt8/u+bRs0phwvN0WY+/PCHizZHTBVTfS1ufvVmLv7Hxfxq06+KPKICTAJ6QXiBdS2VzXPnn37Ggz/7BNWeek6tPxUoTaDtmY1n8qFVH2JZ+TKICZW1Eazjmd1i3T5raSXnrxBKu7XbhPJupy/MH0NB1rY9betYEiMOGgVZbZLj1RYp3DgOWVfuc+HUFAwDnIqY05KqYpuy+rsvfJcb1t/AYLecb/1VpBUX3TFRfNVPoqzWPAHeGotzdd8JfHDVbKjVWLhv731k9IwV9FZsWB02LtmxlS7YgOzqFh+b4cmLqwKEvU6S2Txb2kVN4FVEzZSycT/w1+1/5dOPf5q1LWsL+wynz+r8qZ9kfQKsukg1QjgMg7SiWPZlM8WBnZUAsR6xJuUUJ/gqxv5BRQFPRHSnAkNFIqvHQtugeB2PTa4TF+asgTppYXT6J0k7Iwy54zyW+hwfeOgDRRmDWUeGnUFrT9SSFgf28yp8qOrBPuRuh0aZz0kuvpTPxVXeEI9bh/7FQMAVYGFkoZWD0tQn3qP5lX4R+Amk9bRVI3XOktVHBAZSA7zU9ZJ1EPxaQcdwB3kjj0fzjLLtmcXYmCWrZzFtjCymoqoKi86TX9h8mEZ0ZGBj90Z6kj0EXUFO3buOZRnRRrpDM6Bcbt5KQFbvj+6nbbiNvNn2GqoHReGxHd184Y5X+OzfN3HK9WutDduNG2/kY098hme8cqNURCuQK5Zcwf9d9H+8KyJStbOBRtqHhF/16rmCCF5RJwrFpr64SCeX6eXFJqtDrhC/f/3vufG8G9FUDaNJbFbX6cs5cX45py2qwMiJsfWbY5q1AbHwf6/+H++49x3cuPFG69opdafgdXgJu8MlJ5z2RQVxYrWBGQY889PCN/ztXbD3MZTBFrpi++lJ9lhFt90wQ+8ssloq4vYlxMZraU3woJ+ZJ33+OgYLnQ5Ju8nq9IHKarHpa4mLjep4ntVQ8Bz8TnYvJ89r5M99G20b19qWtVz79LXcsfMO8b7J//eeqNj0TEYGe5wa5X4Xz3s1zpjbwIe3/sa2sZmwyABn0NpkDRp+3A6ViknClSoDbjRdvMaJcVSoM4YcH+6g5cFYF55cueb0BjkpmcJnQG+yt3BgUGT0Dqd5do+YT68+dT7fftMx+Fwau7qHrbb1w4mvPvNVnml/hutfuP6wjuOPW//I6X85nf998X8n/D5zrhlIF0+tNhK6odMUbQJgYXghIN7Tt/3yac7f9W1e3/sH1j54F2c2nMmF8y4UPtKlRFSQ1QNaBYOJLEG3g2MbI5y1tApNVdjVPUxLX4LNLgffryjjrt6XbP3zCUnOaYqGS3VZKkLDW0b74MSevaqqUB30yJ8Xa0ZKUWxRVhuGwV+3/5Vbtt5Cekja1IUbrTnD41QnDYtz+cT6padKbx30WkdvUtTZZg6K+XmxYdYyAVdArKGyftadfnZbZLV431RV4STpW71e+labZHXSxm6uVF7cU16Hd5TSu3MaympzbT0u8G429Gb50FDUNrJ6WI7Jsk4B0v1iH5Xy1ghSejx4I3ilb3ssU9zsn1Ho30s1A8zrl4drS15X+JrTQ3/9WfjkgXO8CB1mhmEUOgcNQ1g2AruHxTw1d4xwRRM1IQ96ag5X5MOclEoXVVl9IMayAUnn0tRIxfessvrIwNNtT/Pef72XDz30oVHX0/k0j7U8xh+2/OGwjKslJroY5oTmlCRM+kjHLFk9i2njif1PWB97dQNqBbGIzUTJ/2/Y0rcFVVE5t+50nFvvZkkmi4JCb7KX3qA8WSsBWf2jDT/iojsu4tbdd4kL0q/6X6+KQwinppDNG5aKzdzURp1my3wJCq0hMZEPuISqaUVdCK9LKA2rgm4qA24Mw+CJfdvZ4vWRg6LbgLg0FyfVnsTZc84GCn7VLykrObo+zOmLKjHygrwbcEsFSHyWrAZRGDzSIroKTOUcCI+9Z97xDD8976clX7BNZfX88HxxofkZ6HhZ+Pn5q0VRrTogUEMoJwjhYpHVB3tWiw3hrphQv44MVzQxTxLFLQMJrkjDW6MxHLq9Fj3j2YDsHRbjmkjBbBb1CZwkVZWkjXYWo1Rh2YS1AdonldWTBX6BsLxI42RI04gWIYRp1BilsnrI8NMQ8U56r1cF3ShS+Zy0qYUZRHdPS7SFwdQgRkqu166gpRKaTFkN4PEFcQFrpGXv4/sft218E+H+zR3kdYNVjWHmV/oJ+5xctFJ4c965sbUkYxgPLdEWNnRvQFVUkrkkH1v7sZLaa4xEd6KbaCY66eFfmVuQT+NZctiNrngXyVwSh+KwQh1/+9Q+Bjv2EFJETbF34+O8dck7+eE5P+ScOecUdTwDqQGean3KWgfMTrO9mQgApy6qwKGphL1OTpwnXqsnd/XgkWFpKZuVWnE5B/mcPjE/SIJtWAmQzAorqomeT+trct5IqKoth+VZPUveEH/fNyyJ1PAcy16gfgrzmccn1g8lG39NdEG8VpDMJXnd7a/j4jsutrq7SkVWm8SrtYYi3pf2hEYym8elqVaNAbCqMQIUgue8crx2Pgem+tHj8IBJ6Lp8VmdB3RTWpwqprB6M6ygeWU+l7FlDY1np8+0aEXQq7YP0QN3EP+yJ4JH3frwIZPXOgZ2cf9v5XPPgNeJCJoH+wJf4c/KjrHV/jnCH6ARl6egQxezCC/BJEj2ZTdr+fMazcWv+CGdkG6y3nP1DIlR9Tvn4tZoVsqjK+rdIntU7+nfwtWe/xm07bgMgmsrSFxcFzvxKP24ZJprMJUfkA8yS1UcCNvcKEeXRlUePup7X83zisU/wgxd/cFi64UzLnTmBOSX/20ciZsnqWUwb5uk3QNodBLMgmA1OmRBXr7yadVet43OuOZBL4qtawbyQ8MrdaVps9Bffp9FqxTW7t0MN5HWDR6Qn48fPE4nWj27vJpvXLaIq6pDqmSKR1YZhkM2LAsZMnO9ShB3I4qrAqO9dURcEDL7w/FW8I5BnUFOL0so/LpIDuHqFojBRtwaXQ+XE+WWouhhnN9JWYtYGBBCWCLFMjDp/HaurV4/6mlNzHpYxmSo/S1m9TrTDv1J1KX+o/iwJTzXpN/wE3vQLgtJr0CQg7YZJGFneZVIRtzsmnrmxPI5NVXNLX4JvpF38T98AYdXe1/IgstqyARHF+0QKZrOozxpi7EkbiX5zXEFX0DokNRSVhOGeknIZhCeibojvSxYh1GrUGCXJP4R/SkR6VdCNKx3hqHQat43zbX+qnzfc+QbOvu1sKyDRcPkLntVTIav94l44JSk2cy/3vGzb+CbCPZsEKXD5sQXF7ZtXN8qvdZDOHb7Ao3v23gOIg7jt/dt5ovUJepL2ehpPFSZJfpA3cKJfzHEyR8Gca0pFVpt1x9zQXJxynlrf1M8KpeCTuji73TokLzY2927mv9b+F59/8vPiglRW700JYuTYORHre1dLsnpbRxSPbPW3m6w2ldV+p5zrJVndkxVzbWXAjcc5fkit6Tdv6HJOU+yxAUmMmH+88jUaHa44+XzmCYR41uPht3N28olHPzXjMR0qhpJZfvzITl5ts9da6VCxsWsjWT1LzsixpEzU3aWaN0Z1/lhCD4WdA2IeXVjlx6EVKAKzk6ulT9wPHk3eZzbu+0yy2uvwWvuMrOYjmhKH8DWTZCqAyFUA4d+OZ3RH2Ewx6jUDdN3AlRAiHy3SOPEPeyN45aF6ogiWBAOpAbqT3YXDjke/hbruF6iKQVBJouTTEJ4D1StG/Zxr+YW45dKZM3JkdHuDY831xaN58JjvQ6Da8iGvn6CbqyboBjXFC5rKy25X0WxAtvdv545dd/Bw88NAQVVdGXATaH4U74ZbASG6MefZWRuQIwObewRZfUzlMaOu+5w+GgPimd0zWPqgbtP3fq7kgGYxMWbJ6llMG1evvJrvLLySK6MxVrorwGnaQ5SwtekIhcfhoezVf4hPVl/NioqjAHgmJTcBA02iJa9IyOk5mqOilXNhWi62oXpeah6gP54h7HXyn2cvpMLvIprKsb6pfwRZLYmwItmAdCe6OeFPJ3DRHRdhDIoNbFNOBLssrBpN1h1VFwJUnIoooKOqWmhrLxJ2DuzkL9v/wrqOddDyPAoGe/VaFi9aDAhrgcXui4g3fYRTDXFtNmBR4M5ddwJwxeIr0NSxN9zFUi2Ph++f9X3+ePEfObPxTNB12PckAF9pWsX/bJvDUYM/5kfdJ0LtsYRMstruwCqJX1/4a2679DaOqjhKjEUW5TulsnosgtPcPDb3JYQaHGw/MPzwqg/z2Nsf46PHfVSET8pnbMjwU+534Xc7xv1ZMzQnmRfPbsrGw6RRqmVJVuedAUCZktLPHJ8uAxaTeta2sZkwW18jrrC1WTaV1ZOhMuCipvNs/tbexZqEffPtyNdNlet1HA/ZvIGiMGbQ0YEIBMR6UCNVUlEbld/jIZ7O8WKzaAF+w6qCgu3URRXUhjwMJbM8tv3wKJl1Q+eePYKsfuOiN1qK5SGbvcanijHJ6mwSfno8PPAFeFZYHUWkQniwiD6gI9ERFzVOQ0B0cqVzeTa3DY0iq1eru/jLuhZ0Qy/awaAJK8zZLw8/pLJ6W0L69FYXDsjNzpYdnTG8QTH+lM1z7cLwQv548R/53pnfExfk/dMpDwYbJvGFNok8M5AsZRNZbRKILtWFQ/p6i3DFyckmEy5viJwCA64crWZWSolhGAZfuH0TP35kF1f+6jk2tpTOUmA8PN8psjpOqTul5DYg7zv6fXxy9SeFJc8Iy42d3WKdHnn/A8yVh+PN/eLrXtU86LXvOTCfqZE2IHF5oOxxqoQ849cbJkxLmrbhFj7pHOaLVRX224BIZXXPcJoqQzxj3opJyGpPBJ9uoBgKqaz9IfWW1YbZndf2IgDfzb6D9Yr0qF5x2UFWJeUVtWzXF1uf220FEnQF+dLJX+Jjx39sVGhsh6mWn2Beqwl50DztXOdt4n8qK4pmA9IeF3OSuTbtsyxAfLDhD7xn/zbWz383Xzvta9Y82x21X+AwC3uRzqfZPrAdgFVVqw76+uIycd/vGtxV0nFBgayeE5xVVk8Fs2T1kYa2l+CF38AjX4eXDo/XDsBl7hqu6xvgpOB8cMpWsSJ6Gf9/Az0PXVvEx8su4g0L3gDA8/3bMBQVckkYLt6muzXWSlbP4nV4qRuWxFuogYe2CHXA+curcTs0zlsuNroPb+2yip8hrbgBi52JTgwMdENHkX7a21IRABYdpKyWiom82CgJsrq4yur1nev5zrrv8LcdfwPLr3oFS6oLFg1HVS1GT84jlZNBK7PKavZH97Oucx0KCm9a/KaDvj6YGuQN/3gD5/ztHNsJgIkQ8UQ4vvp4sUns2QapQbKql1eNBQQlCfvw1k7wVxJE3PvRweJ0PtT6a1lRsUKo6lKDlq1Fe0bMrWMRnJbSqT9BWnMypKpkbG4vdWpOKr2VgtgaQUrG8E3qC222cMby4tlN6Rnb1ohRQUdyXBlNkOJTaRUGoV42zPmjCMpqSy2vuaz3M8rUyOqqoJshqUg3bCQ9LbW3s0DyD+UFGVYVcOPUJi8JgyGxHpRLEqsUh0zbO6MYhlCPjvTV1lSFS44R5PUzuw+P5dLL3S/TNtxGwBng3DnnWorlUnlBH4gxyep/frygSmsRQVsjldWlsGbQVI25wbmWBciW9iiZnM4qZ8HCpUYZZGBoHatvWc1b/vmWoo7HIqtNb2ypGt40KObVkTXHMpOs7orhjgglVErP2Cos8Dl9HF99PKtrVovfK5/71qQg38bzqzZRG5bBcvlKVvgbRDdQcuaHq2bwo9fpLZBFvoppWQfh9FkWCIns4VEk/mNDGw9uESGZ8Uyeq3//wmFv5X++XZDVa+rWWCFbPYnSKKvfsPANXHPMNdQF6gpktTvAri7x8YE5GWZ3V1c0TSqbx6OZh9H2rZ2WDYhWsAGJyvWpJuSZ0iG0ZQOSTPEocZ71emwjq7PyUNsMpWwdSFCriHVHlXaK48Ib4T+iMa7ZfTxa/9ttGc9ImFZyVhi2FFZs0JfwvYpvwlV/h/OuO+jnXA6VF7QT8OrF8a0Ou8NcteIqrl559QiyutIKdZ4oJ6Mm5LY6RRKqUjQbkI5hMffX+UUt0dQr7r35FX6IdeACPJkEqqLOBiweQdjev52cnqPcU24dRIzEkojoZtk9uLvUQ2NRZBGrKlexKLKo5H/7SMQsWX2kYfPtcP/n4Okfwj2fgN7SnggNZ4bFxsYM5ws3jlBWz5LV42F953redf+7+OULN0A+A5oLwnM4veF0bjzvRv522W0oIXkyX0Tf6j1Dot1lfmg+qqlwCTXw2A6xwb3wqJpR/z68tcsqzKJmYnOR3ueuuNhI1PprYUicOr4cFX974ThkdSbrkWNTi+5ZPcoSofkZQJDVcysKvn7zK0VB35yWz8SsZ7XVIn9a/WliY3QAwu4wiVyCrJ4tWVjbQWgWfn7bnSvIo/GhsxaiqQp7euK09CcJSSVNLNoy0W+xB5IQyDv9ZHFQGXCN2f5tBtO0DyV5lyvKGfMaeVGqCIo5rozmI4eDORP4VUNB6TeYFv8mFQVinRP9yJQxnB3htylJ16QqxjMl8gRBzhq6eE5jRpa8bq+NhElWhw1RZmVwkcY1JRuQCr+bGKYdwKBtYxplTSIJiv6c2NxP9XULhcTcG5b+6MVWwAJs7RB/Q9g/jcZyeW1v7+EJb9vUswkQ85vH4bEOd0tlrzEShmEcTFYPtsDmvxe+SR42m2R1Vs9ahGQx8abFb+K+N9/HtWuuBWCDVMof4xBrvSE9cJfnO8kbefqSfUUl0U01XX2gHnIZi0hpzoZxqIp1GAiwsDKAQ1WIpXIMO8QalsQoXuBXNgHy+WpOCKX0ZGS1Od/645dz26nf4dJ4wpaARZNA9Dl8Be9fd3Ba1kG4/Ljle5myUYk7VWRyOt+4V9QWHzt3Mctrg0RTOf71akfJx2IilomxvV+s12tq11Dtq+boiqM5rvq40vt6m7Wzy8+ubjHXLjlAWV3mc1qH+C39CS7y1PPA/ja+VXEqdmG0slqQpoOyU2AqXT9QCFgckrkaQ6pK3qbn9Kl3PMWGd2+wiK/WgSS1ivzdoUkCYb1lqECEOANxe602YEQnl2UlJ/YeAwSpDAdh6evANXaY4X7vUZZvdaKYHdJyjtX9VRbZWz+Bsro65MGQ3W9xRS2esvqAg8umPnHvza/0F2pWKYqY9aw+cjDSAmSsgy7TemnXQOmV1Z8+4dPc+oZbOaHmhJL/7SMRs2T1kYb61bD8UhEABiUnq//zkf/kgr9fwJP9W2h3aPT6ysAxS1ZPhi29W3il5xV29UpVddkCUDUcqoNz5pwjwlXK5omvDRTPt9r0jVwUWQRDbQAkfbXslW1PJy0QthtnLqnCoSq0DiTJZaX60Jzsi6Rg7koIsrrGW2kVCLtSZagKozaOIGxBXJpKXpLVQ6paUIcUCWa7e0jzYHQIgmKdvmJUCE15KImz7GkezkoPrFllNS93vwzABfMuGPPriqJwXNVxAGzs3liSMb3U9RI3rL+Bx1oeExckWb02IU65Lz6m1grVenxnNw3eKhZnMgRS9hNz/al+fvjiD/njlj+KCyYp7IwA43uCVgZc+FwahgEuSYgmbSadfvPKb/j2899m58BOizRNyrCbyZTVZsDicEqOTVVhuMuWcY2yAZEEyjDiOZxKWzqIjZCeKzy7JgFuF7548he5ds21NGrm/Ck2ipORTiAUw5mq3VzUWM8NIQ/YpEa0FOnukDWP92YEAVE7BT9QgLJIBIC6XJ5fnvl9brrgJlvGNhG2tov3+Kj60EFfWyQtovb2lDCzYAT8Tj/LypaxokJ4gZZ5ShtcOBLRTNTyHDXJ6vzQaNsFXeZBeB1e3rb0bXzg6A8cltC7DS0D+ElSnRPjU5ZdAsBJhqhLMnrG9mdyJEbZgAx3Aga66qSfIPMr/aO6DFwO1VJat8VksJyiQP9e28azpW8Lt2y9hec7ni8oQRWNJskPT6qsls9vVzQFPlHHkeibsfrbJK+8Dm+hu8YdssiaKc0broClrE7nSt8+//L+QYaSWSr8Lj51wRIuk773z+45fGKCV3tfxcCgIdBAla+KCm8Ff7n0L/z43B8XPWw6m8/yQscLbO3bKp59K78gwO5u8fGSmtFktaIoljCjpS9B0BWkMZcnbOPc8bmTPsdXT/2q6L6QCt/+rCSrp7g+VUjP6gFpoaYrCrGUffZtTs2Jqoi5QZDVhQ7VCSFtl8JKnHgmTypr7+G4ZQPiCosOXlmvDRqBSQ+UBkPLefPwMP8xFCWk27sWtMZaeanrJaFell3DcUcZed1AUxWqgxPbgGB68KsKRpFtQExltWUDUuGBWCdbXU6+PLSRn238mfVadsdS6Da/VrOwF+Zh4MqKlWN+fXFE2IDsHtw9G/z7GscsWX2EIXf0FXRf/iO6554oLhRRhXsgUrkUW/u20p3s5olEK6+f08CPoq/OKqunANM3aZkqX6uKMVo/yheIf4uprJZBAguDcy0idU8qjGEI8qtSttB5XZq1Oculqvnvk/6bD2uiTbFY73NnXBDUNZoPMNA1N72EaCzzHaQsdWoqC6v8ljIyqpWArDaV1ekEiqHTZlQQc9dYHnkAAV8cT+29bPW8LC7Melbzs/N/xl/f8FfOnXPu6C/ksyLwa9fDHFd9HFC6sLYXOl/glq23sLZlrdjMtzwHwHO55VQH3SyqCnDOMkH2PL6jh/+sO5s72zp5R27y4L7poivexc1bbub/tvyfuCDVcAlNkMLjkRSKolg+kk65lNsd+vVQ80P8dcdfRdeDbME0SddJbUDkJmQ4HmB1XmNhJmvbM3rdKdfx7TO+zbzQPEtZHZVzwUQeiCNRFXSTxMdxqTRr1KDV4msXLpx3Ie9c/k7COfF7B3Txuk3FBgTA5fHQ5nTQ6nDYpq4e1R0i1XTdabGpn6p9SkUoQNpw4DUMzqg4mmOqjpn8h2aIbR1i3Jb90wgsrBTrVMdQikTGfi/QyfD2ZW/n9stv55pjrgEKnqEDqdLbgKTzaU6vP53V1atxyQC0fc1NAOzWBUGnpgYgPYyiKHz11K/yqRM+ZXmwlgqGYfBS8wDLFBmmGKiFZRcD8B71MdyGWO+L6d9remjXBeosC5C4qwoD9aBAZyhYgfQM+PiVXsXPunpsJatf6HiBG9bfwD93/7NAVnvCVhDZZJ7VI9vTDa8kq3OpGdu2HVd9HA++5UF+dv7PrLkWT8hSRk4l9A6XH7ckdrJ66cnqp3eL++i0xZU4NJVTFwmbtnX7+g8b4bS5d+zgr1KgN9nLBx76AO++/93ignxfcw4/iYwgURvH6JyycjL6E+CQSmcbrdsunHchb1v6NnHgd8Bhas0EpOZImPV4TlcJSF/tgYHiBKi19Q9Tw1SV1RF2uJzcVteFu/ZOBhL2qqtHeVanhizrsQECkz6jvnAlb+pz8YX+Qepi9tpQ3rf3Pt77r/fyq1cK4b79SgQQAYqaOv7BjLABEfdZTlHIFiFfQTd0a+9pKqtbB8ScudCbACNPr6bxz1wfT7U9ZSn8s3nD9vdwFvbiymVXcu2aazl7ztljfn1+aD4OxUE8G7fugVIgq9vfyfn/O2bJ6iMMv9v8O87/+/n8TJVFYwnJ6ld7XyWn56j2VrMwITaPKYdrhGf1bMDieNjRvwOA5eZmunzhqK9/5JGPcGV8M72aCgPNRRvHJQsu4ZpjruHkkCTLNRdbBsQ0sLx2NBFgtlx39Ll591Hv5nyXVPMX6X22lNXSHzjmqQOUg8IVTTREvAXP2RJ4VltET16QT61GFXPLfaNUMMuqhX1KTpUbsmS/CMz7N4ZLc7GyciUV3orCxVgn/OEyEfj1t//g+MhSADZ1byrJCbepqpsTnCM6GWId5BUHLxuLOGNxJYqicO5ycTjz7J5eMmF5kNRn/6bH9Aj0O+V9Ln1GhxDP30Tk5hxJVjt0SVbb/GyODjIU9/+gLhXMk5CuZT4nTk0hP3wUv85W8rHBIdsOus5oOIPLF10uNmZyo23aWUzZszrgJoGbWzq6+K3aYAVc2Q5L4eRDVaZut1HmEXNJl8Nhm+fmqPdTHhy0J8V8WztFRXplwE0KQQLomeIfUOd1g+2dUlk9Blld5ndR5hOE++FSV4+EGbBot/fnVFDtq+amC2/iDxcX8kz2twrroja1lqghazXTxq2EeO+/3suV917J7oHddMfSdEXTHKVJW6Xao+GoNzJQdiwBJUWtJMD6ksVRvhqGYQVLlnvKrXDFPlWsUQeGy0GBrN7bneW08hUcl85Av31dcOb94nP6RpPVMohsqjYgOd8LXHTv2/lupZmbMTNVqUtzUR+oF2ul7GJJOwL0SyuDKc237oKyOmuUnqx+VpLVp0uS+piGMH6XxlAyy9aO0gY7mzi++niuWn4V5889f9R1wzCKTmTEsoV1QFEUq3ZOSTFNuX9s6zHTt7qlL04nOj8si/DLoVeLM0jpWd2TFmR1dWhqNiBuh0ZQBjEGndKSqXPTjOvwfUP7+Njaj/HdF75rXYv2teNQdHTUQrfzePBEiKkqr/izOHx7rOfHLlR4K1gYXkiNv6YgeFCEZZvpZz8eqoJuthjzxSeya9QujPLSjgsivCcv1vG6Sea0yoAbxXBanydsVMib6Ev2kdWzaIpGta+aVDZP77B4bxrUQYBRXSFOTaVSqvdnfatf2zim6hjeufydIrh+DDg1Jz8690fccfkdVPmqSjauh5se5sQ/ncgXnvhCyf7mkY5ZsvoIg9na2W2eRhbRMuJAmC36x1etwitVdmnN8dpXVudz8Oi3YO8Th+XPZ/IZy35j2bA8hT9AWb2ldwtbM30MqJptxMRYOLPxTD65+pMc65bEjK+S7TJQxdyMmTBVbNukX2ixDyXMk83anCjUezVB1hwYrmiiOuQhH1/K64zFrE6li+9ZbdqAyJb8biNiKVutMfnlBlHNijZhQy+er+URDP3v77PUzOSSrOjciUt1MZAeoG24reh/31TsVfmqoG0DALsdS0jjslRXy2qCVAXdpLI6e3RxL9JvP1lt+sX6zOdLbjT6DXHfT+RxbFptaNIGJGVzUOAob2hJVAzkBTkxGemqKIUWz7QiN0vFWCMkWd1nkdVTI12rgm6ShviZfNpeYrE/1c/a5rW80vOKpUgfMvzUhjxTCjEEqPGKe67TodkWLLSifAVXLruSk2pPssjqtrhJVk/REzTgIon43rv2PswftvyhqKFgTX1xUlkdr1OzyJIDYWYamHZWpUJez6Mbo0mQty59K+vftZ7rz7y+pGMZD/3dQjVcXtVAmyHW/WinUAQnsglaY62WKq+Y2N6/na19W3GoDutQ4XK3tH1qOAFcfqLvuo/78idTkRc1QF+qSGQ1Btedch2fO/FzwuNVKqvbdXHQMBZZvdwMWeyMFcQGNiqrRx1ayhpQ94Tpjok5fTKy2uPUiPicKGqW9ngb3S75/QmbXsN8VgSAA70ZQda4HCoRn3OinxLwluM1DBqzOXzUHfTMFBPxdI6X9w8CcPpicf87NZWTpeXd83sPjxXISbUn8aU1X+KiBRdZ177yzFc4+daTuXvP3UX926MOLcFaCxKGXNvHUeKalnfN/QkGFbg5EuL25H5bxpTTczza8ijPtj8ryHo5ps6EWC9rpkhWQ8G32usS7/dAPgndM8tD6U5080TrEzzX/px1LT8gatWsrxo0x8S/wBuxQgxRM7aT1Z9c/UnuftPdXL7ocuuZH5SCh8mU1ZUBNxuNuXRqGtH2DbaOa5Q9ifSsbs9NLQzbqalU+L2gixolXoS9VJWvinVXrePON96JQ3XQJg8HfS6NQFaM90C/fbOuNefmWRy5OGfOOSwtWyqsWEuE9ng7OSOHU5vC2jkLYJasPuJgkdXSl7CUyuoN3WIROz4wx5q8O+IpXu1Osc3lJGdjO5idyG+9k8yT34db3watL5b87zdHm8kbeYLOIDX9UjVdPpqsNhOcRVBgCZQe5gbGXyE2X0xEVkfZ2L2Rx4kLArZIhxLHVB7DiTUnMicrlcty4ziesrom5CYXO5qzMsexJpWGIgd9FWxAxKayyyg7yEs74AyAbGHucZmp3P++ViC3bruVrz/39dFe1PtfQG15lrThYGf9FQA4N//dUrb2F0E9cSBMsrrSW2mFee7MirnV9MVVFIVlNeKZeHCwnzc21PFffr0QMmUTxlNWd0s/5YmU1aZtj6pLH1Ubw6sMw2BYbhgDzsBBpPBUvErNDWbSkPYpNhx0DWeGuWfPPTzd9rS4IOfL3qz4W1P1rPa7HeQd4jXOpew96Nret51PPf4pvvbc16zDqiH8UwpXNNEQFP6JA5pGKm4PGXxm45lcd8p1XLrwUutwryVukgFTU3y7HRoZRbyfv933D37w4g9oijbZMr6xYPpVL68L0j7cylef+Sovdb006nsWVpq+1aUNWdzQvYGTbz2Zj639mHXN4/DgcUzttbQbB5KAum6QGJT2WnUNDLnEAUjzXtHp9eWnv8zF/7iYB5seLOq4EtmENc9Veitp7ovTqPRwYv5l8Q3HvgOAuRUBmrR5VOTF/6NYympVUXnL0rdw9cqrxXslldV702Lun0hZvadnmNtz/dwaCpDo323bmKxDS0dBWZ1xBEUmgaZaBNxEqA15MHSxAU6YG+EZktXrOtbxg/U/4KHd/7Sutaec1t+bkr+yr4KwrvNAaztHpz9nef6WAi/s6yenG8wt91mdSIB1KP3cYfStPhAKCql8qqiHf8DodR2stSAqyerxSMSRntUeebieNOxRgQ9nhvnkY5/kPx/+TwwMq1YwO3+magMCUCHrIrcawgEkFKUgjpjB+KBA8Ou6gXNYdqgEDw4OPwieCF65b1bUrO1k9SjIGrJPF+/vZLVahd/Fv2q6uHBuA3f32aysHhn8KG1AmlJiXFPJ76gKetB7zuMLfQMEUkNFESX5nD4WyO5Js5OlIeJFiYlDTFNZbQaAlvlleGfCXuu4WdiHvmQf9+y5h1d7i9T5MQMcGOg5i8kxS1YfYbDI6qxpA9JcEpuBvJ5nU7dYxI7Twtbkva2znw+s/T/e3lDH/wZKdzI1VXx//fc5bcO3uS/gh3wa/nqVFfJQKrTERKvr3OAclEHZ9nqAsjokic2ophZ8AW1GT6KH9Z3r2R/db21gDF8l2yVZveIgGxDx+b6+OB9++CN8PLaJLk0rmrL6v0/+b26+6GaWZ0QR1yQ3jgsqxyOrRQHWIz3tim0D8vXTvs6Pz/0xy9NifF1GmVW8m1AUBbcqPVSd8vX8N/atfqT5EW7feTvN0YK1Te7pnwBwZ/4M3rf3HHGx6SkuqF3Dm5e8uaD2KSLMzWCVtwqionBozkVQlNFKfjO8rXlYYa/LSbPTYauaDkaQ1Q55n0tldVtaFPITFfRV0j9PkcqTlI3hVclckrzciAobEDFPDBteXJo6yqt9PFQHPajudt7q3scVDbW2HHS1Dbdx7dPX8pVnviIujBiX16kR8k59HXL7Any7oozzvQPctuO2GY/NhBmuF3FHLBuQqOGf0ubMRE2gDLdc2rti9qjXLOTSID2690tl9VTJaoCcKr7XI+1AzIO8YsBs06+uauOSOy/hzt138utXfk1Oz/HJRz/JL1/+ZUFZXWIbkH1D+0jn0yVVik6Ebz3/LU77y2ncuu1WAHZ2xwjmBwGoqK5HLZsLQH+76BBxS9/ZpM1e9wfCVEh7NA9+p5+mvgRv1x5DxYAFZ1tKZUVRcITrWZ1Kc1bOJ4LWSgGprG7KCNuAsQ7I68NeHKpCNm9wfesDfLeinMFB+yzbzCDDkcrqpKwlqkPuKZHClQF3IZDMVHrOUI24qWcTf9j6B55tf0ZccPrpjAk7u6mGsuLykZdBs/lYaeuhZ/dIC5DFFaOur1kgPjdV16XE3qG9bOjacNBzZx7Y9ySLS1ab83VBWS3W0KG8mA9qxiGrzc6W/QMJ3JLoTmIPWW2+Fk7VKVSOsp5vjYv7fqo2IFBQVl9S/UU2zHs3l8YT0PzMjMZnWqeY/v69w2lONLYA4Gg8fvJf4I3gNf3RlQwDxSSrEweQ1ZMomMv8LqJ5aV+V7LV1L2Upq1W3tXfcm5D5IlOwEKrwu4j3n8874nnCumFbSPd4aBuQZHWZ11oXPPJ9S8vOxYhX3F+Ds57Vr1ls6dvCtU9fy9ef+/qE39ef6uePW/7Iz1/+eYlGdkC48yymhFmy+giDSVYPZWOkVYcgYOXpXzGxrX8bsWyMoDPI8kzWUlajZkmUC3uNP4UColXwNYD24XbS+TQO1UGCPJvcbmFjMdwF2/45+S+wEdl8ljp/HfM8laDnwOGB4OhJylRWD6nFI6ufbX+W9z/4fr617lsWgZp2ReiPZ1CVg9O/q4JuKgNuDAO8mvjakKYW3+5FHibsk6fvc8YIegGp2lRy7M4kaXI4im4DsqpqFefPPZ/yYfHadRsR5pUfvKkNSJK6VbG5DfcIg27obO0TrZdWGnPfHrQd9wHwB+NS2qhinSH8xD5PGV8/7euWwqFYyOk5S71d5SuQ1Z1GOY1l3lFejabCrnNAbJhiqgp99qnpoEBWe007JamKac+IzycKMqySCqLqtJ9LhuMs1sZ+Vg4FpgWIpmh4Hd4CKYyX2vDUFHVCWa0yqOTp1zRb5o6DNtojxlUXmaLST8LrD5FVFIZUewPxRpHVpg0I0yOrKwNuQjlxL3bK4nam6E32MpAaIDfCaqo7Jf6GefAxFZjEk1v6ScaK2NUiwhXzbEz/xLq2vX87LbEWHt3/KL/Y9AuLXNzbW1pltWnvNXLOGkoP8eWnv8ynH/t0SccColU9lonhVMX7sr5pgHLEe6MFqgnXCVI41y8OzT2aIAtSRe6KMxXSFd4KFEWhpTfK2zVpy3bC1aO+11nWyLujMb7Wr3NW41lFGc9gapBn2561skRML9VuI0J10I3PdfCBl6oqVriWSx7WpNIDttm2jbYBGQRgWIbZTvUgqSroxpBkdUqV69gM6w+TRPea20VPiE4Z+jgeqTkW8jKzQi9xPbRD2twdNycy6vp8KYLoi2dKHsx6+87bufpfV/PDF3846rrpm1qsjgIT5tpuKaslOdkvA6TrxrnfakMeXJpKNm+Qkd+bA1vCiZN5URt4HV4hwJL3XXfK9KyejrJajG0oYaDMP11cbH5OhGkfIixltVPUHa2DSc5UXwFAW3LB5L/AEx6hrM7TG7d3zr34jou54u4rRNegfMb6CRL0OMacz0aizOckqYv/V0JRoGtmlikjYXpWh01RndPHvpio0aZi2WaKIhLS0oWYvUF4f972Z77+3Nd5sVN0XbeNUFab3Ir7AGV1WFofDSVLH+g8i6lhvxR4zAnOmfD74tk433/x+/x+8+/J6aV5P02ry1ll9dQxS1YfYQi5Qrg1UTB3l0nVSQmsQEKuEO856j28ecmb0QZbCmS1ksXIjygiXiMhiz9/+ee89Z9vxZ0TJ5+veFxW2nypla4XLbiIh976ENfPu1xcKF8I6uhHz1JWF5GsNsmYMk+ZZU3RZ4i/O7/CP2agihmy6MBfGF/G/vc4m88WCl5ZjHTkwxMGklUHPWi+fdxXcTefqaksurLahCFP9rs52AYEJEEFtEpf139XG5DmaDOJXAKP5imQOZtvR8HgifwqTjv1dMr9Lu7LnSS+ViJP+YHUAAYGqqKKMLSoKBw6jHKWVI9WdS+SZPX+XjHfRVUVw+b5Y5SiDixVzIARxO/SCHvH9zUzCcbF0Sq+19PH680QVBtgbs78Tr8ggKXdRszwTllRVz2iLT1pk4XQQX6b5rjwTtkCxITfHyQkLQfsVAePan2VxNOQ4ad+GuRORcBFdcrLqlQa1aa57VOPfYqz/nYWT7Q8CoDu8JBHw+1QCbqnrkg3pM2FKy/DcItIVm9tj6J6Oknmo2iKxs2vv5k7Lr/DqoPcmtvqgNjXEy9JQKuJfdGDyWpVUfnnnn/ySMsjRSeBD0R3QpCuNT5h9/FiUz8Viryv/ZU0zlsCQDDTSU8sLYghCoqxYsG0XTJDdrM9u6lVBsShx/JLR32vI9IAgC9VvA64LX1b+M9H/pPrnrlOXEiI2miQwIQHSiY5qyni36Si2BayOFbA4pAMxJyqX29lwAXScilpntnN0O/eVLx6DfkL3UErWGyqYbYAir+S99ZWs7X2TzQPtcxoTNNBc594Xecf4Hcf9jqtOc9s/S8V9g6K7qxl5ctGXS+Vstp8T62cDCn06E1Le5dx3ldNVayvpfKFe9KOzgxzrvQ4PKP2kQnceJ3atNanCr8YW388LfzwVScMd85or3xg3dHfupMFahc5NJh/5uS/wOm3yGqAnrh99UYql6J1uJXdg7vFnC4FD4NGYEq1WpnfhaGL1yyhKhC1L4DXrIVCObm/81fSIZ+3qcwf5X4XirOX5zxh+lTVdnHe021Pc/vO2y0rs7aRgbZSyGK+bzkjR07PEZE1+WByVln9WoVJVjcGRndnDSWybNo/aNWJDYEGPJqHjJ6xFM/FhGEYdMTFPTyrrJ46ZsnqIwyKoojWdaAnVCsuloCsnhuay+dP+jyfO+lzMNBEbS7H/MF6ctFjySWEWueLff2QPfy+1Tk9x5OtT9IUbWJBShSqu50u4mGxCZppOvqhQjU3NeULGYhn+PTfXuaOl0RRUAqyuj8t/t9l7jKLsO/IigL+QL9qE6YVSD7nKYyvCAcST7Q+wQm3nCC8P6WyuscITxhIVhv2YOS9hXEVkTCJZ+P8ZftfeGDfAxiyNayX8jGLrY8c8yniTR+hfLhc/vC/p7J675DYkC2KLLLCK4ydwhv1Af1kXr+ylpPml7FOXyG+tv8F4qlBa9NeLFR4K3j4rQ/z1zf8FU3VRiirKw7yKjU/b5NTRl5RSNqowAW4cvmV3Hbpbbz/6PeLC+ZGgwANZd4JlcImWT2Qkc+IjeTYvNA8Hnv7Y/z10r+KCxYp7Ju0rdQa34i29JSiYNhAuh5MVovPY4ZvWuQJQDAYICQVP3aGzA2kxT0ySllt+Kcc/ghiw31O1yJu7ejiJOzxQDafrQDinso7xP1dFZyazYAF2QXgyov7rlg2IL3DabpjaTSv2HisqVvDibUnUumttMjqdD7NnDIfmqoQz+RLGnrUNNQEwMLwQutawBnAoYj5zlTYlwomWW124O3ojI0iq/3VYpwNSi/bOqLWa1h0GxCpFK30VGIYBvqgqHvy4bngGE3EeivE5tKbHyRapINecw6xlKXSKmPQCEyYEWASPyrmnKbaZiv3pTVf4hfn/4LV1astsrpf1jfVU/TrrQy4LdIpbtozzPC9tby0TaLNHbLI6ulYB2mBClqcDlKuGJ3DxQ/0BMjmdVplW//8MezkzAyBtsHS7ltMYuzALjJzb2ce7hQLJ9acyCdXf5IL510oLsiD6a60mLcmWqfMg5No2okm74mkDYfQFoHu8Fl7DAOFFK4p2+CYMNW4+2I7+NTTX+JbtXLvNwNV7oE2IM594sC32Xc0eELj/pwFVcXlCqIYBhjQH7ffasOhOMTrJ5XVA0ZgSrVaua9AVsdV1Vb18n8d+1984vhPUCNDc3V/NT3DYo2ui0zNBsRTezefjwzxrNdjuw1IV0L8vlq/4FNMG5DGMq/1OgR1ncebW3n+ktvQlIKAZNaz+rWL1pioMQ60Evvs31/mjT9/hp8/JjpkVUW1OtvNZ7yY6Ev1kc6nUVCse24Wk2OWrD4Ccfniy3nvyvdSHp4nLpQwZNH8e3NyeSq6zuLcmndhCv98uvGaUFZv6tnEYHqQkCvEhQN91GdzGAq8qsri/XDZMvTtAiBXvoj/vOUl7tzYxpf+sZmm3jhlnjKCTkkh5JJFsVMZlAo/oawWr4FJVo/nC71YeoHmRpHV9m9sO+OdGBhi8zwsCoRuyiYMJCv3udCk8kiQ1cUjObsSXXxn3Xf45nPfRJUbXS1ch2MMIv3UOcejJ+cRzQr/y8OlrN7VFeOM7z3K1+/ZQian890XvssPX/rh5D9oE0wiZ15IzlPDPSCTxje6T+KEeWWsWVDBTqORYTXI/wadnPK3M/nVpl8VdVyqolLrr2VFxQrIZSyyocMoP4isrgq4CXkcGLoThyT4oml7yepyTzkrKlYU2tWkyk9sNCYmN82AxaTuIAukbHw2NVWj0ltZGNcIb+ipksKVQReGVPoZikLahoMIk2gKmZ7wI21ApklWh4NBi6y2k3Ady7N6CP+UNmcmyv0uhgwxLxs2HZCY7d9+yTtlNZMMm7oFCIDqEvOuU3ZNFktZvU36VYcj4kDpmMpjrK+NDG01lKxlidMdLQ1ZndWzlhJnbmiudV1RFMJuMfeXkqzO6lnL3qjaV42uG+zrHaYceV/7KiEinuVa+tnV0W8FQdoZzDoWHKqDucG5NAQb6BlOU5EXc66jrPGg7y2vqGGj08fq+XN4271XFmU8BxJPJlk9QID6CZ5Ri5yV9jcpVbEOF2eK5eXLObPxTGEFIcnqXll3TcsGJBfAaVRQLw+iZiogsWxAzDZ+T4guaQMyZc9qQPVXWR2Z3bHikwIArQNJ8rqB16mNOceZBxMmQVUKpHIpa96YH5o/6mvmWts23GbV68XAqqpVXHPMNZwz5xxxQa6hHUlBVk9EcJp2HP1p1VKc2jF/jFJWS/I8r3kxUKcVrggFG5CBZIy1LWtZZzanzeDgxiTTTRuQqi7hgd1ReeqUf4fiDrK+eT/zdnyQ4YR9lm2m1UbIHRKkvtmdR3BKc0fI60QxJFmtKLaql69cfiUfXPVBIjKYPu0uxzDAqSlU+ievO8oDLsvaKFkEZfWBB7yjbUDEc6oCFbqOP5dFURQiPlNZPUtWv1ZhKatHkNXJTJ4nd4r9+A8e2sk/NghC2+xqTZSAv8rpOS6afxFnNZ6FUxu/a3YWo/HaS8SbxaT4yLEfER+YHo4D9rQhjoeWaAttw20cX308Hs1tkeMtRjWfPKaOnVsMenOyVabYfsZTwOP7HwfgrMazcGx8kFVamnang1dyUdZAScnqVC7FG/7xBhqDjdzU24sXuGt/gBeaRDGRyet8496t/P69H+Wjx3wIvil9udIx8JXbOpbRNiDiNWhJiYKpcRxfaLNozaQ94DE9q+0nhc3T7Rp3BPKitarHCHPiBConVVWo9IYZRhQx2fQwxZr6o1JVGpJtk3HDTVlk7Pcn6Hbg0lT6DKn8PEwBi7c830zrQJKbn2ni1bZ+zl0T4c87/sT7Vr5P3ANFhqkemh+eLy7sfhgFg1f1+SxZuhRNVTh5QTkGKuvyywnqwj+0mGFtB2G4EzDI4KCf4EFktaIoLK4OsKFlEB9OomSIpoYo6nl4stCSvnQSEtHj1Ah6HGzz9rK6di7nxLdwY7HGNYIUPmaKJIUI/Co8lalMfMYaYZNoOtAGZNjwTkruH4hIKIRXKn6GbCQWLRsQTwQ9OYiKaQMyDWV1wMWQtF/KDvczeZzl5LB8ceX/OaWK+Ww6ftUADrckqzOAo/hk9dH+N3HJSa9nVdUq7t97P6/2vcq9e+61vi+dT1MRcNEZTdEbLw1Z3Z3oxsDApbqo8IwObyvzlNGX6ispWd2b6MXAwKE6KPOU0TmUwpWL43LIQ3p/JWhucooTB1l62/dRUyGexrSNwaxj4S1L38Jblr4FgPVN/dQrov5QIwf7SdaEvSTyAfKKQl96AMMwpqf6nwKsAy9XSISNyudiyJjEBkTOe3pektWKMuMAwzEhyequjMwkmOLzWRlwY+TCVA9+g1uOfx52bJyxgMRSvJpktTtIZ7skq8PTmDd8FXj6BLnZEy+Nt3xTr3hf51X4xryHzPe6bbB0IpuWWAsGBkFXkHLP6BqywlvBqXWnUumtJJFLECFSmkFJoUdvVqwyE5HVJnHck1b4U3snrsh8am3wXjXvM4/msawGs9JTfzrhilA4xI8nAuCCLkXHAJQZHNz8z6n/w7UnX4uOeA7mDr8MQGrO2VP/Je4g7igElRT9NgYsWiGGblMgU7CSWzCFWk1TFbyaDx1IqKoVLGgr5D4o7hB7j6qAG1WdfF6v8LvAtChRFFtV3+l82lqja3w15HXD8uNv8BuFPIJAjVB0y1ozPBuw+JqGbuiWL/RIz+p1+/rI5HUURdjXf/PerbzpuAYr3L7YXb0gFPzfP/v7Rf87/79hVll9JCMsH8Ih+/ylxsI9e+/hQw9/iG889w1Bcmbj5AyFNsVHY2WGqxZ+ntWJPL8Ph9jSZ18ww6HCJKvPqT8DBvaxKi19q9PSB84mJcxU0BprpTvZza6BXXh69wBwW5MoHr5y6VE4NYVHt3fz9K5e0JwgPSSLYQVitqaXu8utwsFMZR4vxM1UGSVSYnEulrK6Ky7JahlclNSCpHFNqKwGqA4WSNeokS1awKdJoIZUqd4zItSNM7a9Q3sJ1TzHNr9c+A6DsjqvG9y/WRR1DlVhfVOUf+x8gKH0EE+3PV2SMZhF4IKQbHWVFiCP6sdZ9jIr6kIE3Q6eyS0nWATv4LHwaMuj/GD9D3i27VnLAqRDLweUg8hqKFiBVBtBFmcyGDafvv9zzz/5zSu/YffAbsjnLOIkavimRCJWBd0YptLPsC8gZH3ner6z7jvcu1eSgoegYBabRhVVF6VG0oZicKSX9shxxfBOjzwBysMhK/gnaqMNyNUrr+baNdeyqnIVhrQBSTmCliJnKvC5HHT6slzUWM+7s7tmPCbDMApktS4IzIQ8OpguWe30iNd+cTzILy/4JR845gMzHt9Y2Nou5oIT65fz9mVvZ3n5ch5sepBbtt5irWcgDoXN1u++4dJsIHVD59w553Jaw2kHEWGWsrqI6sgDYR74VnmrUBWVpt44FYq8p10BYd2iqsSD0rKkczPLK5bz9qVvZ03dmpKNs6k3Tj1SMBA6WFldE/KQzEcASOtZMrr976c5hwScAYtszqMK3/uJbEDk/JLPC51PcoSKcab4y/a/cOeuO4W6S5Ik7Snx96aqrDZJut7htAjyhhlbQ5k2IF5ZWxnukNW9MB0bEPwVeKQSty9RIrJ6HL9qE5YNSAmV1WbH2YLQgjEJ9F+/7td858zviPCt294Dvz5HdIDZiOZoM1v7thbmJ/k8JPAQdDsITOAPbdqA9CQVFmVzzMlmrEDXmWBZ+TK+cspX+I+j/sPaY6SkN/xUbXBMmGvBYFQcqiYViKrKjC1xnJpTdH/qeQK6qDvM0NopQXZyBEjSbyPRaZHVLklWJ01ldWDKIaghRz11g3M4K5G0Tb2cyWfY2L1RBNnGxf47qkqyeoo1R7m/EBprt0WJqap2a25CrhDdsRQ53cChKlQj6wunH0IN/KQszHVbfkvHcIdVxw3NKqtfk+hJ9JDOp9EUbZTVxtO7xF78iuMbcDlUBhJZ9g8kLO/+UiirZ3FomFVWH4HI6Tl6k71kjTRzoOjWG83RZgCWli21VNV71DJcy77Le9fC785+lMdeVtjmdrE31szKoo5mYvQkemiKNqEpGqd768HQWZ3XOL3+NE7yzwP+VVLP6uaYeO3mBOpRYlsA2J6tJehx8L7T5rOrK8Zf1+9n7fYuzlhSCe6AKKiKQVaPEbC4MyYW3fHIalOpmBhczleOjXDcczeB0/7C3gyUqTIEqTUgC5qJNo4AtSEve7JuFC1NVFOpyAyD137VsEVWKyJQrJuycVWSm3s3kw7fSbNWBz0cFs/qdfv66B1OEwp3smapwsPrqwjqx9DFXp5sfZLLFl1W9DHceN6NxLNxVEUVhwh7hMffY/nj+WiNUMVqqsKJ88tYt3MFq/U7AHtJw7HwbPuz/G3H33BpLk5zCkVQJ+XUhNyEPAdvukyy+srE2byj+8cQ1G0dz12772J953oag40sHqHQHMY3JUVdVcCN0S89VCUJaQe29G7hL9v/QiwT49KFl47whvZOeQNktuOGU2Hmqx2gzbxd+NKFl7K8fLnwCTaMUfYk093UVkRCuPM6K9IZ5gXnzXhsJk6rP43T6k8DXceQ97M3WDFthajmjNDmdBDTZ74pSuaS6Ia4dwNSWW3q3KsC03vd3F7xTIQSBmc0nDHjsY2HbR3ivT2qvuAJOpbPXyafsYi6vuHSKKvnBOfw0/N+an3+zO5e7t/cwUfOWSRyISitDYhTc3J6w+niMBrY1xenHFlH+Arzit5wIkR3UDX0CmtqP8cpdaeUbIwAzX0J1khlNeGDyeoKv4tBvRwQB4mpXMry1rYL5noecBXI6hh+DNQJPatNctYRvYhfLK5iWctfbFFW5/U831n3HQDOnnM2PklW70845d+dorI6KA9s4hnymhsNZiwuuOGsG4imo1Sv+w0AKdVPRh4sT2u+9VXi1gVZPZAoDSlgKqvH8quGETYgJQxY3DckOmGtjrPx0L0Ntt4tPu7bDTVH2TaGn274KQ81P8SXTv4SV624ygpYHDY8k3ocm89Ap/kW2pRTNCc4hznLpABLhm2nZEi5eV9PFWbdMZgwaHSXMZAeoEtzELZprEY6hrmSV1dWTf0H3UF+UhZmj/YUg331tnWNHKysNj2rg1O26qlxL8a5/xze43oGnPYQwl3xLt7zwHvwOXysc4lsmj7EWl41xbmj3O8cHf5YBLK62leNoijWoVVt2IM2JPbuhOrAE+Z+1U9770tcmewl4hO14ixZ/dpEwBXgp+f+lGQuWThI0/NoW/9Bo9LAJQ0V/NeOL7OeuWxpX22R1fFc8ZXV6Xwap+oU++JZTBmzZPURiIebH+YLT36BE8NLuBmKHmo4ytOpT6iDu/UqwAwicFCWEw9eq40LyaHAVFuF3WECUjW5MjSfmy78FfTvhYe+V1Kyen9U+CbNc0UASLoriab8nNEYQVUVTl1UwV/X7+f5/Vv50EM/IVDm44dxikJWf3DVB+mMdzLXX2cpd1ozoogfjxQOuB0EPQ5iyflcULaCxvRPi+IN3ZcSxVVFXihDu40IwIQbRxCFs9HtRdHSxFRVFN1FIKutRGtDFJZdRtm4/rMRdwSAlCZVrodBWX3fK0IZUd74MM8Pb8FVeT79PcdCGJ5pf4asnrVFDTMZLPXrvichHaXfCLLJWDQq0HP13DJ+tGMuXqkOLlaolgkzvKjKVwV9UlltlLOo6mBVNcDCShmymBAHFaYKyS5YalenH1KCREnjIovD8oecCFVBNwM9Lvlz9pHVlq+rDCEzUlEURMDiVJXVbodGyOPg2P1ncqPrZ7Bg5srvFRUrhN84CCJGF79zGO+024WrQh5CGbitvZP8Wz8747EdhEwMRRLE/rLKaf+4Tx6mRFWh+jCL6kOBqZBUUPBmBaEbzYvXa7rKao9Pemlnk+i6MaV23ukilc2zu2cYLbCNfekhWmNn0RhsPIisXlO3BqfmFO3CYGt79XTwjXu2sqMrxj83tXPKybITqYSWRisrVnLTBTdZnwtldSFc0URg8amw7VaO1nfQHUtPTx17iHjX/e8ip+e4/szraeqLc4VFVjcc9L2qqhB3VeE02sgqCslcskDC2ATTuz3kCln1YJ8u5rkJldXytRrob+DM8iTk87Z06pnPJpjrgFRWp6UNyBTfowq/G1UBZ80dXLJ3J1/2ejhrhsrqal+1qP3lPiOuiGc/4nPickxjw+0rKKsHksUnBQD29YnXdX7F2PPm4VBWnzv3XELu0ISHo7qhs2vD76hVFcK6MWNF8IEwPaa9ZienrGnieGmcZG0319jOuMGdAT/NHri4fwfLypfZN0B5wJKUeRfmQeRUYT4HugEVnioG0gN0OjSWzuB1/NqzXyOVT/HRYz9KOJkjBKQNBzUVkan/EneQdR4PPZ4u9MFBoqmcFdY3E7gdbhaGFwp/XsMYYQMSmDJZXeZ3sceQeyeb9vFWV4bDa3XzdutiLp9qrVbud4O8DxKKYmvAoimSqvHVAAf4Ve9/THxT/WrIp/GkZZhoLkml6VmdyBbFpmoWM4Pf6efcueeOujb04t/4UuL7fMrlwvOogpJPs9ixh/9t7eOzp32Wjx33MeoCdUUf23VPX8fDzQ9z7ZpreXv1ybDnMShfCAunYSf0b4hZsvoIhJkY3S1DFewuZA7EKLJ6x5MA7M7PBYTH7B93/IrnJc+zL2ZvUu904XP4uGLxFbg0l0WsU7FIflGqi7JxUQw5p+dveiiwlNWGeNTaHCKI6dg5YsE+YZ4oDnb3RGn1P0e5Qy56RSCr37T4TeID+R4ZisogAaqDbjxObdyfqwt7iKWG6U5pNEJRbED6kpKszogiui0rTt/HU3ybqAl5yO48mQ+6/0l5Pl+0kEVTDdMgld/dRoRF4yirTbI6q0nSJN4rCsgSFTSGYfDglk5UbzN9+hY0RSM7dALN2QhzKoMMZmK8vOdBTlpyaUnGA1gWII/px+F1OUcdQiyuDqCjosswuWL535qwVPzeKohuAqDDqGDOOL7tlpIoJTcVaXvJarP1zOfwFfyXEWOZkrI66KZXhuMkDftU32arfNAVBF1Hke9LAq8VZjcVVAbdJPvk99s9d0hyXzcUUqqXiikE9oxEhd9NDBcesgxGo1TYEBOQ1bM8sf8JIu4Iqx1hVIRirSIcmfbv8gbqCOfzDGkaTdEmjqo4dHWdpmi8fenbyepZFEnWDean54lrwuMTC35eSXDr1tvxuhTeuvSthzy2sbCzK0ZeNwiVbebHL/8BRUvx/qPfT52/sKEo95Tz29f9VnwcEP+n3hLZgKTzaVyqC0VR6Iml2dElOw9SOda9eDrrvvg1fK7i1xjjYV9vgkqLrC6o/5zzhJJ6lbKXde09uF1BckaOSu/0D1OmAsMw2N63nYyewa25ae1PWJ7VYymrAVKeGry6TlbTLC9bO3H5wstZUb6CE2tPhG6xtg/hx+NUKZvAqsdcC4bTOVLOsOhLsEFZba4BmqLhUpwWWR01fHicKiHP1LZqmqpQ7ncRdwzTnh2iy6HZN+fKmjRqiHt6ugQi/kqq8nmqswaJTGlqoea+qSmrO6Mpcnl9zMBsu7G0bKnoUpXoiqb43N83saQ6yH+evZCakIcPP/xhnut6jm/5fLxxOG57zWE+U16HV9SmmYKyerKDaPMZaB+G++r8rPN6WDK4e8ZkdXO0mY54Bw3+BubI5yGum2T19JTV4jlwi+5CZyWwUz4Lh35w89j+x+hP9fP+o99Pvm+IEBBXvJRPsHc6CO6QFUqpqFkG4hlbyOpLF14qut8AkoNgCNHCAEFqpmiNFvE66FK8dGkaNZmYeN7dwcl/cAKYZLXP6YMewSO056St3hRrjojXCfI+SKgqpAfE8+AeW1wyHVw0/yLObDjTmn9HkdXNz4pvmncatL2EV9bWqXyKiPSszukG8Ux+QtucWbw2MLj1McKAV8kwUtPTtX8X88NXlGwcA6kB8kZePBOtL8K9n4L5Z86S1ZNgVod+BMI8BezJDGFAUZXVhmFYZHWNrwbaNwCwWV+EQxET9q3bbiUj76S2EoYXjoXGYCPfOP0bXHfKdaJ1DqBiMQC9epadblmIlUhdbSbSzs0IJdu2rHjvjpsjSOqGiJeakJtcVhTNQxjiPS0mYSeVqxlXRLS9TkII14a9oKR5fqCJ9R637YSwYRic3nA6a2rXUJUSRXN7XpDVk9mAVAfdZPrO471DCo25vO2qVxM7+sXBzHIpDJ1IWR1yi7HrmmxH17MWCVkKtA+l6B3O4C5bB4hCdkF4DkcrTZw2JJ7PdS/9sqhjeKT5Ea558Bpu3XaruLDrIQAezR/PkprgKCXmImmzYT4D0Wxx/SzNg5FKbyVERQhHh1E+7r1mqk43el/ljQ113KbbG6hlKqsDroBFvpqEwFTarKuCbnTZJpnCRrJavg8BV2DUc+UJRKa1qa/0u0mZ8YA2ECfrOtbxxP4nxPs4wke7KuBBm6bCV1MVsnIdGxiy5xkdSA3w6cc/zTUPXWOpgHqMsOX/Px24AuUszYhW0x1922Y0rjJPGV859St84/RvWHN4f07836cfsCiV1Y4UN7z0DX7w4g9mNLax8PL+QQACflHfmGTqSGV1vb8Q7FUpDyr6ShSw+LknPseaP6/h3r338vxeMacsrQngcapEExrtg/Z1OUwF+gEHVft6hylH3tO+EUR0xWLiahCPkuWl7f/gzL+dyQcf+mDRxjWUHrJ8p6u8VSSHesSGESB0sLIaIO+vsVS4xSCrT2s4jatXXs3KipWFQFsjQEPEO6FKzu92EHQ7UD1t/KV/B6+4XbbUkmb7sc/pQ8kVukWi+KkJeaal3KsMuNHz4vkcUGdOVv/y5V/yi5d/waB8nYZ0j/w704x89VXyzd5+7tzfiye9ekZjmgqyeZ1WqZgez7O6KuDGpanohiCsDwdufb6Zp3b18vtn9nHB/z5BS1+CRbITc6dLEpk219wpqbb3ODzi/pBzRwLPpEpck6zuS6v4Zd7DsA3imrt238UHH/ogf97+Z+uejclw5ukeQkNhTfOpFbhRSSjqjIRdpogi6AwyNCDm+5Q6TcLUHSiQ1UrGVt9qC7LTI2G4yatua12cDF5vAnXZ93jdnHqxB7VBXZ2U76PP4bM8q/enpxfqrKoKfmMx6Z4LuDAl11Qb1dV+p190WVLosJgTdkDrevEN804DTxiPXliPPE7V6iqZDVkcH8+1P8fvX/09WRts7KaDzT2buW/vfSIHSMLXvRGAF8suhhPeS1ZaLqa6do/5O4qFsbLDRna+zWJszJLVRyDMiTWZTxNTFZFmXiREM1HSefH7q9xl0PEKAJuMRWP6CPbkius3Oy2YyuryRTza8ijn/v1cvlolJ4UShSy2xQQZ1hAXf29DQrx3xzYKZbWiKJw4rxwjL8ipvCJbnWxWVkczUdZ3rhcKYTlBJhwRABrHUZSaqA97UN09/LLrB3ypqkIo02XBZQcUReGGs27gt6//LeHEICCUy+V+Fz7XxCfWZuEcl8rSYpHV3znjO3z/7O9zQjJpja9uHGV10CnVCGraCoixFqUSYEdnFNQUztBmAN669K1cUJ/hT67rWZgWCoKeoSZb38MDsbVvK+s614n7rX8f9O5ER+Mp/RiW145Wa8yr8ImWzayPC+IJLgwvHee3zhyGYdCTEEWzIKuFDUinUT7uoY3pf5jQcux1OemxOfDLsgFx+K3nfsgkq6fQKlkZcJMz7Cerzc1ZwBmwxpUxNMpD01PbVAZdNFdt5Oy5DdymzPz5/NFLP+Jjj36MLX1brEOg2CFYgJjIqW7eVVfDf7zymVHF7aHCzAYIu8OocoPW8AmtqAABAABJREFUw/jzxUTwhctYlhH3286ezTMemwWp1OvLCDJgumS1Gd5WZnpfZ+PkdPvCPQE2NIvX0ekUz0eF3FyMJKtHfmw+p6WyAemKd5HMJQk6gzwnyeozFlexsl6s7a+2iVrInG+KjY+t/Rin/fk0Hmx6kLxusL8/SYUi64iRmyFFoSt0DACunp1AgbwqBszgxzJ3GSoOnHEx5+Z9VeAY+75Tw/WcmUhxTtIQREcxMSKMbLLDcYCasAdH8BV+2HEXD/p9tiqrR1qA6IpGAve0ux6qgm4MqV7s17QZByz+/tXf88tNvyQuOzn78oeorPaJtpWQkmQoVvyAxdaBJHndwONUx/X8VlXFEh2Uwgokmolyz5572NK7xbr21G5RG7odKrF0jns3t1M1JGzcBlW5RbeZrB6lrB5RMydwUznJ/RZwO/C7NNI4R4QTz3w/NZpAF89DNCfq/4rpHoxQWNPOqriG9ZUXcnU0dsjCrnQ+bRFuAVeA2JB45jPa2Icg48IdxCNfM9QM/cXoAkqIsQ3IrtmpWnRV+aXIRlFEcKwNIYsFGxCPNc/uTYrXbDp+95XOJWR6L+B0IuJCkexGTWX10cpeMW/6KqByqSCr5X4plUuhKIpQfDPrWz0WUrkUX3zqi3zo4Q/xo5d+xHPtz5X079+/736++NQXR4XDVyQEH7Rtxafgsp+gzhUdZpHUfp5oepFfbfoVa5vXFn1sZqhtxBOxDnBGdr7NYmzMktVHIDwOj0WI9WpaUW1AzI1G2B3GM7APcklihpcm6vA5D15s+o3SeNGNh2QuSTwbxzAM6DdtQBazvHw5ADscKilFsQIoignDMGgINlDrr6VxQJDWu/V66sOeUR6Eq+eVgeFEMUQ7WVRVbSert/Vt4/0Pvp9PPfYpS1k9qIhN9WRWG7Vhj0WmR1VVqDCKdUAyLIqQHiMyJSVidcgNappdqoteTbW9XdLEnNAcLpp/EeVRmWjtqBi3Ndf0aVYUg05NBoOVsONgR+cwztAmDCXLwvBCjq1cxfsGfkJEiVOTreJ90QRnDfVB15bJf9khoinaBMC80DxLVb3LczRR/CytGU12uh0ac8t9ZPQQP+ru5WsVxQv8imaiBZWfr8oiqzuMinH90Z2aSrnfRV4qyhI2ktW6oY9ulTRtQAwvQY9jQnseE1VBN3rOxznxBGdl7WuvNkn0oCs4SsFcPU3StTLgJqcI4qTbmHlhb47L6/DOKFzRRF7zMKSpDOsJhjIzP2wdFXY0LLqSeozwuJ0YE6E84GOenGp3DOyY0bhSuRSDqUGx6ZYERdRSSU6TeJLe2ZERiplhmw8KN0pldVZaWVR4BVlt2qABPNLyCCfccgKPtjxKhRWwWCKyWtZGtf5ant8j5vdTF1VwTINYV9e17OMd976DN939JuvAv5joS/URy8bwaB7aBxKs1HewUpUhUQcod9K1JwBQOSRqJNPDthiwbJd8VfQMp6lD1B9qZM64P+Mqa+Rrff38sKuL+SH7gk9NvNj5Ipt7NguCzFQMS2X1ZKgNeUDmK6QUxRayetSBpSSrM44goEzZr9pEZcCNIZXV/Zo6I2W1YRjWveFOizH2Zt3W35kWPBEMGVCdGy5+PWRagMwr90+oTC9lyOKewT1c+/S1fPYJkY8wlMyySc5z7zlV3Ofr9vYTiYlnZlAzczLs3Q+YZLXH4bHW0KTixUCdkoq5JuwhhYuQSVbb8AyMItDlPRuXXsWHpKyW9+dAQkcxLR8P8eDGPLhXUPA7/cRjgnjNOad3cI87OMoGxC5l9bee/xZX3H0FDzY9OCpccapB2ADV/hCGzOSxK8jQfE99itwrKSp7Y2LunM4hXLnMo4i75dpvA5EO8IP1P+Brz36NvYN7AWiXc8CipBDlMfdUYd/oDuE7oNPHtG8ZShw+sjqWyhJLvfbI8l+/8mvu23uf9XlnvLRZZmYGVrlH+vq1vYSKTqtRSU3DfAC0yoUAzFe6eGTfOn728s94qPmhoo7LMAz65cFembsM4mJ/MEtWT45ZsvoIhd8litGkokI+A3pxWk4rPBV85ZSv8JFjPwLtoo3iVX0B8yuDotCRMG8k1VAslcjhwK3bbuWUP5/CV576UmFBq1hInb+OSm8lOQW2uZwlsQFRFIXfvu63PHzF/dT2CV/EPXo9x86JjPo+4VutYOiCAIhq9pPVptqvzFMGcTGRm4FCk5HVdSPI6qSqkgVblR5ZPVtQ5Ulyp5vIlDaOFX437sq1fGZOhv8Lh4rmWW1ClWS6EawbdwPkdXhR5RPRpshitqRkdRRn5EUArlh8Bcrm26jreZq04eRX0Y/x6fLVnJ9Iwu5HijaGlmgLIMlq2Y3xbF6E4h2orAbhWz1oyJZKGzY+48G0AAk6g7gVB4ZsJ+wyyiZ8DqoCbjK6fAaMnG2q9JEt7iNVdTF8U1a7VgXc6PkwN3b38u3hYimrCyT6dFW4lQE3ek4ertoQAGmS+36nf4TH96Erqw3NQygvXjeTaJ4JBtODgPSut2xAItQfgrK6wu9mbkblqHSaFYHxyb2p4OHmhznzb2fy0Uc+OiJQy0PZdIPSwMp7CCgZnLJ7xE6v+b7hNM19CUAnLru1zI2Hpmr8/bK/89jbH+Ok2pPI6BnS+bQVsNg7nBaH1UVEOp+mPyVqCCUfZm9vHFWBkxeUW2T17g6F1uFWopmotRkuJszxVHgr6N+6ljvd/8Mp6lbxRX/1qO91zhE2DA1pcYieLmJ33sjMk/bBFHXSr1oZI1zRhK9qLmnDgdPIwMA+28f08Uc/zlX3XyU20SNsQKakrA55MPQRZHU6CvmZEQZWboHTZ60BSWkxUDPNQ7jKgGu0snoGZPXIQxaPFAJ0pZ3W35kWVJU7yiq5sr6GXtcDhzymqWK/2dJfPvF7apHVJVBWd8XFemBaOT63pw/dgIWVfq44Xvi3v9jUTyQq6sxBp9kxWBxltUfzWL87IRzYLWJwItQEPeTRCEprhKG0fWS1R/NY92zKcON3aXhd0/CFljDrlJ5YupBPdIjPwshaSFVUUsODABjT9U12B/HK1ww1w4BNXUBtw23sHtwtXkOp3Bwy/FMOVwQoD7gtb+i4otqjrJbzmlfuhwxfJd1xsdebTr0W8YPq7mSTGdhuk7L6oeaHuGPXHcSyMQzDsOaAmgFhd8q808S/npBlA2J2AETMkMXDpKweiGd4/Y+e5Pz/fYJ42t6utplgMDUorHwodBmbofalglkLlXtFzWjsfwGADfoSFlbJe6hckNVzlS76Y/KQJldc7mpkB2LEE2GgR4ilHthXWsu4IxGzZPURCrM1MmG2+BSpjbPCW8Hbl72dd614F7SJCXyTsZDF1QEunHeh8PwDIoqL9U37+UDTqkLC9GGAqe7y58QCMqSEeMNvXiWazFlj3elylZQ8ZLAF9BxZxUUH5Sw7gKw7qi6EqkA+JwqLYiirLZ8kT7n1f+/MmWT1xG22dWEv6B6Qp+5DqiqsQGzC/XvvZ/Utq/nM45+xipCeCWw2RqLM58TIj3jdiuD1/cC+B/jd5t+xu2czDunj64yMnxqsKArXnfhDEk0fJi1JulLagGzr6gM1hYIiQleeFH6yN+bfzLZsDbEGGeRQRLLaLE6qfdXW/bYrIYqExdUHF/iLqgIM4ccA4onuonmczQ3N5eG3PsyfLvkTxHtRjDx5Q6FPCVuWMmOhOuQmIw+Tkgq2zbduzc1fL/0rv3/974WtkmlrYfimrDypDrpJIwpnw8Z14KYLb+Kfb/onq2tWj7Db8E0rXBEEWZ3PCQKvj5mTiKMCKZODgCCapkvqWHB6CgqxzMx9q0eS1bnoiPnskJTVLmrSbv7W3sXn579xRuMa5Y0uiae44Zm+BQhYm38PGZyKeK6jWft8+Te2DAKwqEaxvJjLPGXW15eXL6fSW2lZkaVyKatVPJ3TSWSKW/x3S0WMR/OwrU38rZX1YcJeJ8dIi68t7TFqfMKmxFT6FAuGYdAv26zLPeVkOwRJHVNDsPxSWPq6Ud8fqhOh0w15Ma5kvnhE3UiyunMoNSJccfzDl5pIiG3GXAwg3/qirePRDX1010iiYAMyWbgcICwlpOIzado0yHnoULGqahU/P//nfPqET1tk9bDiK/y9aaAqeICyegadlyPJarfMU+hMH6KyGhj0BNjqdqOr3aRzxX1GWwfEOjFZfWvOf30lsA8yuzFMsvrp3UJBfcaSSpbXBgl7neQySSJRQRQOmN2rNpPV71v5Pq455hrRXWaGGRpTDzM078mA2Q1qwyHvKLW3HFMSl9UxM12Y72tbtIdP9j7D1XXVh1y3mfvKgEvmq8QHAVC94en9InfICupTlIxtllWjVOkjBA8T1bQHotzvxJDZJ3GblNVHVx7NR4/7KBdFhFAl760gJ0nf6ajlnd5u/At/zNfdreKCDft33dAti64aXw1DySzxTB4w8PWI4HXmyC5Pd4jP9w/wWKaCdyx/BwBhGbI4eJiU1d+8dyvtQym6Y2me3XN4s8JG4vHWx4ln4ywvX86vX/drfnLuT7hs0WUlHYNFVkuBQ6ZJ5DdtNJYwp1yuB2ULAKGsHoxLsrrIQkuTh/E6vHgdXvKyg2bn8CHuXf6NMBtheoTiskWXMZDsp7L1e+JCNgWuafpnTRcyXPEVfSENER+fPuHTbOjawNX/uhq/6sRjGKj5NF3RNLXTaD+yE2YoWHeHJMjytWxpj3LnxlarjXhIVUuirDYMQ6hvh0TIYrdWg4F6UNiLy6FSG/IwkPcRUFxkTLWOjTCV1RF3BPoFkWgGXUxFWQ2qIKy1JFFNpTJj36Tel+rDwMCjOi1VgPCEnvwecmgqHi2AgUlW26+svnv33TzT/gzBYz7MYoQ/dkVZxYQ/c8H8M8knUww4g6BhWa8UG9m8zr7uLJn8Z7nnk8dSGeuGvl2guXnE9yboz7POu5QGl5OjWp6zJfH7QOT1vLUoV3gqrP97nxHC5VDH3OQuqgqw1Qjw5oZadvc/zm+7NrCmbo2t4wJwqI6Cz22HKEj7CVEV9E2oLq0KuMn0+PAwwlPeOfNDOYfqsA7RgNF2G1MkX8v9LrKKIKtzuTQOc96ZIco95YU2upFBhtNWVrvISrK6V0N0AanTV0qBmFNHKavNFn780yZ1TKgur+W9abeyOj2wGQcQc5QT8jin/bsq/W6GkffZDG02TILO5/CNUFZP//0ERpHVqvRXt1NZvXG/eF+XNih0J4WlilM9+PXzaOIZyeQz+FwOvE6NZDZP33AGv7t45W1nQmzka/217OkRr+vKemH5tKgqgNepkcjk8WsRoPjKong2btkblXnKaJZ2VdvKzuXkd/zxoO8vqxOqogoEyZHTc+T0HA7V/tfM6/AyLzSPxkAjHUPJAlk9TrgiCDLs2mov24Nz+cqeu3n7qrfbNp7h7LAZYy3I6hE2IFOx3BilrNbkPZkcgMCht/JWeCs4q/Es8UnP7QDE5HN1KJ0sRi6ER49Qm+uYUQC7qSLUFA2nXAPakg7r70wXQWcAGEBTk/THM4fk4z9VtPaLe3uy+tZUEg+UICht5MENwNO7xLxwxuJKVFXh5AXltGzbQ1leqO8GFdkpZbPF0nuPfm/hE9NyQ6pqp6Ssls+JXxc1U9SGud+810bagCRxH5JfNRSem/5h2OFpAY+HWCbGoVS7o8Kmgbw8uHFOl6x2BfjwYJQ35+o5u+cS+ufYc89ZCmaHd4TgwTutfXiZz1VQVquqZZE3E6ysXMnKypWwWcxpaRkcWu53Taubq8pXBsMQRyqI5T5xJuhP9ZMzcqiKSoW3gp2d4jVc5k+gJHpBUaFakOx4wpTpOqTjVl5HQVld+oDFJ3b28I+Nbdbnj+/o5sKjako+jrHwpsVvYkF4Abqhc3Tl0YdlDCbfUeGpAMNAbX8JgFb/0bgdcu8hldVzlG6GhgFXoUYuFjRF43XzXoeqiHvfkRLzvzNUPdGPzYJZsvqIxTXHXCM++NcN4t8iKatf7X2VVC7FovBCyrq3A7DFmM9qqRIziYOAJhY5L2la+hOHjaw2N8xDHdJb2DsXMnDHhjbOPkWUKVFNLUnA4k2v3MQdO+/gqtAy3g/szwuCc17FwUqPxjIf7U0f5m9rtrFq77dsV1abJ43CBkT4VJrK6snsNsz3Us97UbWk7aSwac1QoYlx5NAYwj/leyjoDBIFYkVQpBuGwbb+bQAsd4jCtMsooy4ysVon7HXiUBX6DOlZXSJldVNvnExex+/SWFnTAE/+SXxh0XnUpCrZPtjCZ7ZfCw11vNjUgnuoDaqX2zqGgfQAuqGjoMj7Tfzf+40gdWHPmIEvi6r9PGsE8EvVhZ3E17gwLWeMyLjhiiaqgm5LdZJUJVkdKEKBkSoomKeqrHZoKl6Pj1PmNBJXVR5OdI0KnrMF8rmKHYoNSNBNJleGA+gx29Kn2z4rkcqnLKWtaJkfBETL67xDJKs1l5fKtFD5mWTCTDCSrNalDUjed2hEVnnARZMkrTKJAeKpgVEK4+lglLJazt9xPIdEOpme1V7SGLoXFIjaeMBqKqtPnbuY98373bieym4Z0Gd+vdzvom0wSW88zdwx1lm7YHow1vhr2NcrXssFleIQWlMVVtaHeLF5ACNfmjZYc333OXx4HV4MOecq46TMO71BBgniNQrzbDqfLgpZffXKq7l65dUAfOveraxSZO0Vqh/3Z6qDHoaMABAjMdhs63hMlaRLdeHSXIXuDPxTmnPL/S44iKy2sZ6Uc21UrjdTIQ9HojLgRk/Xsnjgc/wi+h5x0TCE9+p0hyKV1W7NBZLgbxl2APqkQXxjIeAOQXYARU3TN1xksloqq+eU+2iJtvCX7X/Bpbn4xPGfQBtxWFrmK10w60iyeiiRpalPjHHNQrE3OGVhBe7tbVTm8rwt7yVSthCDvShFymIBCpYbuFEViPgmv9/MQ53j0wq3tXVQfuaPZzwMcw4XZLVUVhuuQ/KrhoIncn8MQn430XyazuzwIZHVp9afyoZ3b7A6UBS51rkCken9IulZXaYnAdW2AxLLG9rhG1VDTscGpMznKtS4ij3Kagvy9UqqZrji9N7TGr+oeTKKTgZwzbCTBQpdDhWeCpyq07IAWePvhChQvghcsobwyH1cqlDjHM6AxT+vE2viiroQ2zqiPL6jpyCOew3g2KpjD9vf1g39ANvTHpzpAfKGgl49QhgUbkRXnbj1LHosChXFtwGpD9Tzv+f8r/W5NyPqBm+Zzfu1/w8xawNypGOGwRGT4aZNN/G+B9/Hw3vuAVm4dhllNES8ZPUsiyOL+f3rf8//VJ/F78NBbm/Yz9rmR4sylqkgKgv9BkMsKqesOQ2nprC5bYhMRiyQUVUtiQ1Ia6yVrkQXulxY92RFQXqgshpM9YdCd1oWijaTriaBUu4pt5REA0aAiM85aYhb0OMk6HaMDlm08QTSCkOQ6tAhJQQoU97IhN3hwrhS9hEm5tj6U/0oKCxBvE49TN7S/2zHM4RqnmOv+dqWyHZme2cUyLOkJihI4a3/FF846nJBpugeVPn/GFC1oijRY5kYEXeEMk+ZID9kF0M/wXF9exdVBRgkYKsdw1h4uu1pfrD+BzzW8phVjHcbkUm9SgVZ7aM6pxPJ67YpnfbH9vPbzb/lgX3Sw1MW9VFjeh7MwYAfs0xN27AWZPIZrl93PTduvFFYssxEWe13k85FAOjTNPQZ3HMj2/S8Du8oZfWhBiw63T7mZoVipzk6c2LsovkX8eU1X+a8ueehybRvLXxoxWiF30UcD/8I+Dl50/V8Z913DnlcpjrM5/BZ72fcOESyWqqLvEoGd/QN/OL8Xwi7mEPA021Pc/UDV9M01GRd29klxnd8Yy0n151cUJ0eANMGxCTVzBb2YocsVngqOHfOuZxQfQL7esXrapLVAEdL3+p0ShzKmAeyxcKBba+a/NwZHP9Arc9RjcuAU71H85Ylbynq+Ex0DKWoQfrbTkBWh7wOorogKFKxdlszWcyD0KBL0FZGshBINpW5rSLgwjADFjVJ7s8wZ+GVnle4a/ddbOvbZq0tg3kxlumSdZb9wcgl6hDXBJNA9KjiuTJUJ+1xs41/+opXvyciPtDS9A4XN3TU9KzemVjLZXddxp+2/Ynfv/p7vv/i90d932FRVvur2d0j7sO6sMcKa1uzoJzFahtBw+Ar5SfxiZrTxbpuc0bM9v7thbVOrqkpw0W534U2hpjgQJhdTM68ixWZLDXazA8Gr1pxFZ854TMsLVtq3a8p3NP3RpcY6VkdkeMbngEZ5dSchFwhdN1Alc+oLzjNg2PZxejKi/fTLusZywbE6R1l2TYdG5CQ10l+eAXhwSVU5fNW3sZM0BprZefAToZkHTSMeB+mW0PWhsqs8MeoptqirO6VHZ9VUkhgBqyuckrFcs1RhW92h1jvcfNdT467dt8FHN6AxVdaRQfgf1+0DJem0jaYZE9PEQ+0DhGxTIwH9j3AP3b9o2R/M5qOkjdEvVDmLoPeXQC0GlXMqRrxvKoaeliE2nqHRb1UbGX1KGQSuHVxzwXLx7cVnYXALFl9hCKejdMZ72TI9DSbQYjKRDCLqxpVLC4JPKRw01Dm5XOPf44Lb7+QfUP7WBmcx26niz2+FHsG7Q/EmSraomLTsNgYBMDXeAznLRcbtq6eOj5YfRrnJJIlsQFpjQl/rfq0eG/ajEpCHofVPjQSZqtiR0p+rUgBixF3xFroo1NUEoFQV2f6T+dTKS8Lslmw0wbEVFZLErVXFwXdVFUB5d4RZLXN9im7B3cDMCc4B29c3DNdRtmkYWl/2/43spG7aPbKYrREyuoX23YRWPZ1hsO/xujZBd1bQHXAsouZX+EDFBwIlUCfptreXgqwILyAp97xFGvfthZyGZDWCn1GaFySP+JzkXdHCmS1ze+jiZe6XuIPW//Aus51MGyS1WWTdhdUBd3kh5dzSzvc0NNnef7OFLsHdvOTDT/hT1ulAn6UsnoaG41gsBAAY4MqPZqJ8uftf+Y3r/wGh+LAMH1UDe/0PauDLvRciAWZHCek0qRmsNHwOrx88/Rvct2a61AVFT1htvD7Dzlg0eXxsTCbJZL20RhsPOSxmVhVtYp3LH8Hx1WuwpMWc5tnAo/7ieBxaqQ1Hz7DII8+I+/j0cpqcf8O4522chOwDsndZOjtbeCMhjOo9I6t4p0Mn3n8M2zo3sB7HhAq0KFkll5JNi+omtja7ECy2vQ37Y8Xlwg7reE0fnreT/nwsR9mn7QBWVjlF6TqnR/h8oH/AyCbEeMvtrLaqTk5veF068DAnRHPhS8yPlkdc9WgAO83judrp31N2OoUGR2DCWoUSewGxz/AURSFtCYO91NGDnp32jaGA8lq5BwSUwKWynYiVPjd6KlG1J7/4NOabL2eYT35YNODfOWZr4hDS0lMDmSlLcM0yTrz8Klj5JbgEPcHc4Nzuf2y27npxC8BYLhDZPJinTkU+yC/FBbk1FxRD5Ti6ZyllL5syflUeipZXS2ejVu33cqdu+60vrfMJKvjxSedTDVnra+WXV1iDh6Z4bGoKsBiRZBlycgSkLYTdncyvu2et3HF3VeIC5IYTuKa8lpgkqBJ3THqd8wEF82/iPcd/T7mhuaOsAFxzdgGJJbOWRZS6fzM77m+eIYA0oosNH2yepvLyTdDCq6qh2wLWBzpWW2kCoKH6XQ4a6qCP3kJoc7zWZHJWocYM8EvXv4Fb/nnW7hz4BVrTDD9uaMq4BE2lMh9ng0h7EMZUdNG3BGgELC6FHmIUzPCwsITZofLxa1BH8+2Pi1+zrQBKTFZ3R1L0TGUQlXgpPnlrFkoDqgf39FT0nGMhb9s/wufffyzPLH/CQzD4LfPvsoXnvwC31n3naKHXpvwODz87Lyf8e0zvo1TcwobTGCfUTdKUACgVcrsDn0QgGSReDQTmXzG6gxFHuCkDCeVFRPbis5ilqw+YnHD+hu48PYLuS0gF6MiKavN4qraJBINUeDXR7xWC246nwaHh7BUv/QmZr6QHCq6ZErzQkNuDqtXcMXxwhtx694qPrHwCs5LJEuidG0bFkVnQ0Isiq1GFfMr/WO26jSW+3AEX+GP+r38Lhy0nax++7K389HjPsqKihVW2+uQMXU1YlXQTS66msuzIebk8raSnCYBUyHJtj5dFOhTJZ8qvBHAPHG3l+TcMygsUxZHFmOMUOJOpqw2ve2iiizmS+RZvbn/JRQ1g+ZIoex+SFycfyZ4y5gvF2o9J/4d0DRbCtLx4FAdVnu0jsoQ/glJYWeggmCRldVmh0HYHYaYmNt6CE9uAyIJgJhhBh7Zc//Hc9JHWNoqWApmwzutVslIwI9bFoNJG+YOK6jWKearTKIQ2jNdJa7P5cDncvN/rVF+29mNbwZFq8/p402L38SVy68EIBsXa01UCR5yu7DH6+ekVJq3tBzFx4/93CGP7SAk+1ERa2KwfHwV6aRwh/DJ52ImATAmWe13+C3yI2G4D0khWbAByRDP5IkmDz2N3vQqHUgPkNWzNElbjeqgmy39L3HbjtvY0b9jzJ+dH5rPiTUnUu8Xr6/5f+ktsrLaRE8sTTyTR1WE3QCdr8CmP7N63685R91IOlnOiTUnsjCysKjjWFmxkpsuuIlvn/FtAPy5QQCCFeMTwim/9IyWmRrFQE7Pcf7fz+fKe68klokRH+rDo8jNfWDibgOPDBFPKaoV7m0HTLI64AxANoUiiR7VVz4lVWm534WRCxHtW8kJPvkazpA8sew2HO6CDYhca6b7fJb7XagKaPV/46LGel52uw55f+BxeFhWvowVbrGZzjtF/R9wOybtyBsLBbI6T18RD5RaJfEU9jqZH6nlH2/8B3+4+A98+NgPA1jqSIDyEtqAXLvmWq5bcx0LwgvY3X0wWe11aaxwCK/gXWo1LUaGYUWxtd42W909jtFCpyRTt9www4wHdY3fhkP8cM8/7A3FHqH2PtR1Peh24Ja+yA7ZtZnRD+2eu3fvvXzxqS/yr6Z/0RVNEZBe/5rce0wZ7hC9msY//R6cgW223XO1/lpqfDX4HX5ycn83XRsQEIH1CeTrbYMgybzXvDlxbwzK7tzpdsGV+12jO3ttsAEx14GQS4h32ofEe9qQ3iu+oWaEZYQ7iEeSjEn5c2E5b5Tas/qV/aIWX1wdwO92cPZSoQx/fu/hD1l8rv05Hmp+iOZoC5+//RV+8qDYM6fz6aJbbJjwODycPedsLl90ubggldV7xyCrFelbvTw/xBePu5GbL7q5qGP7+cs/5/hbjuenG35qCdh6CVM7iVhqFrOe1UcsvA5xcydM77UikNXZfNZqL63Ji4m63wjhdqhU+F1WuNGvXvkVy+e+yVJFDqRmHlJ1KBiIZ4j2L8LvcNOQawdXEMKNHG2IRaipL07OUyFu+iIrq7P5rKVKbxgSpFirUcm8MSxAQCirFUeUTm0/21wu28nq189/feET0+cVPwumSIiZJ+FJk6yzkeS0lNU5QXj0ExL31xQ3Q3XBKurb5vEGXsFQhrDTtWvXgFjoFkUWkd29CRdTU1abKrVhc/MbL00h0ZneAg44qmw1ND0jLi48Byi0qWfSPlQH9GvFsQEZBbkgD6shDNQJ7TbcwQpCCVNZPViU4ZgBemFXeISyOsJRkxw+mPe/6SNq1/Npko+WqnFEC+d01CdloSDeYfHape0IOxrpHwmkh4dwAxnNj9c1fZKiMuAmGXcDw7bOHXnZ7YAnMiWiaSw4PeK195ClJ5aecTDf021P49bcrMyr+IA+I0hN+aF5dAM4PEF8aUHwz6TgP7HmRNyam4XBeVa9MIzXUiNPC7Kjy6nkcbr3c8uW2zh93lEcX338tH/VF0/+Ite/cD0AL3S8QG/ffEDMV/fvu59/7PoHHzvuYywrX3bQz1614iquWnGV9Xl5iWxAhjPD+J1+9kpivbHMJ4J7+vda3/N1xx+4ZuBGbv7gh4o6lgMRS2WJIFVjVeMfkuihRugBdbiVaCaK1+EdM8RyJuhL9tGd6KYv2YdH86HEO8EJuqcM1TnxnOtzehlGZgR0vAzHv8uWMS2MLOSzJ3yWiCdikcw5Q8U3RZVkmc+Joggb6LQjLOJPZ+hZbR7YeDRPIfzU8OJzadMmhTVVodzvJu6I0uZ0FHICZjRAsS5lHGKuPFRrhqC3nHA+jyevFfUZ3d+fAPI0lgkiyrSKe/2813PTppvY3r8d3dBRFZUyv7jnk9k8yUz+kNa3qWKkndGubnEAt6R6hItyPsc8owOA6zr+TlNqNz/0erjQRrJ6VJAhFIhh3FNW8ZtCkozh5CflEeh4nKvTUSvE/lCwoWsDTtXJsvJluGwIWFQUhaqgm9aBJCpSWZ07tHtuc89m7tt7H/X+ely+46lU5Do83XByd4CA3CeraopoKkc2r+PUZqYbvOPyO6yPk/EhnIiDpeneyxGfgxZFIaEo+LLxQ/a6t8ZiemnL1703J+b86XpWV4wgq4dUe2xArlp+FVcsvoKcIfadbQNJHOQoS8g1vHqEDYjmxGuI9ygpa7CCZ/WhH9QfCl5pHQRgVWMEEL7VgBX0fDhh7pd7+8u5/aVWwIWRd6FoGbrjPSyIFL9760AYvbtQEGT1BQfyL5WLAVjG/2Pvv+Mkuarzf/xdVd1V1dVx8myOCqucJZQAIUsIkBEgcpRM+oBJMjZgI9sEm2iDwQQbsC0QYLJAQgkkQAghJJSzVtq8O3mmc66q3x/3Vk3Pamanu7pa35/MntdLr9XOdPfe7q6695znPOd5xsk7mzmsv/vJygPFXFX4OZkRk3p+Ah0xcbw+dRCsXi4OMqufoWFJ1klFk4dRF47fS8VURYwpRNUofVLKYsZNsSoTQ1EUfwQ3V8txU/4JoeUKFJu9YUUuF9fcv4/KxAVcXD2ZjY2mcPJVFFamY8SiGg27yR25HI/q0Z4bLI6VxnBxMTWTgZxgSuxxh1jXv7i225o+SxhVAcUeGAX64dh+4ZFz4wy1yV4eShgoWoE/qjZPRKOhyYC4rssZK8/g1BWnMtQQrIdZN9mR1tqKZB8rJp7Fu+dyKCEzq7flROKyObOZRlZ8j0V9cNkk0BsxLnkA2tPErC4i1nviyHGw6zbxw/VnAsJIM6Iq2E1xDc6qvZEBueKhK3jzjW/m59t+7r/vOWlrs+IAY4lWun+eWd0jjVcfrG5hVgsZkANrLg4lDZRIjn9cUeG1K0bCY1Z7bFcJVntyGwW3MwbzUMpEl9Nl1Ub3a/PBE8m+akhmtWKkAr3eUNKg6sqis4vG6lR5ilv23MLDMw/LhWYBiMSDmQ6KJ4v3aFBnIl/tmiH2gVs+wKU3XMq4ZANPuZllm1sHCj2e9pnV3Wjqve6I1/Gpsz/FyS2gbxkzoAzI/P1iJO/nPx7+pLjfA8RrtryGVx4mmPI37LiBbVPzhoV+I7NNEGQw/vTIgDz/x8/nlG+fwh/3iu/YZ+y0gNXr1EmeV7zmaRl/9UdLgfFsmT7EHhBLLy0DEulbA8DlqW2c8d0zuG/yvtDX5TXsB2ODzBQbDLoCHFZSy8viJKS5VUVRQhn79mJdah1vOupNXLT5ogWa90Ntsv0imkracokkH+CnksHe7fp8beiI6UtMlYLemwgw2bXFNTmraYH33CfmnuA/7vsPrhsXuURVE68ZqMEFrEmu49Zde/nIbqun0w975srE1n6DqfTH+OP4H/2fr0+vx9AMVEX1r82EESGqiTzt6dCt9sJjVh8y0tLInH6MCE3KroHjijNtLmRSQatkBDBvsOjqDLZ5vZlRjXQsSsPVScq6z5NVCBpvufEtvOba1wjJJB9A1zuWHWsNr+GvuDqm42A7wb5fz+8hoScYz9VI4oHVHeZDEYO4nLZUVHFGhX3NORXxPUStdMfPzVk/pHrY5/l6JgWuA83uzlGPjBGTrzPVkDr8HTYg+uI6jezJRKbOYE2zCdUcOM7yTzxAKIqCFbV8ZvXebIX1yjiq0xDyO5l1Cx5vamLN1cb81AZA7mncMwDuk3rVx6wW3+9GKZW2a7ZMw+7uM+kmyo0ye4pC+nTfZAaA1566FsURn+8tT25b6qmhxqOzj3LNtmv8aTxHMqufdFc+VRZn8FAANin7fBmYXsZcbV6ONT8tJu+zSppU7CBveLk4CFY/Q+OpzOrwb7TWQlGR/z/jpnx2pD9GBlh6nLQ8PKp2Acd5evSJWuO6BwVT8vwhCUQPbwFAVRU2DcdR9Fneds9fcYkHNgXssrcTngTIytgQimvTIMoUadYNLA6KjaZNFKnJVfDA6i4PYy9sx+auibt4bPYx7Mosnqt7J6Zkg0mDaPpu/iGxh/9OJ0MD6xRF4Z/P+me+ft7XGaiJhHyW5AFBzf2jP66Td+XnGjKr/2vnfY0fXPgDzlh1hs/EdeLLm6UloqIAqanyPmiUQ9X5XiwmS9O4EXGfnmVZooCOxmGFcGaOaCpr+y3cplhbr5jVj8w+wh/G/sBUecqX25mS0i4HkgEZTFmsqGucWypzdGJt6OuCebA6Y2Rwih5YvbysSzoWJaqq7DKbPGjouNVwmkkLTO/A1xssKZafDLcTgwkDXV5q1RC+U6+g9fZ4uyLWpcaCgdXDSYP/6o/y7LWruGLHtYHXdc/kPbzzpnfyqTs+BYAmGfhaCGD1bwf38Y7fPZ/vP/b9wC/VdJq+hE2mLj7DKTe97PV1oLASGSx5noaiqSevsaobpUEkmAyIpoMi0seo1C3tRqLkvHXnAXDH+B1sm5o3LPRzELM9sNorgsMyrlosKs0KuVqOql1lOif+vXmwWvh1uJZY7+nuveSrTWzHXgAohx1/c8vf8KzvPIufbP0J09MTRBT5b1lLf26x4Q3iIY5ghnmAaZgxWZGeJ9YIY7kKw9JcUUmMLPvcYXMVw6UBDq03eubJ4oHMWTfR0SRLJmETW/1tPlmSQGiXk3o1CeYYmrFATz7QvYk0BG6KvXosEpxZ/ejco/z7vf/OjyfvBKAseOSBmdWYYk1JpdxTGZCdswW02G4qjNFnzp8NETXCNS+5ht+9+neMyjxOURRfq7yXUiC787u5dtu1PDLzCKVa0zd02zzUAlY/fj0AdziH02iInCCrqqHmaU9lVrfqQ7d/D4ykDGroofiM2I5NXQLJsUhsfk2uEbgxAvPyba/veyt37tzD88vBrjnvTE9EE0IGRJH3U6fMaiAhcz08sDpkrXRFrlVPdJ4TxaMtDULoegrOZ1bXxTU36YHVHUq7RDWVWPVMytPnCyKa64TqT1Rt2EwX62xRdokfDB8B6kJ4LCZNZr335GtWV54+zWrXdZ/CrB5NmVi6hu247Jp9eqQ2FgvP32kwNshj+0S+evqmQfpl7nb9o1uflnXctOsmPvTbD/GDx38AdgM1KzTI58y16JH9IM9BQdxYo0xy+/hV/Of9/+n7e/UispJc02/2U54TeEI52reoNOzBWBgHwepnaHgap2VvQ+0Bs9rTd80YGX+cf5aUDzh5zGqxnoQPVrtquedO3/uH47jcv2cOlBqbaDlwZGweSoA9z1y2oScAvxcRNcLxw8dzbEKwl8aVQVxUXzd4/4hqKv1S/6ygqoALITnTFhtF3nT9m7j46otxJKO8qpg0ibQ9jjWUMHzmd15Ve6N17F1jbrIjY5CBhE5O1dgdiVAOWevY0AwO7z+ctJEmKpk4Wnp5VpjHrG5oDZqe2lKPddJv2SV0PZ3aMGtmHxI/XHsqaPOg5/rBOM3yZi6yRzm5Wu0JWL2ADSnlTyZtyaw+AFg9nDQ5rGzwuclpXj96RujrghbNaj3lM6sLkX6Sy0g/KIrCYFwU2o6iUA/pOlsgA+K6KFLCQ4ulUTuQtRhKGhxeczirXKFf636kzC9ovdeShUE03jlbB4QhU03RmNU0pkIwCbSiFjgOekN8XtFEf+DX9CQtdBzqTpVd+V2BX6pVa10viKR3iu6Y1fFUn6/zXWqWAjN18/W8YI23SM1A5ywnQIwGS7Aj6orrNAjr23VdduZ3siG9gb879e/40Z//iB0z4p7YMBj3Zcj6Y4t/v9dsu4az/vcs/uY3fyMe9zRoVk+UxL5hRSx2z4jvwmM3eWC1csIbAThB3cpLf/YCTrjyBPYV9/VsTbPVWYqNIoZmkJ2WRZBiQWTp8z0zKsDqhCuK7WoPpOQ89uqQNcR4rsqIkhW/SC5/hm7JnMZxe07lzbl8qDJ3O/M7eWDqAcHgXMCsbh9AGbAEwGjj0oCeMKvLrhGYWT2UMHCqAox9VNcDg9UeiO5lY0UfrA4IIEomaopyT2VAHpt9HEVtYKhxNqQ3LPjdaHwUVVlY+nqfcy+Z1beP384HfvsBvnTvl3hSNuQGE7pv8AjAo2I65QbnJMoV8RnPhWyE7Teitf01qzu73kZSJjUivldRNz4jnmY7iHvAlXlRNwaLMM+snqrIXCpgzed5eCT1JNPFGimpWe01XzqJuC6n6FQbsJnpslbeU9jDS3/2Ut56o5Cb0iQBwgyQqyXk2koeCa7L+sDXrJbf53hVmsYG2NcGEqI5YnvXbZdSIP9x33/w97/7ex6YeoDJvPgOtkQEycwjurVGTOId3l6diYn3UK7b1Jp2V2tpN/bMVZgrN4hqCltWiJpKURS/Wb7t/0MpEF8yM72ZR8fFXnDM6jQb+8U59MD4nqdlymxWYhz9Zj/M7UBxbUqusXjOkRimHk2hKS6P1n7MF+/5ou/T1otoxdTqOZEbNdokYvypx0Gw+hkavgyI0t0hfKDYlNnEh0/9MG844g0+kDjjJpdgVidI+yMoDrufhpGK1tg2XaRkz5I8/B84h0cFd7jlwNk8nPA1r0ACwj10fj159GS+ecE3+ejIswHYZYtieylmNcBIIjO/NghNCsQDEXRVJyrZy3nE4dYuWD2YNOY1wzQ1NJZww27Mj91LdtKsm+rIGGQgbjC19ie8YM1K7nVrQmct7KiX0JtytLoNszSPWa2oNSpKzH+NXsYfx+4FIOZsQN0p9arXLQR91w1Y2MXDubC2kbMq1Z7IgExXxF4xEBvwAfo5N0nKjJA4ACg8lDTIyusyzLHv1vAKqjQaqkw6leRIW53twcQ8i6YcUvd9gQxIvYQi2Zd6PNPR6wwlDd40a/PliSlOTm/qel0LwBNAlSB6kALIW5/VFN/9dBd65F7xY0UsqOVR5JRILNlFwiff42hDXAM78zsDv5SXjCb1JPVZ2QzR+rrSQc1k+kg4DseWVf5s3Z/5Goudxnk/PI8TvnUCO+cEAybvWuiaesB78oARFfua7oj3FkRPu9Ks8KKfvIhzfnAOf77pz7EiFtunPRkQa958d4mE3nEdsrWsP4LugWi9lAEZLwsweDQ+6ptBPkUG5PAXUSBOQqniSAd4b1/sRbQ2CIvyuitHD8ysGxpdTc2NEPOMo3qQQ06VhZTcsDXMRL7KsCL3zeTy00kDcZ0qEtQIkYzxPw/9D6+59jWCedXCrO7E9GvQmmfDVhWla1k5D6wTmtXSZJcY/QHN5QaTBnZV5CmP6sENFr1zwJApVU5O/wUGq8007x0e5P2rNKYqe4K9Rhuxu/wIABuSRzwFmF4sng5mtde4GbaG2TrxVHNF8vtg7124KPzSPpF8SRq4aZrfwAgjnioDMm9m2AljfjhpUifqM6u9qbUg0Xp2mJqJK6eSqorhfzdBwgOrx0seUzjYfeDlaYlognyxiOGZxAZgVlt6y3PUGlNdgtX5ep6tc1uFGbzjoEvT7liy8wZ+SkovFVWZE4TFrK6J1xmrBZMBAUjHbVR9gu2mzEG7NFm8Ze8t/OSJnzBZmWSiIK6LI6ISqBx6qj+GlwtX5J6YNCO+nHfuaWJXe9JBm4YSwiNDxkY5neFNpf1/EVuzAqzu19fRsF36rCir+2Js6BNnvcoUk4Xekxg9gkOf2eebK253VzCyGGFEUajJeikq4atuJgTbXVu/2Y9TFLmRaw317N/7vxQHwepnaPgyIB7G0qW21GKxMrGSVx7+Si7cdKGvPTvjpljVJ/7tzZnN/mPjRpot9Tq/3TFLefv72DP39I6j3Ls7h6JJNqBjC5O9Vmb1cALQUFxplBbyaN2Skd0NwG5niFhUO6D+2qqUSC56BVYn9ITfjZ5zJFjdJig8lDAWujGHBHLeuPNGTvjWCbz75nf719gsnTOrHanPmFcJjfV9/Y7r+cfb/pFb9twCBQFQlFyD/r7lgbGTRk/iL7d8gtrEC6l47tohMeWXCsMdoVk8lOHoEbBzoV61F54WeNaWyWIP7gHvQB4wB+b3DZIHNFcEcY3l3AQuUC9Nhb4ugJ9d9DN+eOEPGfVGV12LvnR7AOxwwkRzxIZbCWkE8S1Hv4VvnPcNLthwgc94bboq8XhnRdBQwqDuigKjUe8e2Dl79dn89KKf8o/P+kcAIpKtE6QAAtEUizUl67ULBpZX/MSjcR9oKrsG6WTnRaMfEnRdWReITFdgtdxfBXNCGGXVY90lo/39g1iuy9+N2Xz89E8FMsFzXGeexd8UhVWBGP1xPfgIopzuMrpI8gveJIGiEYvEmCrWKNYaqFqZ/pTrg3j95uLXnSHfi/e4gRaDxV6xeMZL4iwYtkb8sdv1A6LZ5ElFMbCRJ8yjAMg0xec70yMdflhYBFWloXPDOPC9aupRJpQBDCkx08puDCs835PB2CAThRojPli9PLO6L65TlcZoYZIxSvV54KnVbLoTZvVgIoYrDbeqqgKV7uTH3n38u/nM2Z/hqMGj5jWrXTOw3MZgQsepjaK6MBPRmCoFY4t514ThAZJ2cLAJADPFo7rOY2aEufpcT+5R13WZswVIcdzQsU/5/Uxlhr/69V/xmp+/xv/3fWZ1D8FqbyJj2BrmialFwOrHhDyWs+okpshQrspcTVXBaYQmW7gxs5FLj7qU89YL6SWvkVFF76g5MpIyqLlRUpKk1A2zulWaRFEUP4fXzXhg42SYl527o3wr7xwZ4hpTCySv2KpZXS5k538RwMMjqqcw5RoUreqzeoOG33yIxqBe9Bv48XTnMiCZmLgeS4rnhdVdLfW6La/jkiMvYdDzSZLNriANiLp1G/FNn+MrXs3aJbPak61J6Skm8uL626hIZvXgU8HqjVqcq3fv43+PfBcg5EU9qb780wRWe/nG/qS3jf9/wKyuNqtE1ShuTUh8Hb06g6IoXLzyTD47keVfSr/nycneg+mtuRAz4hzY5q5gZAl/LmVYfNdGs3tfmAPFAolAM4MmyQtqcmlfkYMxHwfB6mdorEut42WHvIznRAfFD3rIEgZAgkezpFgp9Tefs+Y5HD98PACWnkIDEoiD19Nje7ri/j1ZXwMs4TjCICExDxJ4SaFjt+hC9/ozA8iKkfK97iArMuYBgYF1fQO4rkIUxGhpyGC1AHiyYllS47ltGZBkb2RAvALe1EyfhTvrpljRwdh8n6VjOx5YrfqarN3G7/f9nh9t/REPTD/gg9UTbh+r+g5sxgeiIDlz9Vk4tZViBAl6rlk9pJxOZfelPFffJEDiSAxWnrDwMQkDsNlu2zwWjYYOVjedpq/5NRgbbJF2SS0LVg+nDB7RdY5dv4YLHv5SqOvyYjQ+ymH9hxH15EncTNtmnv1xHc0VSXwlpGbNmtQaTllxCquTq/3rtkiMgQ7d0tOxKA1FJs7F7tcWj8bZmN7ImpSQMYraYq9MpoIxq4dTJoZskMx0YQC5QAakBWgKqu0K+Mzq1Q0xyrmvtI+GHaz48JjVfUYfTkkkzdoBdIPbiXhSfOYJquwJOLFUaVZwvSJWvreiG+tqxNqTT4k5wWVAPLA6oSdQFIWbt92FteELZNZeQ6khAMBYJObLni2I0gzmtX8NzMsVeKBT03HJV4Ix0JcLD6zu04do2C6KIjwnPAkQYv0Q62NvWuRGA5Il2CtmddNp+tddv9mPXRC5mtOGKeVsZISYBOx6IQPSZ/axPrWeFfEVTOZbwerlmdUFZxt/POQnXLhqRajMah94iib8fCjndigDkjDBEfttVVGhC1YpiOb28zc8X+goyzO5JJtJQWIwYYCrc0g9wqmVKoWA6/NlQKTUw5zMnzNB2a5GirgH1LlFirXw79HpYh1XFySRM9ee8JTfJ/QEN++6mQemH/BHvvvi4rucLfcOdPKY1SPWCLtmWppcAHYT7rkSAO2ICxlNmb5BZlaTZXpIOceRA0fyvhPfx8WHXix+0CID0sl5MJIyqRPx5R+70axeIE3iuqjy70YscaCnLRtrpaH9WH2cW6wY26PRQFMGrTWUZzZtRyxQA0xMGUmu272Pf3Regdvo65pZvYApL7+DhquRCZCr9ZmeMbwnA9JdzfIXR/8Fl53wXgak50netUgakadqB7cRGV28n6zH+u5y+tIDDlN6isl8DQ2bFbaU6ho85CmPN6IW65tNhpX5STQPrM72cN9oDQ+s9q5rLzYOxUGpc+/cr7h/6v6nZS37xz+e/o/c8do7cAoi7zlmlfi+jpjeyfnlPH/m7GDXvt5JoXnhmRj2GX0wtwOA7e7oknVebMXhACTlxGKp2Ruwum7XOW/deZwyegppPY1RE/mgmVnev+NgHASrn7FxaN/hfPDky3ljfKP4QQ8KjUdnH+XO8TuZrkzjlloMFluARI9NZRliY4q4DVScwEV10LhvTw5FleM5jgvmwoN63UCciKrgNKWURY/B6st+fRnP+8Hz+EVOjCPucYeW1S1dl+mn+Og/8b19UcEn6rJz7IVXnMWj8XmAx40T1zXibY6A98d1FEcUcyU1PBmQ+THv/hYZkCSj6fYLR01ViCqtYHU4JoteIbMyvtJnzE2Radv80SvoSq43ytxbsHpvVlz/J7hSr3rNyRBZWHwMJQ2UaJZ/z/yW160cCV0GZK46h4uLqqhC695vQCT9JtdSMZQ0KDtxXEWh4vQ4+SuKwnHSzbTN4u+PG6jSTC4ssHpByOZUwbU6Bl9VVeHK/ginrFvNl3ZcFfrSIq5gdaVTwRjMw0mDqNx7p7tIBv3zJmK1NN7igUEdwAerh50muFpXkg2+JrqR9vchI9mF+SOgSF3MhFJh12wxkFGfV2xrioYppaAKWN19bpKRbkpyZDEAWO2dTcmouK4en96LZo4RMaYYsob4xnnf4NNnf3rxJ++7G12yUKuy8DQimq8/P90jKRAPrLZUAQYPxA2imjovAdIvcrLc0MkArJTNu+lqb8Bq75pTUOSeKxk7icFln5szV2F6YHUPDBYvO/Eyrn7J1Vy46UImC9XOmNWWiaM2KalKuMzq1uZ9K7O6A2mLgbiO6wqgoqIootEYkiH2vMGiGVyzWgLvfzU5yNfHJ9kYWdwrZbmoyCalYUuwuin2ypQZUDpIT5CQ15ul5nsyFr5tOoeii1zy0L7NT/m9oRlszIh79JEZkZ/3W08Ds7o8z6wey4nP1TecvvVzsO8ewdQ9+hWsH7Rw6oOc3P8CLvB0tHuRcwCObI5UXJ3BDpnVdaJckivw/aHn8urDXx14DQtMH1tqWT0W7Lr1Yo0E9fI1Ab7WFSVQrXzjxTfym1f+hg3pDdgSrHb0gNNcRpJBx2Fl1AEUJvPd7bu+1EbE8gkPBWIMdkh4AOi3pGZ1SAaLgLhuZc5SwKI/YIO8LyZq+py3ti5kQFzX9ZsraSPNRKHKamWKqNsQ+WB6zVOf5DXMW3CDzP/HYPWu/C72FveycTCBMXQj+/Sv8+1Hvv20rGWxiKgRHtor1nj0aonB7LjV/31pz8M9X4NHgEgZKb/+nHFTSxLztGEBVvdLg9deyYBYUYt/ec6/8I3zv4GmasQbIhdK9C+fCx2MHoDVtm1z+eWXs2HDBmKxGJs2beJjH/vYgnEv13X5+7//e1asWEEsFuPcc89l69anxyn0/0q8/ht/4JiP3EjNlxgIH3j9+gNf59IbLuX67df5zOoZN7UA3PnoGR/l38/5d44cPg6Ajwz0Ya35Ok/OBR+l7jTqTYdH9uV9GZCE4zwFrI5qKusGrHkpC61HJoEyJsoTTJYnUSXIv9cdXBbkFJIcKjnJeu5Wk8uLxZjVOTfetgQICEA4I0GTsqpi18NhfXvM6v5IDFxREGVJtM129cLU4nJtSmgu0TkJNmWMDK5kVk+6mWUZwiCS71vHriPa97sWZnXvRrRmq7PszAoA9pDKfeKH6858yuOGkgauLdgqVVWlHKIWIohEoc/oY8AcQFO1ebCa5XXIk0aEOqIAqATU5T1QbMtt4zN3fkZolbY0H9qdLuiPR4k2Yww3m9gh7R0/feKnfPfR74oRYcl+EyBi54WGq2pUVJVCrfu13bb3Nr54zxf53d7fgetiIBK5voByG8NJg0hTvKesUwvMXF7ArJbMmjzxwAUQMM8QpoHjnQ8BR5qPGz6OD5/6YS4+9GJf5zue6sL8EcSUEHDJ6iTv+cOfBWLOeKCwFbVQJOgRpCmyIGTxNmibVPa8mr88+kMdv4T3OXuGtE5dAKx1ZRJTMzllxSk8Z81zFn/yzBM+0FpvYY567MBe6c8eMXAE56w5h4wmjNv8xqoPVktDtxXHUnWjrGj2llntnaF9Zh+aqhGVY7B6avnx0kJ8PUfXapzRSLEhtWHZx3cTk7kqw7TPrB5Jinyjqqi4ITKrW/OhZknuIR0zq3VwxHVWVRXA7QpMvGHHDdy440ZKtYL/OqUuJh88TemC7WnPBvv85pnV4jyekVJOHqOw41BVLFl2mlqR8Vz4DZInpuZo5o/BcjYzbC1+D2zpF342j8wKsNozOZztocGid58OWUOMyfd97I5vwFfPhF9/QjzoBZ+F1ArWD8Rx60Mcbf4Fb6hJcC6k/HG6Ms3uwm4f1GnWxP7UUAxSsfabEB6zek2zyRYlRsbMBF7TsDXMe054D2848g0LatmY1R2zeiRlomsqTVtcrzVFCVQrG5pBv9mPRgRHAsJKAHNF8WLirMto4t7qllntgWutzGpxtneeQ27IrKaRP5otZXkddHHNNZwGW+e2sndWYDuOEpFSMwH3NEvU9HlvOLkLMlelWfG9P1J6iql8jU2KZP0OHALqU6ExO2Lyhb40n9pzo98gSMsmV/ZpkgHZLcFqy8rzxuveyAt/8kIuuuoiXH2cRv4YAH6161c98Z9oJ+pNh61S6uPoVWlwXYo7f8vP4xbfTiVwp3oPVntNiKSe9AlwWTe5NN4xeKj4wxWfWS81q/1wHFKubJYMLu+BdTAgYHt86fjUpz7FV77yFa644gqOPPJI/vjHP3LJJZeQTqd597vfDcCnP/1pvvCFL3DFFVewYcMGLr/8cs4//3wefvhhTLMzkOpPNW57cgrUGndnSzwLesKs9lliqoEimY51sx8zKrrUt+y5hXfe9E6OHDiS/33BdwC4M2aiRLcxWZgMfT1LxaPjeeq2Q8ps4CLB6kW0xDYNJdi17zjeqOxlQ73RU2a170grP4c97hCnLafZK4ulGVuC1SExq1vNQYJqNIJIFtTpI3mtcitOcpDglmHz4TOrFakl7saI6CZJs7NiyIqaVGhhOYUQvnOvmaGSm8YC5ki2BaTXnTofv+MfMEch/0RG/LCHh+B3HvkOD2j/gTFyOqNzd4kfrj/jKY8bShrg6CiOiqs6zDUKLC9q0n5szGzkllfdgi3HhluZ1ctdb4qioEhTsCYuDacRSJ93qdiW3cY3H/4mxw0dx8u1tYBoPrTLlO+PGxy663z+R/80rAjHFONrD3yNnfmdHNp3KCMtrJggIIWuRIAGpRD2tdvHb+e/H/xv3nDEGzh95CS8+qAvFax47LN0VNfikHqdlLWCcrNMWut8TPXPN/05Wwa2cNzwcbD9D4AwRzu8K2a12JfjagO7tIkTNlpEtWDX3cb0RjamBWtvriklLjLLM1wPGLK4jUhgNkgy7T0nEU3MF7RYDAQ1SgOfkb42FqWZPZbh6DEdv4TPgtHFeV2r9OG6CrZSY7oyzdCBzGemt2J4rOCWSZ+BhMGOmTIzXYIAS8UrDnsFrzjsFVx5+07gwfkm3JyUAZHM6sFMkt3uMIN2Viy3R2C1qqicteosrKhFrWkTt7OggZVZHqyupTfy8okSZzQbrFz3vJ6sz4t6YQpdkedCYvnR1+GE2GsqqoLbqPh7ULfROmlWL84SAapasu0pMxCTZrWp8xhJmqxzPiV+WMtDQADr73/395SbZa594fc9i2HJrA5osCjv61wzAhoUajmCtBnfeOQbef6G5zN09V8BMF3vEqwGEnKMXleL7OuBXODYHFT3vYqXnrpWNMwXiS0DW/jpkz/1wepea1Y3nIY/np7R+5ksPEGCMivv+sz8g457HRzzCgCfEDRZqIGREAaeIYHV33jgG1z5yJW8+eg3854T3oMtJ2000+rIv2AkZVKTU4Nus9bV/TkSH+HNR79Z/CUnjDdrboSk1R0eoKkKq/pi7JV+HnU1GLPai1ylQQJx1qixYJJoGEm+k0zwR/sutNgqJvPdAfKtMiBuNYeCONuDMKtPXHEk1b2v5fzoJ0Gjq5plojTBS3/2UkxV506gEUkASuAG+Ujc83SSEyxdkLk8M9CoGiUWiTFRqHKEB1YvIgECoEYtvpFO4czdy6X1IrFIrIVZ3bsmlxeu6/rM6uvH/pO7J+8GxETUa6+7mIH4ZZTrGSp6lt/u+e28Jv3TEL/c+Uu+9sDXOH7gTGxnI5auibpq5knUwjgfW7uKkqry6sl7eroO13X5zLM/Q6FeEJ5J3vQl8aXr9sw6GkRJSrJcrzSrbcdGURRURcUuz6IhruOB4YNgdTsROrP6tttu48UvfjEvfOELWb9+PRdffDHnnXced9xxByAups9//vN8+MMf5sUvfjHHHHMM3/zmN9m3bx9XXXVV2Mv5PxtKpEDysI/w/5zfih/0AKz2NvSMN+brmqRamHW6Jg6dml0TnchIjLQ02yh0YbbRaTwyJv6tUbnQ5CLMahAjYY3sqby6lOSwRqOn4KGvm9SoY6MyQd/yzOqkiT50HZ8bznKvoYfGrN7Sv4V3Hf8uXrDhBQuZ1R0mM8PJOH0zx/O6fIFoPZwiw2ObDMhUd85NdrwugIQuAKeqonStH+lFri5eJ22kqeTFOhvRdFt6a/GWsds5D/jqYXPkiewTAPQ1NPTqFGgGrDrpKY/rt3Q0VUWTrLBSj+4BTdXAdTsCqwGixrzOatgaqt5+ljbSPit31k11oFkdpejKx4bESK80nqo3WHBjgRJ6S2pWF0L4Tr3P3tAMCqX55C0TUAZEVRU0Pc6P947zWe1I8R0EiFNWnMJrt7yWIweOpFEUDcFctzIgklkdVxtU972aV639iA84dxMxR3xu6Uw4zGpLjtKWm51/vwuloOa10bv73ESbayQmzt29AaS/WjWrAaaLNm5DNKz+5a5/4QeP/8DXen1KzGwl6bgcUatxeLUMskHmvafpYm8LSG98298/PGZ1n2Rcp0z2uQOsbzQ5LbGODeneMJcP6TuEL5/7ZT777M8yXazTj/hMzfTyYLU7IGQS+qu7xH4dYuRqOc75/jm84upXUKrXMKpSS9safIo81WKRNsU10VQUGj2QAUlEEzhlyfSOZTp6jcGEQTN/HOW5o0lLCZug8mOuO28k6slt2K5CFT0wsNMf11EVKBDh/NUrOX3HlYGK8JWJlRw/fDyrJft2qiHWk+oCrI6r4jWiarknzOodM+J9bhhYWkLi8H4x+v3o7KPAvOFbr6YxAL7w3C9w+WmX02jEsB2XIzWhq01iFN5xO7z430GCxV6zYbwwy07DEnNNIcmALNA4BlyZg+hmZ6DpUNKgToQ9EY3/KGzlfx/931DW5+XJVXQfDOwm1vRbuBKsDsKsnqnM8KHffohP3fEpZst1Eojnq0ZwGZDfx0x+Ye9DNSa7ZlZH1ShDsSH6zX4qRbGfBZ2aSplRVIV5U/guGiS+PIkmXquqiesraM4xKuXUKoot3De60Kxu1atWFIXJVma1ZNruH4puzUtmyfw4Yz19BouzpTrluo2iuDyeewCAzz77s/7vq8P/SrNwNADXbb+u5+tpjcfmHuPhmYfZNicaTesG4qLxteO3WK7LxQWxd92d2E253hsvERCEp3PWnsOLN78YM2LiStLgnJtc0mARLcKUsZrX5/K83XoVF22+qCdru3b7tRz/reN576/eS25qr1xXgoFUd1JHfyoROlh9+umnc9NNN/H4448DcN9993HrrbdywQUXALB9+3bGx8c599xz/eek02lOPfVUfv/734e9nP+z4UpzFxtXmPGFOCbphc8slQn07H5Aoi6TzieyT1C36xA1SUndvmIz3xOn78XiSemAuy61jnPjGziyVl+U4bK6TyRnBae34GHdrvuFQZ9jM6UOYqMtC1YPJHS02G62WVXGIpHQmNVbBrbw1mPeygs2vmABs3o42RlrYShpUPbAupC6jz6z2hHXyiypjhnfACvMQzk9Z3JStRYKs7rpNH0gJWNkqBXFOtstajVVE8AQkPXYwT2UAdk6J8DqIz2gcvVJPgjXGqqqMJjQUeQ9EAT4ajuqWZDjw7Ok/ALsQKHH+1F7ZPjVqifsJTE54oy0eR/0xw1KyOmIkMxPF5rjSM3qgIzXjCreR97u/jv1wJNYJEauMF8km0b7xqf7R8QQ90OtEs59UC2Ie7KoJEh0wIp8Ssii3VREweGxV4LEvZP3cuf4nWTLU5jSbDjT3yULX1VpRiwsuUcGuWczRoYL1l/AGSvP8JsieTfGYFfyKeJzGzYdIskH+fXeaztmfW/KbOJVh72KM1aJKZCpQg2nLhpWP9/2cz76+4+yu7B78SdPP8GaZpPv7ZvgS2NjsO9eAP899QJ4ajpNstUsrusyvj9YLc18PBmQEQlWn1yt8R/9Z3LZiZeFvp79Y6pQo18R+4gSX/6604c2YLsKEbdCLbfE5xwwpivTTFWm2FPcw1zJZljqVSttSIAAxLT5vabq1EMD099y9Ft46zFvFax9mQ+pVme68j4Tt9zA9XLNgHlH02liS1aXIScYS5iAEhjY0VSF/riB7ZrkpEFfV8x+2ZwtuuI7SXU4+dYaac0gbdsYNBjrUq93sdg2MwXYrBtYembMA6vHS+PMVedavs/egNVRNcpz1z6XVxz2CsZz4t84OTYmfrniWBje4gPVMA9W3+3+DS+yyuyJRsJrkLeaGYJP2omanc3YRTWVqGGyLxLhS41dfPfR7wZe03RlmodmHmKsOOavp4LRFYPfizV9MXBbZEA6zCtnq7Ncs+0art1+LbOlOklFnnGBZUBSxL29TK2RLTeoNe1grwW87NCXcfMrbubyZ11OKSfy2rJq+RPQnYSqKqStCFnFq5GD50JenhKT9U9JFflfX8A9bXVKTKjZiitISV3Ux4f2HcofXvMHfvjnPwRgIl9lkyrB6qHFwWqiMR+s9rT8fYPFpwGs9vLSFakY1730Or5y7ld43trn8dVzv0oimuDo2Gto5AVY7bGun67YnhNTZVFHTEyt9/beHYJM+bq+44i4Lo9ZNjc92Vt29YKQzegc8QPWn1lrPZsaTQ7LVxmJ98bwMF/P47gOmqKRnxF7f1ZJE9FCh2H/T0bon9IHP/hBXvWqV3H44YcTjUY5/vjjee9738trX/taAMbHhVboyMjCC2JkZMT/3f5Rq9XI5/ML/vuTD2d+wy+HbEDjhc+sboqNeJbUAoCz1ejJxQU94TtD25SoNIIfwJ3EtimRxJ216rl8rv9UXlMoLsqsXpWJgVLjcRf2RrSeMatnpWZkBJWU47LbEYfsclrHUU31jQILqhoas3pBLNCs7gwQG0oY5KMV7jV0ciGB1c9a8SxOW3Eaw835hkgQsPqIzCmcNzXMC0vlUDSrWzVrU3oKR2pbRqz2WZKJqGASZD336B5db3W7zp6i6Gg/25Wg+tpnLfl4TwoEoBwyIPyTrT/hzTe+WbBspF5Y0Y1RJ9rW9xqPp4h5CWHIe1orU96W32e2g/ug39KZHriP160Y4VotnKJ2AVjtyYC4wYzvBmTxWXC7v878gjZikpdgdYPIolp+7YYek0zJWilwI/Puibu5a+IuivUidcmsruvpjsaXnxKyqWNIE8ndc+XA6/vcXZ/j0hsu5Xc7f+3/bHCgSxkQAD2JJddUCND0Orz/cD797E/z/pPfv6ApElRmAPA/twHDxlz5PW7J/rvffGw3Th49mb877e94+aEvBzyweuHntSgjuVaEgiwuPW3+7b8R65HvqRcyILvyuzjre2fxvB88j/G8eP3RlAl2E3KCLUNGSAwNJnTGEcB7bXZX6GvxotFiRivAanl2xQeWeMZ8DKSSfCU5yvEb1vJ3t/19qOvypqYGY4NM5GuMKuJ+bResjmpRcMV+U1UUsMPZc99w5Bt41/HvIm2kicgzIRLvDKzus3RUfZpI8kHu9Rp4AfOOVmPLWFO8xxIxjIiKpQcXWxtM6FTR/WlHr1nbSVy/43q+9fC32N70TB9jxKJaW9NlS8X79DXcumsvR86tZSxkGRDXddmt/Q+Jwy9nW/XXSz4uHo2zObOZLf1bmK3O+gDaXKnRc5KNxyY/JiqbQyNHPuUxQ0kpr+HlaYoaGtnBNzOUzUbFm6IKYGZomJZf8wX1eQAhI/Cqa17FZ/74GZ9EVHH1rhj8Xqztt0AaYzehY5JSq8b9bGmeWU1QZrWZFlKVQCQizpCwpoCqxSwAjWiwtWWrWZpr388/bdojPqt68FzSz21l/VOUgoNBp0VWptPUZ85g08xhklmdDbw2RVGwohaDsUGqDZt8tbkss5qoRcxZSKRJP40Gix5YvbrfwopanLnqTCJqhDNWncFtr76Niza8DreZEeupZQMZcQcND6xuVEXutm4gLgiUW38BwOiz3sW5JbH+Xzz5s56tY6o8xTXbruHO8TuhUUWRDRPF6hcm2EtEOSUmzOKFbT1bW6vxY2VOYJ0FLdOzf+//WoQOVn//+9/n29/+Nt/5zne4++67ueKKK/jsZz/LFVdcEfg1P/GJT5BOp/3/1qxZxKn1Ty4iuI5IZCuKGjqzutqs+odNpi5ee3o/R1WPDQKSZa3HycjEWNHKPR2pa41tklm9aSgxP4q5iGb16j6LaOaP/MPoOP/S39czZrUHVmc0AwXYaYsNvB1t3Jg0CsyramjM6l35XTw2+5hoPrQwq9thurbGUNJgZtWNvH7lKA8q4RzOHz/z43ztvK8x3BBJm2Dvd65TN5DQKXjGlAHHcVujz+jjtlffxnUvvY6IGkGVhV400T5Y7ZmGFTzdxB4xq7fntuO4Nq5tciJyZH7kiCUfP5QwcLwiyA4X0Nme384fxv4g2JCeuYVU4WzH8CWeSHJWucKZFTdUvWpoab4ZGR+sbhqZthkoffEotWiR+0yDfYojAKouomE3fJOXWCSGLcHqEmaghH5QNkeKSvffqZeMmxHTlwFp0N33YcbifDmT5jXG4/zH/f8R6DX+9ta/5U3Xv4knsk/glMT11dQDakd6IbWXI24dfeg6fp57E1+976uBXsoDhNSqKGpKrkEmEZyN7oUWS2HJAnc83+X+1mVTxA8pA9IXtXEdcW93Y07jui5TxRpObZ7IkDbS9BmLAImzT4o/rQFYdYL4fyk55Om9T/cg/xgvjfvrmpCg00jahPxeYRCsGWKsH4hoKnldvJemHI/tRbz75ndz2ndO44YdNzCVrzIgZUCwlm+SDCYM8o64f6pdjFUvFh6Td8AcYKpQZQXifiW1qu3XSHMYp1WkXnXY+ZrrEm2Ie0FPLA/st4amKiQHHiS2+kp+FJWgQMC8w5tiUVCIyjyo5IozoJsm3FDSoOLqPpiYCyCP9v3Hvs+n7/w0jyriXiq6se7ZrpKRmqTsGw2GFbOlOrY2jaI4HDJw4KbIj/78R3z/wu+zKbOJfikDUrcdSvXwSTZPzD3Btduu5bHZxxjLiev4EHeH+OXoUU95vJebO7ZYV0VVQpcB8ZjVmmyWmLHOAc5YLEbKnr++ggL9C9Ykz5AqBhmri/NJxpp+i0buRH60O8IXJqc7Zla3ygbNluqkFA+sDph3mGni8p60DJH/TYY0YVCXMiB2QLDais6z6yuK0h2zWj7XUgTMlJdTGUEb5ANxg9rkhWSmjxON+5Dq48l8jTRF+hV5f/VvWvyB0RgxCQD72MjTaLDomSuu7d9vAsJ1USYe4vDBKG5T/M5xHR8c7XXYjs3O/E4A8nlRH68fsGDrjaKBm1oNG89hlS19FHI7e7aWR2Yf4UO//RCf/eNnfZmYpqsSTx64bm/2b2Z7NMIflMf5xc5f9GRtrWbitdwEAFW9S4nAP6EIHaz+67/+a59dffTRR/P617+e973vfXziE8LteHRUJBATExMLnjcxMeH/bv/40Ic+RC6X8//bvTvcccVnbEhzi14wq72iO6JESFREkjvrphawEI8cEIyA0fioSKr1OGmpG6lolael29iwnZaOYxTXKxgWY1b3xXCleWFeVXvGdFUVlROGT+AoOfa01x0kaUTaMg2MRz2AUwmNWf3Fe77IxVdfzNVPXu2/Zt6Nd2ziNpgwcG2Pvdn0NUJDCU/bmGDM6oylMaXqTKtqKDIgiqKQ1JOsTq4GICoPGj3ZflHrMasLHhu1R9fbk1kB3Ni1EdY6LY7WS8RQ0kDJH8Ul2TxrqkVwwuvA+wlq1PK1w/NunIwVbYuNlUym+MzUDJ+YKrMisSK0dUGLZrWehqpIZPQOGHUJI4Ltinu6rCpdN0Va5RysiEWtLJLLCmYgQGBET3JstcaqWrJrdpgPVmsmxaJI4ptqd4VjLJ7AAfKqE3gk3ddBjFq4slhROtSbfUpIsFp1m6i4OEo9MEvMOzeVstgby0q8O9a3DMVI+DIge3PZjp9ft+s0pSSPxwAtEo4MSDraBAlWd6qLO12ZZrY6S9Npkq82qTcdGtnT+KczhGndxvTGxT+/6a0ANAY28/zJX/CcNasoSDDHA+Bne6BZPV6Wk4HxEV8GZDRlQlYWYJk1C6YPSuYIuyMa52vbefb3nh36egAmy5OUGiXi0TjZ7ByG10iOtwNW62RdqQUass+IL/EVG2AiX2OFIln36dVtv8Zp1t/y1bFphm07FF+WSrPCQ9MPsSu/C+olNEm4sFKdgdUA8UgGgGnv+gx4HrROsSjy/ili0t/NvYloStfQycg8LQhYXWtKLW35GkXCAKtFbp5Uwgert0+XUHXRFNnYt+6Aj1WV+fs0pmuYUfH3Xpgs/mr3r/jAbz/AlY9cyViuioLDqro0ZB1ZHqwuK0p4zGoJTsciMXBdIt7f450b/VlWnH55bTScRuBz02d7R2LzzGr0UGRABLinUmkGk3/0/B6sqCWZ1TJv64JZHZdnuWGIvXqqEJxg8MV7vsjrr309N+y4gaas1d1FyFrthCCIiPug3GWN7MuASD+irCPyhaDM6piuEYtq5GUO3o1m9c27buby313OtduuZbJQZVjJyn+kH/Ql5HCii2hWy+sz9zQYLAqco8m9zY/zr3f96/zk6aM/h6+ewVHXvIhD1HFK29/Jledf5defvY6x0hg1u0ZUjTI2I77jdQNxeOAH4gFHvwxUlUhU5CO1+lTP1tKqRU7FI0slBKHgAKENH8aDus43MlW+/9j3e7K2VjNxuyBIZTUzhKnLP5EIHawul8uo+40Ka5qGIwGRDRs2MDo6yk033eT/Pp/P84c//IFnPWvx0XXDMEilUgv+OxjzI2IVRYVmuAzJeDTOh0/9MO898b0onhnZfjIgCT3B71/9e37+kp+LH+gJX7NaURpPC7N612yZpuNi6RrvueWNHF+4jdti5qJ6YulY1GcuF9TuusYHisP7D+eKC67gi3YGgD3uICsy7bGF59m4aigMYVg4xtbKrO40aRhKGtgy4Sh12XUHkdz6I8y+EV8wzerx+v18c9P9vHN0KBQZkP3DbIrXjHVQ1MZ1ca0VVVnMdjFSd6DwzBWjtX6SjnzvA0uwAxDfY3XuDC6by4ZuNOqD1RHLv37zWG2z+NNJcd9GnN5p8KfNNJos3PVU+8mCoijoEZHIVrrUzIN5kCKiRIhqURoVkcy4egJV7RzgHLbSXDk2wQVj67sGSD22nxkxKZbFd2p3CVbHE0kGpf9BULDau77i0TiaB1Z3qDf7lIjOM581qeWeC7CHuK5L3nteSXx+FS2kgkFPsLnRoL84jF3vnI3x5Xu/zPHfOp7P3vlZHHlfds2sllrfSa3hM6u9wr7d+PCtH+bZ33s2126/1i/Yk2aEvUUB/i5pSjgj9rzIwGb22SVmIho1qSPp7TUzpfBlQCZKgmQxZI6Qk2yq0ZQJcx5YvRAgq8VXoLtQUJm/NsJeU1msadgappITYHpDNUBffqy/z9KZtcWZVg158qdVBmSyUGWF4jGrV7b9Gv0JgyryGg2BWb0jt4NX/fxVXHL9Jf7+XXc1EsnOa4qUngFgRpGNwYDfrwcIm5rp6xKX3BiZWHf77Wja7FoGxAM2PZCmjEEq1oU/AHAPdd48Oswdw0+SqzRCNdx6aGIPiloHV2FVon0GP8yP9Od6wJL0zrvB2CBjuQrrlAl0pyoapYswOeNGhFhUm5cBUdXeGCzaDVQkyzcAWJ2w4hguxCXfIXAT2p5v2MzLgISlWS1ytoItr9sumdVJj1kdVLPaTBOXDN1oVNTIk12A1duy27h36l6y1SyOBKvVWLC1KYpCBFGrVhQlFBkQyxW56GxTvG5QzWqATLLOtF4jq6pQCV4fPzD9AFc9cRX3Td3HRL7GkAdWJw6gVxyNYTr7aVZbvdsz9o9ds2U0axcT9Uf56RM/ndecf+xaANSZrfxU/3vW1zSKxbQwuX8aYm9RyJ+tSqxm75y4jjckm/D4DeIBRwuJN8McRXVdlGbvvJu8HCupJ/1mRs5d3p/LHD3M15EvB2jqthMeWJ2MJlFKArB325h+Oxgiuss6FokLL7yQf/qnf2Lt2rUceeSR3HPPPfzrv/4rl156KSA2w/e+9718/OMf55BDDmHDhg1cfvnlrFy5kosuuijs5fyfDn/0Vu3c4Xi5SOpJXnn4K8Vftr4TEDf9MfsBiQm9JcHRE7wiX6SoXMonJk7rmVlJazw5KRK4dYMa23LbcIFD6vVFmdUAg1Yf03jM6t7IgPiRFRMAe9whVqTbGwXvM1NQ9MDqbCjL8JOtSBy3mkcBcm6iY6BiWILVKlBUVZHIBGUXILrb7//N+zlr1Vl8WYLVcyQCgdVDMtGuKuEwq+8Yu4Nrt1/LccPHcdGmF2M54qCJZ9o/XN52zNtI1p6Nu+03oBCaKeX+cdLISdz4yE7qJVn0pVYfEKgYkgCAg4KKKxg7RjigmsemsCIWFOflBobaBKuTshGpuzVc1w2FlerFp8/+NNlallE9Q8QRSZXVAVgN4n3lgYqqdsXsACFH8rXzvibMaYFmVexlmhHMHToWkxqUdp1SrUm8C9PBj5/xcXL1HGuSa/j5HSLpdLoEq5OJVFdgddNp+uCJFbFQJYsiGu9ylC4yn8iark4dmCplO36ZSrPiy7ooJbHORiQksNpI8YpCkXtmj6U2dErHT/dAZDNiQlXsZWXF6s6YUoL8ltLwmdWTxc5GT70EPhFN+GD1UNLwNRDXpfZjR9pNuO878Og1ACiDh2Dmf0/FbVKVoJ83MTTTQ2Z1XBP7hhlVBXjnMav3Y3PaiZXEZgQw0XSbNOyG0GIOKarNqs+YHbFGqOf/AEBd72tLtEdVFYqRUeB+qiFP57XKgDzWyqzuQAakP65TI0qcWijMau8+iOvxef8O4oEMbQdi/ey1YQ45YRaQXDBkDfHJsz4pmL7SeKmE2TUovKovxoSr09eFDIjftHRcGpE4LmrXAGIpqvOHmMkKVeQKY7mqkPALIR6d3gFATB1A1w58Xs1WZ7nk+kuYq87x61f+mnQsykS+1pOJ0Faw+lfZKlsUqWE/vAW0xb/nwaTOtE9ICo9Z/YINL+DYoWNZmVi5gKiQDNCwSSRErtJvK5RUl+nKNJsySxMllopKowVA9w0WdQZDAKvTVpRkcob/TNf4rdPHhwJqVltRi7npcDSrPWa1pon7qxtmtd98iMZQpB9F1MoEfr2oatJ0yhJXCH7NHZI5hDcc8QY27/wjAFMNsccGZVYD2APfoTjyEL+aivGSYk5M9wYAZf0pSyPNRL7KEFnxi8Tw0k+KWnxkepbmmpMZWXUWMM+sfjpkQPZmK2jxxwF41spnzddG0sSQxChWcZy3a1fz6Pi5nLH56QFCm06Tdal1jMRW84DjYkRUhiduBbsGg4f5kyNnWofyF4/cyC9jR/dsLQuY1VKGco7ksr5E/X197LTF/VwKiSS45NqMFJGqOA/URJfm639CETqz+otf/CIXX3wx73jHO9iyZQvvf//7edvb3sbHPvYx/zF/8zd/w7ve9S7e+ta3cvLJJ1MsFrn++usxzc61av+Uo1k4gr7sZvpsJ5REfsmQG3uB2IFvej1OFBiKio27F+N0+8e2aXGYDg7M4OIy7CgM2c6SemIrUoKF10sZEEA41+c8sHqQlW0yqwdiaXChoShddY5bwy/QcFGENYVkVndWoA2nTFxHvI+SqnYNvnrMKwGgiPeac+NtA5utMZTwwGrFZw52Ew/PPMyPtv6I28duh1oBTbJPUn0HSGb2i+OHj+eYgdOhKYuAHjGrT191OgO1V3JMWX5uB2BVAwwlTVy1wfaoxUwI32NrLJQBEYdznhiDbTYgMqkUfzkyxCnrV3Ddk9eEti4QzMND+w4lJbWmm65KJtMZ0BnXBUBXVrqX6TEjJqetOI2zV58NgFMT30PEDAZWR+XadOpMFroDntak1nDU4FGkjTSVivhO3UgXZnxAOt0dWN1quGlFLaLS9MtMZLpaF4riA9YrLfHZT5ezHb+Ml4xG1AiOlE6x9eDNvAUhm0kJKmyd6Jxh5zPSIxaKBIiVWLfGlIKxptkVoqq49vblsx29RKEh2SZ6ksmCyGGGEgbX7bjO//mCuOdb8LN3wfgD4u8jR2OoAuypyevDlwEp17GdcM3SPM3qqJTOGEmZ4jP0mdVrFzw+mUxRsefvZ4+RFVZMlQVDx9RMYQRcFH9vmu1PANVNAR5X3abIW0KK/lg/61PrWZFYwWRh3mCxE7D6xulP8IJ1ffzKioVCLmhlSXpkgLwbDzRhMBQTn3EO2SQO2CRPG2leuPGFXLDhAp9ZHYbcxqpMjAo6h9YbnOYaApzsMLxxd8N1qMmpxFQbcnYHioSRAaCpirNgPEQpkJ15AQL36ctLiCX1JNtz25mrzTFbnfWZ7L1kVg/EBhjPVTlclWD1IuaKXgwmjJ4wqy856hI+fNqHxdSKvKearkrK6txbIS3B6j5b7BtTlWAj/j6DP2Li1ls1q8Np7K3sc7knWedWy+x4CtmrnxLRBDOlOknFkwEJzqz+s1KZm3bt5YUD7wFgqgsz4FamvOY38DOBX8+QjN2yR0gKGMcNH8dfn/zXvEQRZ/ic7WlWBwerY3JSLe9N7wes9VpBzclCjSFFvs4yzOq1zSYbG7aYUmYhs9oJOddoDcdxmcjViMSF/NkZK88Qv5jbCdldoEbgpcIHJpX8Izds/yL3Tt7bs/W0xhmrzuCal1zD6zd+BIB1AxbqtADVWXuayK+BWKIPFdAavdPSbpXa8MhEWXf5KfKBuM60LYDjUo+0vo8aOIrTVpzGivgKzLrIhaKpA1xvB2NBhM6sTiaTfP7zn+fzn//8ko9RFIWPfvSjfPSjHw37n/+TivrU8xlQtrLZuDl0lvDuwm7GS+OsTKxktJJHAwpujKEDjVPIgjotu8WzT4Nm9bYpkUgY8X2QgyOa8sBYglm9Jj3AAznBXHbq5fC7NcDHb/84v9r5S94e03hZQWHcHWibWX3myvP51S0xPm++Q/wgYOe4NXwZEMmwKbsGkahBrEOn+ZQZQUO8j6LaPdPD07TsN/txK1kUIE982S7oYjEUFwlRVVWwK9muv1dvZDZjZHArcyhAzY0ymOnMVCUTi1J25fvpYXNkIl/lVEWwshhcWq8aBHNRH7iZiwYHeH0uz9+EOP7tM6uj1gIjt3YbEJm0+HxtRSEXADBsK1oYdUOpzhqkST3OmC2ZTiEbknlFWjSA0RGAEjH4m6EBfmFtJf/kz3nX4KtCWVetKq9brTuwemSgn6gPVs90zJz3ANeIEkFXdWxHnHnxAIywp0TEhGaVNYk4O4BsAODJY+uk9BTNuSwA7hLnUMchWVwJpcoTkwUcx+1IKsZvWKpRFKnTGwk4KuxHVN47jQpWxKIITBQ6Kx5bi4v7JLtsOGXyzrO+xO/3/Z6LNl+08An3f0/8eejzYcuFsOkc9DtEGluVEwqeWZrrQrZcD8SaXSo8GRBs8b2OePuHr1m9kFmdsXSm3QEirkNTUag0KqKQCik8pvewNYyiKChSp5F4+2C1IUdRawqhTtlcduJlXHbiZQD810+vnzcm60AGBLVOSVNEczBEZrUVtRacA0EAlNHEIBShqjSpKWCEIfNS92RAzK5B4dV9MarovKJQ5OXJBMohL+34NXxmtetS1URzKtUliG7FRIO4pop8NEzd6onKXtBg1Fq+IRJVowzGBpmqTDFRnvDfVy/Aai/X7dMHmCxMsjkiRucZXtoIezBhYO89hPP6Smyu39Ybg27fzFAnHeAeSCfFXvHW6Qaj/++nvsdLp9EKuNar4xggzEFDYFYDrBtIs68KNaVzf6e/OOoveMWhr0BTNN5w14Mku2VW6wniKMRtm/WWqFQm88HBal8bOhLzG/ixZHBpNFOzoNG9waIfXh2AhRFRsTqsO1sjHkkxa8NsxAAKIge3Op+s8+QiUkaKyXyVw3wZkAMxq2UN34K1eNen60Kh2vTB67BjplSnQQ4jJvaNZ62Ukrkeq3rlCbDxOcwOnMiv1R084vyC+6aO5bjh43qynsVi54zYn9YPxGFuh/hhy6RZLCGuSb0ZTtNtsWhlL5PzNKuT9C+TA5pRjTlGgAJluzfEz8tOusz//70NUTvGMgc2AT4Y89ELrO5gPI1R84Y9Q2ZWX7f9Oi694VL+477/8E0balqclHmA/oaUHrhd34a1/os8lL0l1DUtFtumxAZZk0yFI2vyc1hCT2xDnyjMXEWh2CNZhsnyJJPVGVwU5rQBGkRYsYzAvxejSYs8LcViCCxhn00kgaKgxZmiKL5pQ6nLrjvMM6sHzAEcCfzlAzC+ASzJKhUgYvdFo69vbKSp5MU6s8QZTLb/uW2d28qjxZuZiMn19ACsLjVKPDD1AGPFWTZ6YPUBzBVBgNW+Oauihl4EaYr2VM3qNj+3hBX3deHmSuGBwa7r8q9//Fe+et9XKRcFwJMLYDKaNhIYjiJ23S5levYU9vD9x77PLXvEPumZaxlWwCJIMl2bqsu+YncmJv/94H/zXw/+F9lqlkpFJOdKtLvJp3gizaDUT63Z1Y7N+FoLWsVuEJHj96lUpqt1AT6zeoNkihWbnbMrBmODfPjUD/PO496JLa99NSywWk/wKyvGFZvuhhVfYW+2s4LbZ1ZLs6Omq2IGvc68kNcbtSKbjD+jsvdVZJRjOnoJX8dPT/rssqGEwdmrz+YDp3xAGj7JyO6GXb8HFHjR5+D414GqYsrHeMBaRFPpk0XjTMjTXc9e82zOWXMO1EUeMeqD1ZIpuZ8MSJ8VZZ87QMzTugxZamOyLIx6hq1hXNclUhUFWqSD8dJ0fAVnlyqcXqmGxt7cP5SCMP619XRHYHhCXmOVkKTuvPsgEU3gtmhadnoOAKxI9uG60pRP1QLnauOlcW7adRP3T90/r1mN2TUovCpj+XrfTj3YZ+fdU4brUlGkoWqX60pIRnpVFffEWId72YGiXByikTuW44dPaOvxo3EBFkyUJp4WzWrFSeK4sEGRTa9F9Kq9GEwYNHIn8+fKszitWvOvjW5jX3Efs9VZHHd+IreCTp/V+T3QlxJnyOZ6g82ZQ33GaafxZ+v+jLcc/RaOGjyKWlm8z7pqYkbD0d3d0J8Rr6ko0OisVtY1nYHYABkzw0yxhVkd9GxXVZ+VPapLGZCQmNWGLYlJqeDSaFsyx9NXWE3GdrqqDWYqM4wVxyjLWiovPTK6mebqMwXgOeVN+Umph04jV583W58u1dtkVlv8Lmby72qB2/beBoAR0XzwPVvp3ST5eK6KFhc+HVv6tzAYkxIf2yVYvUHIktROfgd9ss6fq4ZLplkudkyL+2L9YLxFFm29//tIMsFlw4N8YXSOUi18PxFoaUJ0yKwGyEfEVFzZ6T3JMu2K6y0xsPwE0MEQETqz+mA8neFQVl0qikIsZLB6IbNU3FgRa5mxYalfnVNKaLEJ9lQfCnVNi8V2KQMyWRMb+REy0VkqkVg/kGb1Peu5QLkPNdMbzWrvkOi3bcZdkZivzLTHrB5OGTSJUHYNLKUmALEAnePW8Fl1TXGY5gKOvQIMR7dw6uzVPLte7l4GRLJNBmIDKLLQU2J9aAHM5WLS7KuqKFDvHuD3OrQZI0N+bgoLKJBgRG9/y/zNnt/wzSf+jXRqE8zRExmQB6Yf4C03vgV7eIiNewQIy+DmAz5nOGng2i169yECFFe+4Epcb5T89v8GBLP60DbZjYqqEpWGLLlSeNphNbvGfz8k1vP6k8S4Wo5E28aPXhzb91zOve9aXhP5VdfM6kdmH+Fjt3+M44eP5+zVZ6N5JkNBQUQ9zoBMVKdKM12t7av3fZVys8yfrfszGjVx3WrRLhmqepyY63JUtUZ18FSqdpUE7QNXGSPDB07+gDiDWvaedDrT3brAZwkfmk7SnFqHFu1c728gNuD7PFz1EyFh08047oIwkkRcl4bqoKh1tk4WWNO/hGv9IuGPMst7q4BFJgA4sSC8c6kyx5Ejx3Prg2nKpfYZXXW77oNhCT3BlHRIX9Kz4MEfiT/Xn7mAnWtIsLrqzBeLAwmDuXKD6WKNQ0dCkmIB3nfi+wD42DUPA7OMpk0BfhRkozCzfsHj+yydMXcA0x2ngBo6WN1n9HH26rM5rO8wCrUmKScHKhjp9uWq1qRW8a5HS6SUMtQKkAyX7dO0HeLVcdDB7YRVDSQMz9A2HBNxPxeKxqkWZokhmvdBgLqBhEF17KU8PzVF0rkysAzIXRN38cHffpBTR0/l63VpYO2aDHcJCsd0DcO0wAG7VhbmVh0CRV859ytUH7+BwR2fZgfhMKvjlmik1BWAJmP5cGoXx3GZmdhC3T6Mlx363LaeM2KN8AAPMF4aJx0T133YoFO5UfYbs/VaAnBZr0qw+kBG2LKBMtuQn3cIeVrTaXL+j84H4Lev/C3pehkFqLrBJDc8ZrVOg5lijeEOJ9W8OH/9+Zy/XqxrqvptAJxId83x1tg8lIF9wZjVrTFbqpNQu2RWA3OxFP9pwfT0lcCLmOriHvD0vq2IheWK6yyZCs6sfuPh72LqNyZH67d1RbD5wj1f4Mdbf8y7bZ23IHKOrgydgZF4P5RgxmtiV4KB1a3M6my51KJZfWAZkNtiJt80HS4Zu53TV50OiOZduW731GRxLFchkngMgNNXin8X14Udt4r/Xy/A6sFjziV9uzexMtaz9bTG23/xduZqc0SzLwdirEyb8MgO8csWsDqdHOKXVgxXcdiVnWbLSGcGuO3Em456E+esPYdjho6BRwUJaM5NtnW+100BVjcVkZsu53nQSbiui4uLqqjUKyVf975vOPzP4P9qHASrn4HhgUHGih8zk/kjV84meUsxXLC61YDAM23QlzNtkMzqY12D64A5+/FQ17R/VBu2YE6pNcbKgtl0RFV+Dkvoia3KWKydPJF367dAojfdvVnJbuqzHSakaH+7zGrDqGGu+jZ/GRngvyb2da2L67gObzvmbZQbZdKy2AvKrAZYnziKF+wxOVGtds3InZWJxkA0geoxeJLtjy+3hgdWu4pCs1Ek6rq+VlaQaG3WFMcFK6asdTYe7a2pIRlEvWBW75IajW59gPXKfeKHyzCr40aEqNrq+B0us9oviFvG/9rVrAbQJVstXw1PO8wDKRQUYlIbOuvGWdMhWN0fj5LzANYuwepWRgxANASwul8yl709KEi4rutrSMYiMeo1sS4t2l7D7UDrA/ju2AT/ufmD8+yQNiNjZnjdEa8Tf8mJcci6q9GXbB+0XTLkd3BC/yCVnf8PzYh0ZfCpyjPTTAQvGheEkcSS7FxFrbFzprO9xDeJkq9RcLvXxCXmgdWzrOqTmtUdsCQ9VrWC8hSDxUXjgR+KP4962YIfb7RG0HJ7MLSm/zNft7pHvhnjElwYSZm+NwV64imN5T5LZ5s7wHG1OjljedO3TuP0Vaf7RfOTU0UGkLrpyfaZ1QMJgyImKSRYHUJkq1le8rOXMBgb5Atn/4+vV61lOpMJSEuz2aqiUK+V6PbTK9bn9WerWQFWl9VkIAbnQNygmTsJQ32SuOv6Hg2dhs9ejhhQEPdpidiBpxjbjFQqxaPlKH/R75L88QVc/7LrO3r+iSMnwq57wHUpuOEwq+NWSyNFq4XGrJ4u1qjbDqqCaCK1ESNxAU5NlCd8sDYfMugUUSN88ZwvMlOZoVDWGCKHRRUU9SmyQa0hciabXTWbnKqSDiFP8yQjQEjhVMoFLASzek2s87tLk03eqYjNT+7/BhsH+3n14a/uao1NT3YsEsK5LuOQYXEO1xUFp17paKT8mw99k92F3Tx/3YVUGk0ShgdWB5dzqhsproyBNnsb8EKmisENxa2ohdWwMFSDpFsGBRL9wY3bhpOGL13oNsoEraK8/NZsiP2t4Ma61iBfkRiASZj1NKsDMqtbdcjnynMtzOoDGywuNiGVjkUZy1V7Yszqhcg3FExGOWOV1KvO7YH8HqFXveYUucQMUekrNTm3p2fraY1HZh9htjrLmoogyqxMMN+879vgPy5ipUk5DjlNY1euN2D18cPHc/zw8QC+fKcwUF5+b9MSa/j38UkimiXMjkOMQqPAWf97Fologu+f/p+sAmpuhHS6S3P4P6E4CFY/A8P3wHHEgVJRFeG86jhixCiEaAXrtEabOliSWX28IxL/CrspN8pCH7AH4RmzxKLwtmPext65rQxu/29Qo/P6UvvFqr4YZcTn5tRKPdHBmasJEKvPsdlmi/fermZ12tCJph7gTiJCB7FLqQFVUXn7sW8Xf7njawDMuKnAjsyjKXNeg7lbGRCPWa2ItdiuQjIZbLTO1ExGOZUz878EXMFC6YL54MuA6GmqedF0qUY6W5sHQjalNqNbLwVO/JaK3QUBlMQbMXSlKXSF08sDAgk9TgXPRKU3cji+DEgHmtUAOmL/KIQIVvu67dE4dmkWFZHEnNAxWG2w15Wjrl02kjxGjHed6FKDOZYIWATpCZ9ZnasHB9IbTkOMCAO6qtOsV0GDiNEls7rlHJic6Y757e3dFYyumX6Az6wetVw0VaFYazKRr7UNeoBoHE2UJxi1VqI3C6CB1cU47oIwkljyO0GtdwxWn7riVFYnVzMkk/AiVvf6ih4wW57FNLJEkg+yrTAFnNTW0zVF45WHvZKG00BV1AOD1fUSTEhTxcNftOBXnz38Erjr5zA6X2gOyuJkphgeWF1qlGjYDdJGmomcB1YbMPekeEBm7VMapH1xnX1uP/82OQ3WFsgc2Py2m5gq1OhX5J5ptd8IGkwYFN0YTQXUWj6UnGimOsN0ZZq6XWeuZLNSEfe70iGzOmXMy4CUS8WuwepTVpyCoigcM3gMje0/AKAeDbbfegXwvqq8jwLKgHgmhqZmQk3INxVDkAEB6EuliBVd8qqCLXOajkM2MPISBOkWrI5YfcQdh4gLRaUemmb1jtk8SnSWEWuEqNbeVTxqSRmQ8gRbeiQDoms6z1nzHAC+dftO1ityAi69BiJLX9GDCYNo3+1cEbuaiYE+PhMCs7rV9yGqRsmVSlhAXencwwYA2Xybibj875NfZeP0xkBg9bbcNlRUViRWYEsygaJ32RxviXV9IndvKgpzhTydUGJu3n0zd03cxcbkMcSoE1HkOdxFfZEw00AeGweUJg07SrbcoC9AXXb1S64GIDc7iaoIcCCVCQ5WDyUNShg0AbUeHKyuSXKUIfe3IjFWdbl3rJHva85bVEBm9bUvvZZKs0Kf2Ue2tI1hRebLyzCrTQm+VFt0jT0APttTZnWV6r5X8qr16zl5VJqy7rlD/DlylE8EAVDVAaBEttydFGA7UbfrPjFmLifO6tWKNE/XkxBrwYyMNGkJVu/NByfTtBt2cYYIglndTpNES63i2XuqQBXspmgChBSFegHHdajZNSqzUlZUSTPS5jl1MA5qVj8jw8OqfadorwsUohSID1ZHE0Qc8bqJ5bpAEqxe4zZxGhlQXO6fvj+0Ne0fHrtpRbKfdx7/Tv75yLeIX5jpJVm1fVaUWkRhRyTCXA80qxtOw2eM9dkOWRL0WdG2E8G4HgdvVFtVuwbEFkRJHCJzbjIws3ogobBN13hEj3YtA3LK6CmcteoshhTJaCHOYCpYgqqpGs9Kv4e/nc4Tc93AI7le5GThmTbT1IviYG12aIzlgZC2l9z2kFm9siH/jcFD2zLkTMnkphyCUaYXTafJW298K+/91XspN8q4cjqjgLU0W3KR0GUPtRLi59U6/l0piO8zT4JUrLOExNFmuGHVY/zlyFC4zGrHwXBFcm8FBqvnmdUlO9v1ugBcJ4om5RWiepdNR1WjKRn9k7PTvtROuzFbneXeyXvZkdtBuSyurTLdG5EBPrM66tZZNyDe59bJzpolVz1xFZfecCn/ed9/kUBqRIcIVsdbmNW7Zzu7Nz582of5yrlfYb0iPv8CMTIBmHQLwmNW2zXGqncSW30lE8oNbT89Y2b48Gkf5iOnC1keH6xerIGUlexlIw376zF7bGW7RQZE+h7MdKEFun9cu/1azvreWbz3V+/1c4/RVmZ1es1TntNnRZlEFmyl8ItH27H9/58q1BhQ5D0V7wSs1rl0ncbxG9ayV54n3YYnhdZn9jFTqjGKLE7baKS2hneGVhSFcrn7c+q0FafxruPfxbPXPBu7LNZoG8Ea5ANxHVWfZHt0F4/p0cA5h29iGDFbDBZDmHwA+tMCIID5Zku7UWqU+M4j3+GqWdEkyklyTNeMbzPNbTv3cOuuPRhNKzSw+u6xR0hs/jTV0Y8t/aBGFX73BZjdBsDa1FoO7z+cUWvU/7x7yZCcLtRYr0qwun/jAR87mDDma7yQSAUeWG1FLRRFoVISZ1xDDdiIllIdK+TeO1UJtsf95U1/yYVXXcgjM49gSxKM0m2+0RJmi4RZttTZfeoRHVzbmDdXVNQFAGGnETMyKBL4TMeldFuXZ1UxKz77smsQNYID/f9+7+eYOOxLfCWT7uqa86fzJLO67Jpd72nHjmymPnsGR+TmG+VBIqknGbaGwdWo1qr0K7IRtIxmdUwSBkotjSMvj8qVe6tZDftNaO++U/wpWdX+Mk2hg1xqhmD4u0x4nhmGZjCVEzjUqCP3t771C3EYM0Va1icThemerOf67ddzy55bqNk1HHm+16MpjMjyNXE8NUDVlden9DUKKzzZmaSepDQn/DsKWibUf+P/ehwEq5+B4XjUaj+RkRtCiGC1b3zE/E2eTC/HrBaHt26Xsatiw9yZ2xnamvaPcZ/dJDdwr1hYwlwRhETBvpW/48I1K/mlGr4MiCefogApxyHrJtpmVYNgQquIx+dVtWsTt3KjzONzjzNeGoeyOCBmSNIfwFAIwNXH+ezaOd41MtR18vzRMz7Kl8/9MqskszrnxhnuANTcP/oTBgX52XVrTHnVRVdx7Uuv5ZDMIdgyIXLMzkb6vUJbiYhkVLHromMbYuwqSPkbzxBu1fFtPS8lx6uFwWI4mtXlZpnfj/2em3bdRFSN4kijy2KHWnUrXJ1TK1XSdmeyKweKkrxWE9EE9by4D+rRTMdjl6mYxnR8hjtMo+t70wOFrYi1oJGRSAQ07tEtn1ldc4Inqr5RnRKhUHUxEMW7pnfJrAbcqMX1cYtb9E/w0d9/tKPn3r7vdl5/3ev5+O0fp1wU769CSCZMnnlko0p58F9IHHY5t+66r6OX8MB31bVIKlI6ZTnprHbDSC1kVs8G3Hs9lqRrdT2Six73geKVpvgOGm6VWtM+0LMWjabtMCuLvUUbW56BYWbtU3/nmS21aBp7+02YBovjJVHADMQGmMyLf2skZUJR6s8uovXcH9eZdQUDzy2FX6C95Gcv4eQrT+beyXsFs1rKgGC1zx0cTBgokj+XD8hU2z9aJ/OmizVWSBkQOmRWr06uZl3NYLRpUy2Hc0554UoigGJmAj0/Y+lE+/5AadU1XBu3RPM+wPnuMasNzfDvz1JITbjB/jRJx/GBsVwHfh4zlRk+cccn+ET2bgBmm5JZ3fW+kfDHrJOUyVUalOvd50VPzIlaw9IO0Ki5/Uvwi8vhypdBo8I5a8/hBxf+gPee+N6eGSw+NvsYP9/2cx6fe5ypYo11vrnicmC1Pj89q4TjLeLJgHhGiBV5T9laQHBTMsOHHPH9FeoF/3ruJFob964EqyNGiGC1ZvKhyou4e/su7HIwCS3b1ufNFY1kVzKDaqwPS96T/Qnxp3emBI1SVjA2i0p3eXNEjYAicAXVroHT+XkOLRMjskFWCmEK7vChtSizL2ZTVuYBXZ5XuUqDAcSe6KqRhUzg/SMaY01DXOfbc9v8H3t51FwPm1xjOXF/LJj085jVqxeC1cmM2FdKbm88uVpjoiz2skFzmKYjbol0VUj07W82jZEkJRuns17OFGLYjs1f3/LXvPOmd4p7Vl4bTqw9wshA0uCq2ADfTSaYmH4k1LV5eFpKT1HLivdeih6UAOkkDoLVz8DwsOpeMqt9bT/5b5VdY3ltUAlWR+wy2GJTzYXkYL1YjOWqmCu/hxO/nabTnAcol3FpNqT2cKEHrq9Np8kJwydwtGKhIaQGVmY6MwqJKuJzzIfArH545mFe9rOX8ZYb3wJlkczMdiEDslIad5RUNTR3cu97yxHv2PCuNdIxhTHFEtBaQP1IL5J6kjXJNUJj1CtqY5mOXsP0DGJatFS7ZaO3huM67CkIXbJTmvLwX3lCW88djo1ybDbNC4ul0JjV/oipGiGqRRfcj+2O5QKcYyf5+vgkx1UPDWVdIDTDQEwuzDcfOgeFR6VMTUVVaXaZKC9gVsvPznEVksmgmtUJhmybo6oNqC2thblc+EVGxCRbbqAjrl8lBMMj1YgzaNvYWpU7x++cN+NsZ132/LqqRbH31JSQTJi899asEI3YKGqD7bOdgYseWO06MVLIe6oLXcsFYabmNasVl91zORynvc/Odd15Bm5tXke+a7BaUXx29YC8vRW11nbRXbNrzFXnqDarZCsNP6/pW2xdnrv8ImD1v277CS9YvYIfRebP817IgHhgdTo6TF0yhJYDq1NmlDnS/MNgP2cPGvzk8R+Fth6Q4JBdxYyYTBWDy4CYtmg2hA1W9xl9zBTrrJAyIKQ606m8+NCLuSy7iTfmC9Qq3Z9TO/M72ZHbQaVZQfVMna1guvKaqmCq4jyY1WTDLEDe4e1rhmbgyry76JodT/0sFiMD/WjggwQemaKTdZmyTJxpiHuqaxBdUXxJqEFdnC3jIbCrd+fFhMOAsWLxB7gu3HOl+P/ZbfCrf17waw+EDxusvnn3zXzwtx/ku49+l6lCbV4G5ADmiiC05F23hZBUL7VoQAYL37tA6kHXKuJ6c7SA56gm2faOiyon4jx5v06iNedAyqNFzODM5f1DURRWpAeJAvVKQLC62cKsDjiN4YeZJi7vyUzCY1Z3fg9MV6Z543Vv5F03vYuqZKuWtO4MheenWeShHnDC0desltdshe6Z1YqisDIdY86VgHwAZnWuluMfbvsHPnPnZ8iW675etRIfPrCMasTk0LrYG7bnd/ikjr4e+2MA7C7fT/yQf+KqvZ8UP2hUYUxOra85ecFjN608me/sHeeTY07P1uPFREnkPmld5BuDCQPNIxa0mCsCEDFJypw11wOJEm96FiAZTaDJHERt83wfSBh8s9/gnwf7eXLqwVDX5pM/9SS2NBJvmMH8uf5U4yBY/QwMj1ntgdVFT1unEV4n7R3HvYP3nPAeVmjzY8PeaO2SYYgDRG2UUOw+nNqgzwzoRezOzhBJ3cvDzW8wVZ6aLxSWAQhiEfH7ghKsY3ygGI2PcsUFV/BtW2zenTKrASxNrG9G07pmb7Zq9XoyILNukv7lvsslYm2fACdKioLdBVPMdV1fF9d7jzm3PSOEpeKK3X/JqzaYPGjoXcuAtIYq1xeJB2NWozZxpLRLtzrfrTFVnpIFpcpzbAnmrGoPrF6VXM0ZU+t5ay4f2po81o4VscBxUOUBrcU6S+wVWcjWq+E1urz7IBFN4Jaz4ocHYlEsEWsz8wlGtstGkvd5xaIxbPleK+hkAt6b6HFGbZv/2TdFaferOwKCW8MvMiIms6U6hiKT8Ej3e7lqJDimWkNxNGarszyZfbLjdcUiMaqStd8IWmTvHx5Y3aiS0kWxtyfXWdHtjfq5zZjPrF6ucdp2GClirsvxtQbN4qHU7GbbY8MT5QmO+9ZxnPHdM/x9sRiSzICnW53w5AXUGpOF9oruX+3+FWd/72z+3y//nz96nzIjRBZrbB2AWZ1tltkdjTLnzjcFB2TTc6YU3vSUxyIykAB9XEePqFCQYPUiI8SqquDG+qkoCllNoxhykeaRCpJ6klw+T0KRn328/UJoIKETlT4jM+XupI288D0fjDRTxZpvsNgpsxpAlf4j9Wr359SHfvshLrzqQv4w9gciDQFSRDs811sjEckAMBMJrlvdKgPiSgJAWPJGKwbEe/OkQLId6Fb7mrPyGCm44WhWA1yRSvLm0WFiA48BhCIFMlUV49WrEk+V4wFg1+0CpPbqpd//O0wJPxLXdX15k7DB6qzMH/uMPglWt8esTpkRIorHrFbBaS6YHgkSC+oBoC4bQG5Q82SZEyhAVE6QTHW4x7muu+BsV+T/6yGC1QBDUre6UQsGVtfr0YXM6m7CTPsNpKQl8qsgzOp8Pc/dk3dz9+Td1KS8XbVLsNrzmPIntgPWB/6+5ro0idAgEsreMZipsTvqiGmDAM3VueocP976Y3689cfMlRsMKVnxiwOZKwKoKiOKTsa2sV3Hz10HejDF1Rqu6zJbm0KNFLClvBxj94LTgPjQU0xa1246jqPrdU6qj1Os9g5Ah/mcyFJFviE8PHaIX+4PVisKSSJorku1SzLZYuHl37FIjKjdmJcvTLTXuO+3dFRHXJ+lUrjMb4/IktJTvhycHTsIVncSB8HqZ3JIsLrkdQNDZFZffOjFvPnoN9PnJ6rW8kCi1KxW6iUSlQspbXs/Z4xcGNqa9o8n84+iKC7p6AgrEivaZlYn9AwAJcUNPOK0bEg92ywJVnTIrM7oQpNzPKJ1zaxudT32utCzpAJrVq/LiELdVRQKxcnA65qtznLsN4/llG+f4mtL5Yl3lcwsYAR0cRjuLuzmH2/7R77+wNcBiDbEa+ltHnperE+t59Nnf5qNyht9U88wdavNiMkHT/kg62tn0q+UsVUDho9o67n9cZ2SLD7DkgHxDAPj0TjUiyhSXV+PZzp6HVWOfzaq4bHQn7vmufzwwh/ygZM/gCIL9k6bDwCxqIHiTY00ujOAfOVhr+Tzz/08z1//fEpFT4PZCH4PyMkWQ2ni2nXylWCj1WtTa/n2C77N557zOebKdZ9ZHQZYrehxdCBZEYnaHeN3tP3cVhC9JseXm0HHl/cPr1hvVuiT58dUqTPgyUtI7YZJ0isqDiBJ1VGYaRTgm/vGGCq8HRyTXW3qVnvFttqyLxaIkbG6tavDZ1bHpS6lotaYaJdZ7YFhEYNcRRQWS67pAGC1LhsNVeaZRL4MSIjMah+EscV36suPefqGS+hdJuMmqmc6Xe7OWLQ1GnbDZ78mogkaBfHajhKBDqQtopqKIbUaZ0LyyPABOrOPXL5AymveHEgTdInQpP5qIwSwutW7wJD7t54MPo6blrnkrCb37AB5x/PXP5/LT7uc5655rn8W1zUrFHmjVf1xyq5Bxg7OrPZ2/YIbI6IqWEGM+PaL7XqUP8RMdEvkpGGA1bnmGAAb04tIBQHcK1nVx7wK1p8FrgM7buGS6y/htO+cxlRdjPYXqk3sNqdW2olW/fbpQrVFBuTAzGpFUUh7cm0+cNhdTjQaH+UVh76C5659LjCfYylBwWpVE/sNoNlirdOVzkgsTbeJ7Yo6zNAMtB6B1T+o3c4HhwaYcdondTWchg+61uo6CY9Z3e25bqYZkPekaYrX9DwbOolWkN8uiXupFtAw1guPdV9QPBJcsGvugg0XcPGaPxMSTkp4ja7t+ie4Y8MtbNWjEKC52iq/N1eaZ1a3czYp0RhfHp/i5uf+J1v6twD408Bh+mO0RrbcwFbFGlel5Bp3t0iA7CdHkxrdTIMIMaXOnu1be7ImLwzNYH1qPaYi1jWaMuen4PYHq4F3lSLcs2M3h5WPDX0t+UYLICzxl7qrte0B1BePzkvrhkwq8GqDpJ5Ek+cB8eAmqH+KcRCsfgaGL1nd6KeRP5pjKp6BW3hgtR8eE4vY8gCnZzhRK9Ivi865Ug91nKqClbEhcTg8dr1vmrJcIpGWHa28qobKRl8QcrOccxOs7JBZPRQbQXEVYbAYJrO6PG+wGFQGpN+Ko0iWcLYYfEP3CiHXdVFlAZVzuwOrLak7W1WVrjSr9xb38qOtP+KaJ68BwJR60LEOzdLSRpoLNlzAutjxVHoAVqeNNK/d8lpOmRGHXmXgCNDa+/z6rChzqsa+iIYTkpzLghFT+fnXXQ3L6kxD737d5vS1q/lh6jehrAtEknBY/2FszGwk6oHViWAghYbY57LYXe0fh/QdwvPWPo9NmU2UCmKfrWJ2JJmyIKLzxZ1JhbF8sO81FolxzNAxHDd8HHOluq9Z7Y38dhXSNGmgLD77TsBqf1RYM2lUxD1payHpWko2EfUyg3EBVufqOerN9kcpvYS0WVMxFAnwhyUD0vI6h8nLdudMZ2B1PBr3NXELrhUSs1o0fCyZewiwur08xGdeaabPrF5SmuQAYHVMXvdVd77x7MuAhMh28kCnWk1cKyMpeT94zOpFZEBAMHa8IqhSDUdmA+aljUBOjEjGTt3o61hP1cCTbQuH8ZQ20mxMb2RFfAXNvADzbTXa8aTBXRN38XfWnVwyOuwbr3UTvndBJI5pi/0xlgrOcBqIiQb2mLdnB5joOm74OF5x2Cs4ZuAoFHmeaGaXzE0Z6ViUkhLj6FqdY5NbBGmhzfDvTwncFomRikU79nlYLFLSpyQaFe93LNt9Hl5XxPW/ZWjDU3/ZqMJDV4n/P/61sPok8f/jD1JpVig3y5Sa842kfIjs6rma2DcyRganOElSqeAq6lM1XReJjCm+L1+SoUtiwREDR3D5sy7nzUe/GQBbsoxVvYumr2dwWxf7Yqdgdb3FGNeMmGiONOaLh+dZAvC78mP8PBGnrNXaZs+XW/L1aj0SKrP6o9Mz3Kys58QB0TiYDABWe+uLRWI+6aepdzfN5ZF+fBJcwH337ce+nX84/PWsaTb9+ieMnCOuifeXVdVAzOrWicZsucEQWfGL5ZjVAFGLo+t1hjTD3wcHeiA51hpjuSpKRJwrK+Iyx9h3j/jT28daQ4vwzdQK/q0vzWPbb+3Jmrx4zZbXcPVLruYQ/aUAwnNqKWY1oOkpFKDpTbeGGK0mhh7+kiPhT9ktF/1xHUcqAZRCkkPzYsQa4bQVp3FY/2EYdfHaagcm2AfjIFj9jAxPBsSprqG697W8bM5jVocDvJYbZe4cv5PHZh+jITeVvGstD3BKZjVOgwGZ+8yF7JDrui6fu+tz/PDxH5JzBDh9QjQB330l3P5l8aBlWEV9cpPoBVj9jQe+wTnfP4cvRUXikSOx0MG3jXjZhjfz7Mcv4O3ZfNfM6nn5gziuZHXNuMENFhVFISJ19IqV4CPDHgs3Fon57zFHvCu2X0ICTlVFwe7ic1vAEAYsWxyC8UywTmjailJ25YEZogyIF+uqjwLgrGjPXFGsSeNnm2/j/DWrKNTDASh8GZCo5TPM8sTJdNgY0fUYBU2lrvSm0WXI5oOVCpYs6IpIluc01U+Kuo2ydKivqV0UjREdNJ0PDA3A4Z/g2m3Xd72uuXID3QOrQ2BWe2fEiooAX/848cd5OaBlwgOrY5EYTSmb4kRDAqu9Bmctz7CncadW2dcBiOKxFt2yAE0d1PkzsduI6L5UyeaU+LzaZVa3skmdluZzJgywWjKrU3XxOSlalbFce+tqNZbzwOoli9mc0KNdDKy2JABXwfE7+Z5kWa7S6KjhsFTYju2b05Uq4rVH06b49zzN6iWYWRlL97Vnwxx/9XQQ49E4mqqhyvPdNjtvwpmKNHUOqZn6lmPewk8v+imv2fIaXF+jcbBjEF1BYU6pMRnRcOrd52r+pJkaJSr3tWQ6OFi9Oi6A0VkN5lS1O2PnZsWfRorGwgGrAepanA/OzvGXfa/nlBWnLP8EGfMyIGI/KxGSdBCQUsXrKJrYA8babHAtFTOlEq4mPvtjRzc/9QHbbxFAb3IlrH0WjB4tfj7+ACOWuG+nqhPEJWs8TCkQT3rFUJOM2qJx4yZXtnWeDsT6aOSO43xvSiokfxEvmnUPrO6CxSzfR2z8JL59wfd40cYXdfR0rykCoKs6UQlWmyHeAwCmBNUVpcneufb2kqSe5Fev+BXXvOQaClWnRbO6e2b1yqbNUK3EaFrkMN0wq62ohSKbqbaR6WppngxISZETFN2cCfL6KhMeszol319W0wJpVi9gVpfrLTIgbUz9eBMILbiBl2uEKTnWGuP5ig9WD1myBp2UBoAjRy36nKvSOl/PpNk11ZlJeNCYlPv3ocas2GfV6FPkSQAUmWfblR7IgLRKbXiT7W7C1xRfLvosnaYjpwpCmjDz4vkbns/Xzvsalx51KZaUH9OTB8HqTqJ7B4+D8bTH/gNqFTcqRMNCkgHZVdjFpTdcymBskJ+OvJwoUFSs5TX0WhKeSOw+rA0/47vbjubCY/81lHUBPJF9gv968L/EX+S5ccr+n8gyicRoQoARAqwOFzycrkwzVZmiIfUzs26clZnOAKg1mT4KyEStS2a1V5xZahTFc+zWUiSN4Ld+FIMGNcqN4IVZq1maU5lDRTREugFQEpIdUlUUqoU5gqbfC4zcGrZvlpbp6wysth2bm3ffzJS7g7zPrA6v2Hhs9jHy1SrrlCcAMNYu0mVfIoaTFoqj4qoO5UaRMJR1a3YNVVFFsitBsYIbW9ww7QCRNBNQh6bSpNqwQxmHvmnXTTyZfZLTRk7hKEeCd+lgyUJMS4PtUlMU0WgJoMMK8Ovdv6bYKHLyyMlUSwJ4aqhdajDrcaKuC4rD9uzuQC/xZPZJbt17K2uSa8hVRlivhAlWi7tyZVUHVyFXyzFTmZlPwg8QC/aMmqe1GRJY7Z0Z1TxJYzUAilph91yZ9YPt7STvPuHdZKtZnpBk8UYkjnEgw54Aa3zbQJK76n+HFn8tu2fbM6trZVY3qzl0hGZ1KkTN6kytxNn9b+WG+4tMGu0BAa1avdmKx6xepLCol32dv0XBatkQKKsq2HWICCkdTVWwHZe5cn1esiNgNN0mLz/05cxWZ8nNiM9tJGWKosgzal6i2O2PR2nMmECRSg/Aao8tG6mJwl0JwNgZUQc4o/w4o2r4pkyaHKl12rjH9w+vYVxSVJwu81vHdeYbqrbIhWxXIZ0Orlk9nEjhTPej6rNs1aOcEuD7vX/qfkqNEofq/QwgTHYNM6R9DbCjCbBheqYzxqu/39oCrC66pq/r3G2kIyZQwlHDYVaP50s0Zs8iGi2zOrXIdfbYteLPwy4QDZPRY8TfJx9m+GjBbJ0qT5GODVOq26GC1bNymsJtxhmWwJiabm/vHokPUN36Kt6TuUv8oEtmdaFewHZs4tG4MMGue2aGwa83JWpCFeL1FHFlLYkOG7S6qnPpUZfSdJooikJUas2GzazWPQa42mRvtsIRK5cHnFVFZTA2yGBskHzlHtaHyKwGoJpjSDI/2/V6aI1WGRBvQrVTI/j9Y8ga4ojMSazfcaf4QYAa2XVdJsuTmOUpUkBRThaFAVb3mxm2l2RzsFkSwHEHMjatbPS5coNjfBmQdpjVMYqKwn89+SN27vgxn332Z/0prtlSHdtx0dTuJ09aYyxXRZVg9XBsGOwGzIiaj+HDF31OQo0DWaqVsVDXslSMS7B6sy2n24e3CILFfrEtZnDF8CBPNG8PfQ1ePiTA6iwAeay2JU/NqIYtjTtL9e4kHg8UcUdcb2ZA8tufahwEq5+B4SwwznLIKfIACEkGpLUIqhTnSAENLY663CasRcWouF0jEamimeNMVcMVkd/fIMZ1VY7b35k5euDC9PDBjVx0V5VDm5XQwWpv5K/Pdmi6KiUl1nGhPJQ0yLuiSHMrc3Rz9PkGTHKIouiaJOKJrkY5D9HO5IzZ7zDSRULfqj/bLMyhI5jV3QAoMZmwVFSFajEbHKxucSbPl6oMywQ10dcZCODictmvLwPgFao3Khne9fbFe77Ib/b8hvclKjy7CMbK9vSqQXSRNSdCU61TDkmz+vz153PeuvNoOA144mYAClgds+VTZhLy0FQdZkv1jps9i8Uvd/6Sa7Zdg3HsOzhGNrdSHTYfvHhO5q95/R9fzia13BWz+sv3fplHZh/hS8/7EnEpa9G1BrOeYGVTJLZ7i/sCvcSD0w/y2T9+ljNWnYFVeXsLszoEM0MJLsdpoBRP49UnbyCitpeGPGfNcxiMDXLiyIk06sIJXemGEdYaLczqtcm1JNzNTDf62mYvA7z80JcD8KFfi2aqrYfLDMNMUVXz1Nwailpj50x7ja9WsNqu7hU/1K1wiirJrNYqc5y78d38/Hf3MVVsTyvd18TVDHJyhHbRZqXHqjbSsEghHpOfc1lRhAFZxEBVFfosnelijZli92C1oRl8+LQPA3DJf4tuxGjKhILUq471L1qcgdhrx5wYUKQcYrPS0AzOWnUWGSND03YwG3MQATXR+b52avQ4XrrvZ+xILyKh0EW4rotenYEIKO2AAfuFz/JTFZQu89vWkf6EBKvzxOlvc0x4sRhM6NQmn88HEzdxWH13IBmQz9/9ee4cv5PPnPjXPB9hspu0wjMmV4wUVCGbncV13bZzv5NHT+ZLz/sSye+9ERDsyFUhMavTWgxsqCGZ1V1qVpeqEWqTL2B0wHrq+3NdeFxOGR32AvFn/0aIxKBRJtEU51ulWSEVi7IvV/WbZ92G67q+frvdsBhRZL6whGTQ/uGNsFcVkxR0DVZ/5b6v8K2Hv8UlR13CZSdeBrJ5040+tCJBYJ0Gu2fLbBrqDGRO6Aned+L7/L8byCZmh/Jxy4Xhy5g12TvXeR6eqzRC1KxO8Vg0ylWRMur0D4E1XWtWR+tigkW1gmvwAxw5cCSfPOPfyd11lpi9D1Cz1J065/7wXAB+rygUpbxCGKaxI/F+mIFZTeaN5Vlos/kD+8mA5OpkkPdUrI3PLWphuC7/vfdmmq7NvtI+huMrAHBcyJbrbctOtBvjLTIgQ9YQzDwpGuR6AtKLm8kmtTi4WUp270BXx3U4/0fn02f0kS1cAsDqmtTIXnHMos+pmxa/wCJRn6Jcb2Lp4UGQJ42cxMfO+BjD1jCMC/PLnBvvSPLUlRIzlWa4Eyyt527ayYMCVqZz/44/5TgIVj8Dw8OqlUiOxCGf4B0u3LuD0JjVrQ7z9WIW6KDw1uNQqTEQ1aAJVTtcMDjfIlnguipacwXx/U1jljl0jh09lKNmHFYrBZxaOVQtHC8xzTgOWRIMJkz0SGf/QsxosmvlrbxRH+ZrMwLIDRqnrTgNXdM5MSLYQ7Nukv54d4fpSf0v5/9t+6r4S73s69B2EguMQeQoVz2a6gpAMTWpWa0ovnxNkPCBdM2kmJvCK7GVWGcMrIgaIapGaTgNsoouRiJCbI5MlkVyuslLSJZIXBaLgbgObhSoU2qEA1aDkInRNX1eBsS1ltahXSJikinYVMIDq/3xb6m3XnIN+tPBwMShZIyc1wrpYvKh9R5oVMT67EiXjDo9zkqptzZTGw/0Er7chhYjX220aFaHYMgnWVdxpUp+z6t58xvPpc9sbz86c9WZnLnqTAB+V/8CAKoREljtM6tzvHjzi7nn4c38z6M7OgKrvbArUg4kLL1qL4wUMVuedWqdXbPtsRFbwWpX6tOrRkhAgCWb0ZVZRpJi/+3YYFEzWpjVi+wVB9CrBui3hljTaNBv24JZLWMwIcHqkMdzx+X7G0mbUJQMpwOMEPfFdcabSY6s7WFVLDzW1SF9h/Dlc4X02UyxRj9iz40GGC814uJaVUJqXL74qhejqRqfPONzZNysWFe68+LMY41XVRXH7o59650BETUCsjkozqfg+1p/3KBZOIb1kXtJO66vCd9J+M1xR7Day5ihyW0ARKwUVzctPq99m7t/s5d/fU57k47D1rAo/OXUT9ntwvx3v0hH42BDRYLV493KgEhzs8HFgKKxe6EwJjwd1ovzA1WDkSNh7x+x5H5dbpb9/ScsZrWLy2ef/VmytSy1UrwFrF7R1vP74zooTSYUk34g0qUMiNew8Uz0VHntdWVmKCeutEiBHz7xLR6qmLzzuHcGey3HwUTs4fHQmdXy2lBt9rbJ5H9s9jF+vPXHbEhvIF9d2yID0j2zejyicaUV4bDJm4E3kq92PknouA6xSAwrYmFIg7kgxuH7x3DSYExKF1bLBTpt9VZbsAjDdX0ZxDCmuVZK+b5JjwBU6Qys3l8GJK3Ie6odRno0RhQ4xBzikco4d47fyUWbLyJjRcmWG8yUwgerx3JVnPowfZYl9uMdvxe/GDpsSVmttJ6C2l4qTviyk17MVecYL40zUZpAy0n97oLwEWN0cQPFfjMDVWhoDWaKdaz+8CDI9en1rE+vF3/ZISZRcsRZ1wFYnXTP4vKJq1nXaAjJpZDIMJfecCmPzz3Ox077R85RxL2R6m+vYXkwRBzUrH4GhivRaleO1tgKAk4ISX/ZB3aiCZoykXP0NgtvWQQPygO31mWBsX94rO9DUydRfOwjrGu+A6RWI0e+BJ71l3D0xQd8jcGEQVVqSOaL4WonzTOrbXJunJUd6lUDJA2LWvIJ7jZNZu2yGPsJGM9d+1z+6qS/4gxTbIyzJOmPd5cwDA4M0nBlQhXQiKDVLM0b2bH3Z8h3GMcOH8thjTVsaDSxy+FIlFTmhB5pjkTb5oWt4ZmV5BWPWR1ex3aqIsarh2ybGvo8cNRGpGLzzselHuhoe9qdBSz6OgQDYjJBaKouU8VwG3AxOeVewFq8sG0jhhIGOTn50A2zujVpbkoNt65lLfQ4q5pS7qcZzAC19frPV5roSKZsGMxq2dgaMcVo+daJYMwPVV6zWligqwcsS7BpTb9Y5+42wep8Pc8dY3fwZPZJ37BU6bag3T/MFJY8+xW1znSx1pYe84g1wpmrzhTu9XL/0cywwGrZGC7PUmIXkeQDTJT3tvXULQNbeOHGF3LEwBHMHUiz2nOXXwKsPnf9eVy7b5p/mJkTzGoZYRoflRtlstUsjuv4BpKCWe2ZKx4ArLaipArr+d99E7zHDUNw6akxV67Tj7h2tQDMajMpAA6t2T1Y3XSabMttY+vcVooVhUE5Zh05wGe0VMRbTGObbg3H2V8Er/0wNZO3HP0WXn/E66nkxb6dx+pKEs27xnJN+RoBmtH+hIF8byXXDIWB6IWZyKABNbXh6+q3HXbDl7mpYIQjHQSkIwkU10WVU07ZcoNK3V7mWUvH7twUSiRLn7UIePOYZFVvPmfh1OWo0Hu1SkIepdwo+/tPWGC1qqg8d+1zeckhLyFbcjtnVsd1Eod8nNeMFNgVjXSdP3pgtXdfafLa02NdnAcSBNbUCr+Z/h/+64H/atuHAkQtsDu/m+nKNNXK/P4TT4R7fhoyf3GVZttg9fbcdr7z6He4YccNglnty4B0uY+baQZs8RllazM+oalTdvVLD3kpd7z2Dj777M8Ss71mZffTzHEjQlkVNIV8ofNayqvvIqhEgTIGSSMSyjTXcFzkHNMeWN2hbvVFmy/iFxf/gg+d8iGy5QYp5He6jNcV4E8GnpPcCMB1268D8Nm708XwdavHchUquy/lsi3fYDQ+CpPCo4ihLUs+JyWZ/003nPppsfCMVPvMPuZKYu+Ozz4kfrkEszotiYQ11Wa6GC42tCA8H6wOmdVp6zBOKTlsbDTnp+ZCiFw9R76ep1aQE7Su2pVXxp9iHASrn4Hhq4A48zdhWVXDY1Z7YLWewJFgtdKuO7lkzg1GBJjZcMPdkDzHV5wYuFHWpFbPg9WHnA/n/9Oy+lURVWEmYrAzEmEuG45Bmhf7M6tX93UOPqmKiuZkABiLaOGYuMnPaNZNkYl1x5BMJxrcE00zpanzn32H0Wf2ccbKMzh68GgUr4BqJ1k4QLz80JdzkXo+55QrPrM3SLQaudVz4sDKqcHYCqZMkAtq8GJ2sWg6TWYq4rMftm2y0eGOzKs0VUGVfIlKSA2lH2/9MZf9+jKRwHlgdQAd8lgLyDdRCKeZ5LFL1booECqu0baW2f6Rcx/jiysqfLK/rysD1AXTBVKDuetOvh5npQSrG8pMR0WjF63Gd7lKA8PXrA6DWS3e34hpg9Lgrr07/e9muXgy+ySPzT5GqVFClaOc0Vj4MiAAa/stUKvcU/5PHp55eNmnPzLzCH9x419w2a8v89nLWrtnZrthpIhJ9mVEE99JOzqX5647l6+c+xX+4ui/QJX7TySstXlTTOUZrtrxP8RWf5tq5BHK9eWlQF648YV88qxPcsGGC8hKI+ZFG1vLMKuBeT31lhyo3zc+6h6s/vn2n3PW987i3Te/h1n5eiMps8VccWnwqc/SmXHl9VUKdl4uFm6LHNxsqUG/Ihs/HTQtvRiLzHLqutW8fbh7zerW6bd6w/TB6rY0QfcLXdOJSKMvR6lTqLYnMbNYZMwM7z7h3Vx24mVUCgLgKKuJ5eXtDhDDSQOwuSNS5CuZFHaAxq83YWBKT5EyJqlYeIyzRKqPpNw3sh3IlDw0/RBXPf5DHtLFPVkhPGb1oeYQ9+7YzU9HzvNNDcdywfOQ2yavJXHIJ9kXvfKpv9z9B/Hnxucu/Lk0WRwpTHPUwFGsTq72318+RM1qL6aLNYbpnFntSgmFiqIEYu63hieB4IHVEccDq7tnVscbOqBQd+q+Tnc78eD0g7zgJy/gkusvoVSaB6sT8ZDBajl52VRgfLa9z7F1Kilfacwzq7uVAdGTPlg9W53zdY8nA0iBgJhotKQXSyygcXhrXHL9JVy2YYY7TZNSgBzcJzyo4t6uYIbW6Dpi4AhS9XM4stTCrO4gYpEYo/FRhqwhsuVGx8xqgBdIY93bx25nujLts6lnQ8g19g9PImnUI75NSXPFJfSqATKSXd9UGjTs8H0oYH6yN6OL6200UkAtjgPKksaP6ZjMTRTYVwgXe3lw+kFu2XML+4r7aJbEa+eIt22wCGK/nXBlrR8iWO1LkJXF/pFVUqjaQfi1kzj4aT0DY16zWkORSi4VRemJDIhXvGuxNjvJEowYioo12oTb2Ss0RJLhNMWhMZoyQTIj6MBY6G1rbV60ZiW7cuEaELRqVmfdBKv7g0kYmKp4L+ORSCDHYy925ncyVhyjURJF9Swp0h3KMuwfv5q8gr9Yk+CHyURgsPrk0ZP56p99lfef/H4isrjtVGZjsTCleaZWDw5yvvHIN3L9y67n7ce+HbsgDuRiJNjavHHLgqe4FBKLeaYyg4uLikKf7VA0OmetaYpYW8VtdsXe9+LhmYf5xc5fsD23fV4GJIBmtaGnOKZa45ByhOlCuNMiVAUDoKaagVkeul5na7zKPaYeCrM6Fon5hoFdazDrCUaaNoqrgGIzJq/fTsIrNGKR/WRAQtGsFu9v0GhirvoO/7njTVy7/dq2nnr57y7n4qsv5s7xO4nIBoseC6mgbTFYBAFWmyu/T1G/jcdmH1v26R5AF48kiUnNzWhYa/OihVkdj4nreKLD8XlNavHpVkhr85jVlTkG5f6tREpMtikF4kXuQDIgHns5dQCAx5OoaZEB8Rg1MyGwneaq4j43VHGd6BFVGMcWl2dWDyUNZvHA6mDTDovFl+79Eqd8+xQ+f9fnmS3V6VfkmRfAYLEvNUhZVSmpwZnLXngN+6SeJFuyGfLA6ngwj4AjE2s5ulpDVxqhSbrUZKFc07qbMBAAgsINwzv4cl+G3bXO8yF/ykwaGZZCBIUBolbaB6vnqu2zJH+x8xdcfsc/c03CwkGlTiQ0xrdqxFEBpVH2QZhudKvnpLlo2thPAtB1YfwB8f8rjlv4uxEBVp87tYvvvui7vOeE9/ifu9c86zb2FPbw820/576p+5gq1AJoVuv+BG1ZVbtmVnvgqxWxaNoOhisbJSGA1SY2miPqxH0d+GXU5Z5taAYlKTlTc6NokXBVSj9+xkf57c49XFgsMZNt7z7w/Zv0BLlKg6QSkgyIqtIvc6GG02AgKe7PILrVIBqXKbc74/DWMCIGrgLjEY1KKQBY7e1pCLC6FKKE0LFDx3Ji4k0cUciIH3RRH+dKFVIeW95sA+OQYPVaJcoxg8fguA437LjBbzaEMcXVGq7rMi73xRVpiSW0wazOxAUo7KiNwNfUcuExqxOyNj7dkhN1A5v8Cfv9I2pmfMLFeMhg9RUPXcE7b3onN++6mboEq0tKvKPJKTNW5KeJBL+0YkI6KqTwwGqlLP4sqCFLBP4JxEGw+hkYreVERLIjy6oSnsFiY95gUZXAdTSeae/Jklk9JFUiXOqB2H1LhaZo9Jv9OE0BtA0k9PnDqk1jCUVRiDsCqJoKkenUdJps6d/CxmiGjG2TJS4YegEiGREJR7fM6rf94m2c96PzeDgrDAdm3WTHTNf9Y1DqW5YVlWquy+K7WfeBJy0ErTUjmaamQLQLHeZ4NM6qxCoGY4O4RQH2laPBTEs8ZnVRMqvtWjiaoF6ikHR0MeIbX9nxa6Q5lpfnC6xuNrtm7MB+2rgS9Cu4Fn0dys6ousW3xyb4wJhOvhJOguutTasJUKzRhZHh6pQAXeY0DTfgvdl0msKIEikVE5Y8gx4nAqws99PIH81YrvPidoHBaKUxLwMSima1KNAykTrY8t5oUye31ZTV2zOMsEBXr/iUTZbVfTFcW+zd7TQ0vYkfQ00Qlw3a0HSh/TWmiUmpAMsQwNZ4bvlCxGfgOjZRyaQzwmKteczqWp5+ORqtaKW2QPRKs0LdrgsTsvIBwGqPObWEF8Wewh5eMRjnNStGFsiAhFlAemB1RLrFj6QMYZjjsW8OwKweShqM6VXOX72S15jhyUAVG0UqzQqqojJXrjMgNauxOgcrRvtEI6CoKrhOd/maZ4LdZ/QxVawzSHBmNcCVJ/0d3xmbYE2z3hVzLV/PszO/k2w1S0MWs/Vod/eBpUdImjrputgrHq93Dpz4MiCyYVwOWQYEI0lKfqfFRvvnfM2WQKbrUlMEKB8aiO7JuzRKPlg93gVYna+L73Mott9UQXECytOgqDC8H7jTv1E+eR80pcGrbKyHJQNy9+TdfPC3H+RL93xpP7C6XWa14U/QVhQlPLA6alGsNf3GaizeBXgi8wKDBk4jA8BYqX2gx7vOjIhBRYLVVSVc3V+AtDVMxnGIAsVSiWpjedkZrxaOaXFqTYekJxkRgh+FYaZJyPsykxDX/lSHjdUrHrqCd/zyHVzz+DVYinhuMqBxeGuslPXEWCRCrdx5zeLvaYqAmCoh6/CvH7CYc+Xe3SGz+uonr+bTd36aO8buwK60APEdyIDQqPCCjcKs9brt1zHgTXGFLAOSrzapx/5A/JCP863HPy/2qVlRyx+IWf389efyv3vHuWwm2zGhod3wmNWmnDo+Lion4EYXlwARD05jyRx2phyu+WPr3maXxT7b1NNtGwoDuJFx/mukzlcy6a6aIEutTZOTI2WtN3Jw/5fjIFj9DAyPWa0oEFXFJllWVGiGw0I8a9VZvPv4d3PmqjOJNsWGYrQNVktmtebiNJK4jQG/cx5GvP3Yt/ObV/6GwcafA9Bv6fPs3g7GX+NSc3muizH+/SOiRrjigiv46fDzSLouOTfBmgAyIAD9hijsxrVIYF1omGcGJGsiyZp1kx0b3u0ffXKEvKQq5Gcnunotz6DOcRXMdq+xJeK7j36Xv538MH87OIDphAMKq5IJVzWC6Ut5mtUlOcpcq4QDVniJQtoWW7iT7Bys3mT+OX8zXeTYWj0UsNrrHsciMZoyWShgdS47IxNCkzrTIbECPEBUqwngtdkFWL0uI4qBrKrSqAT73Cote3UsGkPx5Bm6BTjl/vvK7Baqe19LvdZ5UuStTVcNSnUbQxoehalZnVTruI7Uc29zCqJV516XoKtphcRQ8MZ67To0a8SNCDFFgKPbs8uzxLz3EFXjWNJAJSxzltY1rmk2ODaSps87H9ooRN79q3dz6rdP5eqtP/Z/ZlkhJcuxDCCKgYzMRRStxEQb9+17f/VeTrzyRK7edrXPZEwvtlcs04xWFIVHIgqP69GFzOqEJwMSArNaTkxhi+90NCXvBV8GZGkgdjBhkHcT7ItGGFcJZYoFFrL+BLNa7kUBmNWrB4U5b1VVmemyAe19Vhkjw0yxNi8DEg8GVns6w6ZS74oldtPOm3jRT17E3976t9gy72tGu98/RlMm8ZrIiXY0Omch+qCwvHbLIWpDA6AnfLC6apfbJo9454DhutQkeBga4KRbfGSgjzfn7yYRF9dLUAkEgLI0nh3evwYYf1D8ObD5qUbg8UF5prlQEHt8KmTNaq/J1Wf2kSvkSXsszjaZ1UIGpJVZ3V1e2+qTUag2SUimcLSbc1TmBbrSpF4V58pYsQOw2pk32q2WRX7cUEJojO8fioIr12pSb0u32ssbo3IKMREWsxog1seAnKaIWxKs7hBYfGT2EX6797fsmBFGv46rEEt2T/pZERfNlH0RjXqAHNeXUmTe0DysvcN1XfpTNZ7QNUHcK3dGGLl176186+Fvcf/Uw5iOeG9u1GpP5s6TGG1UOH3l6axPrSehJ3zvgumQZUDGc1XUaA41UsShATNPgNMUzZLU0qaSQ32bOLJeZ4NTYSobLijsheeZFJE+HFvYIX6xhF41AEYK03VRXJirhOuV5EkcWVELV57vTofa8v2Wh22oXeEurdFwGtQdcV1EJUBfiWZCee0/pQh3zuZgPD0hiVIKYGgxyg5UQmRWnzx6MiePngzAlBwbtto9ACWzekC1KT3xd3K9ISbeMmZlcduv2/MgfQdgdUKJAk1yHYxFthtueQ4FyLoJ36ir0xixRnm4LMawgnb4XNf1O3pJyXSdJcnGLjWrLQkmllSVcrZzmQGAf7v73/juo9/l9etewDuBAjHS8e7YFKbUpKuqKjG3Ao4Dauf9uJ9s/Qnbc9t53rrnoVUFg7lhBgOr33z0m8nX8zzwnR+K16mGkzhsymzir0/6a6Zv/CoAanp1x6/RF9cpEMOkEQ5Y3ZIsNMs5Yayixonp7bubA35CGKPWMdNksXBdl++88DuUGiUav7kRALsLsHo0IcCgiqqSL+cIMnRpaAafe87nKDfL6KreosHcLVgtnj9sCFB+z1znDcw3Hfkmzlt/HilthE/xaIvBYghsJ7k+062iOOJ+nSy2twd7bJ2oamC6FVAgFg+Jvay3FJ/VPCSG6DeHmAL2taFd5wGHmmsRR45Dhg1WG0leXijx8nWH8THzxdzH9rZYM6VGiXKzTEQWxrarkEiE9LmpmhifrWbpV0Q6qWhlJtpgSXoFbVQ1yEst4iDMak9qqaaq2I0K3m7jadKHoVntgU6NhjQI9cBq79o4APhkRjWcqDg/Kqr0eWgTrDpQeA2SpJ5krFimT5FAVgBm9WB6fj37pvcy2Ne5rJQXnolfxsyQyxfnAbqAzGpkw9ek3tV54OVCiWgCV04muSEwJEfTJnM5cV3M2p3n4O8/6f1Um1Uyc9LoD5PRMMFqI+XLgLg4lBtlEvry978PojsuZcTeH5qWdjTG3abJNjvP85IlINaW/v5SUXPFNbcyud81Nn6/+FPqUy8IRYH0ap7I7+SdN7yRhDXIm9Z9EcA3fO02WsFqTU7p2ZEYWpvXXcqMoLgtmtVdgtXnrD2H8dI4I9YIhWKTVZ4Gczf3gQT5UlHbZ1bvK7UvA+JptuuaTkWyeOtqCI3x/eKXO3/Jbf0ZTi/mMGt19s5V2DR04PvAk4+LIO7vecmIEJrksX76K2PsjEYxzTJgdby/VRri+1MkCaOgxEmrHebbi8RoXJwH45EIzVLntUG/2c9LD3kpAztuB0QDLiywumbX+JfHXgvr4F07FVIdgopew8axo6SRz23XL8lnVpfZkN7A1S+5GoBv3S5MoMNmVo/lKigRcc4PWUMwu038YmDzgT2KjDQOCiouudlJ4AB+HwEjbaRZn1pPxBH5xoaGaJgckFltJPnZnn3scUb4n771oa7HN4+NxFElCc7t0AdryJsaV5XQmNXlFp8qvSy+y6bRfUPpTy0OMqufgeEZoquKwubkCawvSAOVkJjVrWE6crQ/1aYMgizQTafsa8JmQ0r8WsN7zWFNHqSa4QMh7YQAq6HQDIeB2xr1omB654izMhMs6VqdXIHqQkNRAnf4Ks0KtisAioTsNM663WtWJ6Licy4rCvV8MBZWqVGi1CjhyGs278a7TmY8FnNVEYe0G9Bk8ebdN/PfD/03W+e2YlTFd2lbwUbrzl59Ni/a+CKSclSqWQ2HWb02tZY3HPkGXpwX1785uK7j18hYKuNKjEIIxj3QYt4TiePI8bpAYEDU4s2jw1yyXmVP5aGu16UoCof1H8YJIydATVxvbjRYEwmEzInqir1tJuDnpms65647lz/f9OcoioLmyVp0K88g998BvQk4bJuZ7vgl1qfXc/rK00loomAxfYPFEMBq+bmrjTKZmLg22tWu88BNx476I69WIiSGsKrOA9Zy31ghC7ap6vINOZ8d7sSwPJ+G0MHqeRNIj9nbzui8xw6LeywnTNId6sgfMCTjOSPvCSVSbAtE98AwpzlfXC96BizDrLZa7uVKy/3YCxmQek2cMSNPYVYfGHzuk0VQVVHmPTa6DN9bJJqkVpDgKwoE8H7QtAhxCWiOzbYPNC0WuqazMb2RNck1uEWRHzhKJLCB8kcf/jrnrVnJLXGtYy301vCAp7gebzF17n7/GEmZKFIyaNbp/Fp71eGv4k1HvQlLSlGUeiADYriwuapgNg/35aeWi1YZkIor7qUwZUA8tnfMEP9ON8zqJuK+X5fZD6yekMzqJQy/SK9GxWVfbZax0pjf4JoLiSHpSeJkjAx6RZwjTnykbTNsRVHQvelZtXsZkPed+D4+dfanWJNaQ6FSJ0EITGFNrG84Bm5D7D0dMas9GRDVoFYR92izB2D1/VP384O4zr2mgUmjLWa114RW3BgqDpaUTQlDBgSrn09MzXDzhtdx0tDZAB3vbx7wqtbl3qGE04RemfBkQDTcAA2SQ/oO4SOnf4R3K7JJi9l13emFGTExJdkkp2q+5EO74dUprqP75opKu+dAC7O6NQbj4eUarTGeq6J6YHVsCOa2i1/0bzjg8yar03wtM8i3UwmKc+H5ZLTGu45/F1e/5GoG3DNJUGawvkf8YsWxSz/JTKEDKaUSWkPQi1YZSs+zSukw5xiOi+ugrChdya+2huM6nDp6KscNHUdEvqa9BPHiYCwdB8HqZ2C4zMuAvHrTuzljbAuH1xsL9Bq7iUdnH+XR2Ucp10tYUqMrlWnz5pJj7EqjLAyIgLmQzEoALvv1ZVx6w6XM1HcAzI++WgNtJ4AASZkMlZrhaUjeuONGnvv95/IPla3iB7E+jEiwLvezVpzBu57YwlcmpgJ3+DwAJaJEMGWBHIZmteckXlJVnICa3765nCxYcsQ7l4vYLzx96JLUScvNBVtbq2ZvrCE+eyXAaPWCkI0Uz0gvjHBdlyFHmlwMdw5Wb61fxWs2GPxbfyZUGRAravmvpwYpgqIxiqpCXlPIhsRE98LXDO8CrFYUBdMV19pMF9roraFLsNrsVoNZvq9HjCkSh13O9VOfCfxS+apIJg3F06wOg1ktAdx6iREp+zNdbpNZLe/LekObNzHsVuO7NTy2lJy2WZcWo7D5xvL7iFfUOrZBXALpnTRPO1tfnhFP57UNUNgrzhIy3Stjdmx6esCQiXe/ZG4rWrktGRAPpGjYgq2ZMCJE93dId2z/+1gKhNVVHU028Mstmrxh6kh60hbFsnjN0ZQpihmvkE8dWIZpSE4ANBWFRkjGPb7El57EKYiCtB5NgRaM/ZqQ6hBTXZpOv2jji/jpRT/lg6d8ELUsZbT0/kBTTgDZRomxSISC5nY8Jt8arcxqVTak1Fgm8Ot5MZoyQYLVc24XBbgEIsuYJM0Qh17/f+y9d7wtVXn//562Z/e9Tz+3d3qvitIEERuCBWMsRI2JmqixoYkmX1s0GkvsMdEYBY0aG6KxREFEEUEQUJBygcvtp+/eZs/M74+11ux9LqfsMtvfi3if18sXeLh77jqzZ9Z6ns/zeT4feQb/8z6Hxt5XMBTtrJmh9lvb9ylJKYrQQPRInIzM/ayIkkDo7T0t1xtgiPdw86ETAcpccTm2X2ZDoKFabVYDsLofbfT2UE2upJkl64pzRF/JKHaJSHIEawqTbHSafYPV7VEuFzE0uXH2c1ZJZvVoFJrFY7li08d479nv7fjj7QaLjpTJaxrhg9URqa1d1zRsGh0Zer7rrHfxnUu/w9HpJ5CkxZAMRwZkmHVNlzGnzmRa7B9dM6tlHWXUpYSQEY4XhZIBOWiaeP08c3LPDVMGBGBIgpALhh40ODoNxUZvNi0yyN+t03NAyfQp+dDyHDTKbZJj4YLVB/K1gFk9EZ+AhV3iP6zCSp6tzvKJoRifz6Sp5MNpji8Xc6UGR2tSrzq9bmUZMtnkSVEJzcRWRQBWm3EiUo6rWx+syZQAq+u6TrPSG35waAxFh/jsUz7LVU+7CrOmpgR7m9T+Y47DMiCPwVDMak3TGIpb1JCFpxMOs/pvb/xbduZ28ulzPsoTJTCeHerw5VJJT6OENv5l4mN7uf1gmqPXnB3K2u6cvpPp6jSVxuMAyPjKVKi7lz9jxcCBihceG322OstsdZayJwDqSKp3gHPzSIpbpIGEX12gcxi+FQHzKpJCK4sRnTnSfQMVLRkQDa3WG5AeaJq5Agib91N9d94VWF2RY3ALC7Nk127rfW1GjIQjig091dtY9IO5B9lV2EUu5kAJ/BBAYYA7pu+gUipxol4FHzKTm7u+RiYqgMOKpgds0n6iXQ9RJalGL7IWVoyo3ORKjQqu5wdTGr3EVHmKax68hrHYGGOyWaD1qQ0dI47ulRdpT3cTs9VZbjlwCyOxEU4eOx3br4EG8X6MjiAAgyc1D013KTa7l+n54a4fUmgUiNSFIVUk0KwOEax2yqzLDPNQHnIdPHuO59D0xV7RaJgthlOY7GU7DewLGi1HjKyDOWj4BRpuIyh2l4qnb30627Pb+f1DE8T5bvhrk+v7ZdTm7foBxh55O/CcjhjMAbNael2U/XDNjhjaDPt+zfrSHJes/2u+enOOqdHOZUAajgAxl1xTLU+ge7YMWK1pGnE0ivhUGq39dVgyq8sNl5rjErV6H4++aNNFTFWmePDeBOCJZkFOFmiJsUfr4R4S48kM90ocs1I8QBjzAIopnIwk8WVDuxkdpte39Li6zvZGlWYlvJzIkHIbTqz3XCghJx4qus5CofdzSt2vuNUqZs14tufrqZjMRPGaYo3zrG7a1h61Zo27Zu4ibsU5pl5CRwA7gwCrk1qVfNUhV2l0lAMq2aWo71P2wmZWx8nI5pZuiOetVxmQqWKZxtw5mFaJDZm256xRERqvAJPLMas3EJca3k2vSTom8oyFSgPP89H7yDug1eSytGRgrtgtWL3ZegrZPQ3OjtwCfRh0e75HsVEkbsWxdIt6WTQBPTT0fs4qmXcPR8F3U9TLE6QinYOmRwwdwQuOegFHDx+Ns19IaPkDAKtt2WxvaBpRrdGRVFU2miUbzXLXw/tIKRa6YYeTC6matTLPWEpcr1tmtWpEGzXxu9TNcDw8xuJjnBzfxIapu/G9BI7rPbqRvELUmjWaXpNoo4QJVLFJh7inZe0sB8oHyOk6jWqFbqgn6p41my1mdcdTP1lJClp4GAoH+Kv/Oo/77ChvOuvfAJgNWQbkYBtYLWRAJLN6FbBaTRlXNJ16KTyjwKVitlTnWH2X+D8rSYAA2Cm+kE5xR9Rmqn4bcGZo6whkKDUDQzaNI8nuwOo1mVZmVq7Oh5KntYfdyAFgJA+D1d3GYbD6MRi+MlhEuFfXMHEBoxmOZrVi7CB1JB3fIJPq8BBUSU+9BNYMhn6Qg6VwOlTQYgt7rtiMk82c+A/LjAgvF6fF1hGf+x1Uu0scVwo18jfkCHAnke3dlXkyEyWPSPjqhVl6Sd2CYtZKBODhrJ/pu+DYlN7EhfEzOG3uB0Tk79xtBOxlOQ2wQKpvncZAs7pfZrUq0gybtJsDwEz3BlZ//f6vc/Xvr+bk+KkAWLVw3oV//NU/cu/8vXwqanNi1SDdgznlcFSBAOHIgPzPs/+HWrNGxIjgyMQhEu2FWR0nLvc4X6szV64znuq9eNlT3MPHf/NxNqc3c6UcU9Xt/oDEPzVfxl88+Brmo71pwd0/fz9vufEtHDl0JJ8+/0sB+BrrWwZEgPBbJcDX0ObwfA9d67zQ+NxvP8fv53/PS7e9BzBC1qxuMauPGd3KdY+cgpncvPrnfHj1ia+m6lZx6i6mJmmgq4CEXUW0JbMBcMTYJNXrXshkYmLV+3fO+nM4Z/05vPHeO0kMSgZErm9a90k0BfBxMF/D9/0VHc8DeR7ZAKpg922yuyjWnQK/+zqZg/dwyZkf50v/ezPTkc5lQGqOAJGXXJOaKrLTYCy/5pimU8Sl4rRYYCnbJGLoNFyPuXKDddnederffPqbATj3luuBimDTKrA6u/oeMJFKoM+Bp0GtPB1KEXTC6AmMx8cZjg5jVMW54nXZtG+PN5SSbKzs5pqh3u/ToWFLzwevRxktgKQ0SSrrGvli7+dUudFiVkdckRtFkv2P406mo/i1tXzq4DTj0e5A+YPlg7z8Ry8nZaX4qXkUEQSzOjkAsDolzeEemat0BFb/1Ul/xfTdX+ek3Z/hbtkCCQ1Et+KBDAiG2J+mCvVV97KlolDVaMw8ldFMdHFDceb34HtCwz25TP6W3UBMsX+AiCXOOs8XJotDif6IHYpZrbkJxiVYraW6qzmGExGKqgLoQ7N6vjbP+V87Hw2NO19yJ/VyDoCaHife5T1fFBIEHrbFfdw1151x2hlrzuCMNWcA8N1fvB8AzwxvD1LRzqyO0uhoKklFoeoE708oetUA8WHuiVhcm7+L+PTXgTXMlupdNUkUWcKqiX82IuHAa5Zu8Z/H/zX63c/nLj/DVKHG+qHOc62v3vdVPvjrD/IMzeR9iD0tTNNYNR2SMwyaje6eN3XPnKZJWrHlO2VWD28V/5x/GPbczKzmM6V5ULwbmKBYa1Jvuj1PVB8a+wtlNFO88+Px8TZm9coyIMrHo6pruCExhNtjvjbPs695NuPxcWZLr+S5mlzXSuaKAHaKu+wIP07EGco9Euqa/u7Mv6PslBmRE4RNXyeW6O59GE8m0DwdX/coDQCsjkm8ykz36N/xRxyHZUAeg+G3aVZ/8f6P8L0dP+Y/Mmm8kJjVCuT0q0oHK4beaVc1YFaXiUipjbke3ISXiobbCIBE342SjpoYMhlccfRkiXj65Km8fW6BM0tNytKcot9Qiemw/B6yw72bFFmGzu3rHuTPJsd5uLy6wddSMRwd5opjruCSdUIPreLblIn2DVRsSm/iFVtexAsLJeISzO02VMIQlaagC36yb2Z1oFktE71Svk8ZEN/HliBiNNPbd6nW5FgiUbbr4SQO0xXBmB13XWb03oCAkYRyPg4HrNY1nbgVx9RNTPX9JnuTAcm6ckTYKDHTh5YlLB7/1qRUidknszopDWeNHpnVgQyOGSNfdYhr4pnT+1yXAkg3aU18XwetySO57vYPtbZm08LERUeCCiFqVuM1OWf90dQOXE7h4OpTN5Zh8aqTXsUbTn0DjXJbcWKFyayWz6o0o904EqdZPJ6pmQk0Ois+5sv14LsMXQbEzhCTh3/Dl0yqpke+urz0QNNrtiYeJJOxQrRvKahFsfYU8c/9twdazgp4WinUWV6ri9xiaCkALTBXXJkhs0aLsM5p4rut0VJN0xgJdKvDMWpVGuGT6SgsyGJLsa1WiLGUzVjd5uh6Az8kl/kPnPsBvvjUL7IhtYFIXVxTT/QOCvvSi6LeoSzPcvG6617HZddcxq0HbyUuZbR6NlcE4vI9Kms6pVIfYHWzdQ7EJFhtd2ocvkJMZqI03DRnV2scWesOOAn0ek0bt9YylwsL7BAXF+Da+0bjJI94J9/e+Z2OPnbqxKk8Nb6JNa5LDZukbWJ2wa5cMdpkQFwJGFUdl1IPubh6t0dTh5xP078X/5w4ZnmJwMx6LCAit6qmXwsA+TBG+t96xlt511nvIqmvC5jV3ZqrDicilP2I0LvvQ5JB5UFxK46maTSk2Vfd6PMMlTIgQxKsvrv4P7zn5vewt7i360u5dfn+WOGD1YuY1TQ6mkr6yG0f4WO3f4yp0nxLBiQMCRCA2DD7TZOr3RluPvhTAJqe35VspienAiINcca7IYHVALqUWItT70gypT2C+k5OzlZClgHJyAbmgq7jN7rLwZVcoeOYbczqDu9bZgPoFrh1ePD6oE6p7/kZliH2mNkQdasPFPK4lS1MxjYxZKVbDfJVmNVq+rmpaaHlG+0xU5lhrjbHVGWK+XKTY3WZC63GrNYNopo421w3XInHS7dfyguPfmHg/ZAn0bU3i2XojM5ezEenZsgoqZc+4/rd1/PErzyR11//elKuyK1imcNgdbdxGKx+DIaqATUNYpYFmmBHBgd9H+F6bpDU6CVxCBS1LjrJAXOuRNQQG2ZYurOKVa2hgRcV+nKqa9glo8geEx3SDdp0X8Yu7aGY1aOuAA+GJtb3db35aI7bYlGmemQvb0xv5E2nv4lXrn0SALN+Gts0+hqHVjEyJtghGa+A660MSiwVVanRG5OJxoKf6luzOmNnOHf9uZzUkO7pHRq3PWptKtGSHfuyb5NM95YEKmkSVxaf8WYe3P6MJRzPYV7Kr4w2XfJWbwffmpRgleV1A7/WvwxIEJ6H5UkplV5kLaw4Q54A1kyz0Hfy126spctE1epFnqQtshlRsJg9yggptmvMjFGsOeHJWiiDW6eK5opn9rZ9D3V1CbX/NxpWi1UN4WpWA1vkKzVTrK8IuB4a1Yo4TxysnvV5lwx7MbN6TSaGqWs4rr8qC+uO6Tu4d/5e5ioVEoOQKAGIpgN91VqbvupKa3M8hyesewInjZ2EURfrKvvhspxYcwJoOhQPMJO7CTP1W2pejmK9ieM5QUF9aJy/4XzO33A+DblfL9msXMVcUcXV0aP4wd79HBtZ/OdGQjBZrLt1FmoL5CoN6k3xu4yn7a6Y1WMpm2fuOZ6v7T/IZCOcCbhgfU2XhGLspHoHq5FTMA3JuOw1dhd3szO3E9d3A7DaSPVenLU8MjQq5VJP+QbAeRvO40+O/BO2Z7eT8KUkSKfG4SvERDpKTTKP/S4JIyrXsA078LPwwmzAQQCuNTQNzaiyr9CFhqk8L8MGm7ASZFwP3ffxcEjaYh/vJRffk59FMxcYShwCSCuwevyY5T+c2QC0vFMqzUrLZDEETdUnrHsCl+24DMdJMIECq7tjVh/w/5ffH3UV/zA63BdYrUC6hCmeL1eC1U7fYLXIcbMR6T9j/Zyv3vdVdhV2dfTxfD3PbHWWWrOG1xg8WN0ps9r3fb5w9xf499/+O7latcWsDsNcESA+xLAEOxfq84HHUze61T94zg+448V3sKEq8jS/RxPbJSOSwAF8vcb+Dswo2yMg/CiwmnClx4ZsxazWocuJ8q8982t8+1nfRm+OtTSrO71vhglDsjl9/w+Chlt+/61MyFzjYD48Ga2pnEZ191/w6fP+C6N0EDxHgOWreGTE2icT3AXqze7kqVaLmarwohiJjlKpVNihKXPFVcBqIKaJvd73qzSaS+eGfYUEmQt+vCdiXsp/HE+qVEnW8sIzpc8oNArk63mqzQppKVubGDoMVncbh8Hqx2Aog0Vd00jIDlpV03FDKILaDQetsnixSma28wuoDmUtF3T38n3orLWHkieJGglAF6OMFZl4dzv+OrSFmqaRiy7w0GxvzOVDQ+nTZV2Xgh9j7Xh/ukRxQyRFebfP+1cWLNxZMqGMf3u+RzOh86BlEtEcZhe6B4WPHDqSk8ZOIiOZSPOk+l7bZGKST1zwCf6qsQ7ovehWbKeYTJxn/UzP4I5KGjxTw/VlMdXnWFa+LrqzGpD1PCrR3g6+LVlRNM0aet9suopT4U03vIm3/fxtNNs0iHvSYDYshtSEsFEMjVmdMBMYskkS6ROs3qXt5JUTY1yV6g0sbWdWF2vNwDCwH+NHYJFnQFwX0yZ3T+/q6hLqftUdE5u2gj0MZrVhBaB3Sm8wkTbQjCIPTK3c0Kw2q+xc2MmB0gGq8lxq6CHrWgYyIGIthq4xMTaFNfRzfvLwzSt+9C/+9y943rXPY6423casDl+zOua3QBXFYj64AuspZsb41wv/lauedhVuWX6vWiyUhmUQkQSMHQXAP//mQ8TWf4nomm/wyz138LIfvIwv3v3FJT/2j0/8Rz72pI/hNMQzuyTbu0NmddBIOaRwHVYmi32wJH914Fec89Vz+LMfvUisM26J+6fGWDsAq8dTNvPSg6Lf/f/QyFUchjXxTkT6AIX/K1bizE3rud64o6/1qOZgRI+R8sW7ZCX70Kw2W4bOERo9m98974jn8bbHvY3jszuCJlwy26dxMjCSiODoNt9PxPnPhMlceabjzwa5hhnDV3ly2PuGaYNuBbIb06VcRx/78SM/5n/z91HUNKpEwm1wReI8t1jiN7sP8I9P/EfGe9TsBfjl1I9I7ng/+63PL/4PM/eKf8q9aclIrwM0jmw0OGboCDS0AKzup8F1aCyUG4xrOfF/upwyyERVjaf1JQPSzqwGcKVxbdPqcwJIymskDJeIqeM54hydqXT2Hnz09o9y/tfO5/N3fx5f7t96mPJeMhbJgGgOuYpDzVkejKo2q7i++O/VmtXSrA6RWa1IGQu1hUDqrtt3wNANTNnE0MKSKAE++8gPOXXzBq4aNrpmVqupqZhkuZaxQ90/zlhzBk8ZvoCTa3VMr7u1TSYm2ZbdRqWutZjV3RjtKimQ0lQAVuecIucnBCmk23u1XJTrTYpSinUiHW1JgGQ3gr5y/mbqJracBozp/U+nHhrq3c7aI2zX9mFprmiUyObfShHVRc1kaLXQTBZLjRI37r2Ru2bugloOEMzqXp45ox1LCoFdrfbdqB7BRpBykocaAR+OVeMwWP0YjMBgkVbiUdG1UGRAlBlTRI9glEWhWDG7GJVUrIHC/oARU6qH42CtmNURXVy3H2Y1mQ28YnKcV6wb5tY9PwplfTm5SQ55HjN+lg1daHwtFSlL/E5Fv9ai03cRC7UFDpQOUCkI05IZP9s3exmEHMvF33sOl65fS0XTmJ460PU1/uHx/8BVT7uKY6WZU0lPhwagaLJh0qzkevr8l5/+Zb5xyTcYb4hEZI50z+YgilmN7jCPTCRL3ZvetUfgMO+bGIAT65FZLYumOcOg0mEBu1xUmhV+uOuHXPvgtRjNVmKU6kUGBNjgGxxTrxNpxvs2LQlkEKw4lgSro31qQ+tRn1/EY9wZtXpiygdgtRWjVKlia5LBHBKzmkaZYVuMGz+4sKfjj3u+F6ytVm9jVuvmqgly52sU+2K9ukBl3ZtJHvGP3DO18jtx/8L9XPady3jpD19KvSLOqKYRMvtKMaZqrcaNnf0d0cnvcuO+65f9WLvURqFktjSrw2ZIWlFimki+a80aE2mxl3cyzgxQr4rzs2mGDwQoKZAhyaQyU/fywd+8kztm7uAbD3xjxY8qVv2SzcqqbITGVmHAylF0mov3itEAeOp9D1ETUxFNgDqTsknQGsntTAZkIUSw+oGFBzjjS2fw7O88m4VKgxFNgMJaH6CwaUWp6Do1r78JPZVD4sbISuaane69cT8aG2Wz6zPmukRp9GzEp8KpiGfK9TWymWxf1wLQdY1kMsPHhjJ8eHiIPbmdHX82kAEx7MBXJHT5IE0DO0VKAivzHU5RvfOX7+QNczcxZZpUiYZqkIYVwwJ0rwnNRstgrofvdk76gGQih9QpAbP66OU/bEYgNcnnDk7z1VPfxtbsVkZCYlaXGiX+56H/4Rf7fsF8W0OpW7B6WDbWS7ouwOoeagFoMyCTNaNqjnj9gtWyia0162wZSQRmo1OVqY4+vvgdkIaBdvhn1HkbzuOHsRP44PQsSUOcOSudnarpZmgG5ZpOSpP7YqeSEatFfDhgVpecEiMpAcf0AiyaTdlgj4UHVmfjo/iaxrSlcaBHZrUtZbmqfpR0NDyw+oKNF/D6Y/6cc6o1LK+xquTYUlGoNUl3y6wGGN4W/KuSASnoOo/X7gHgQC4csFo8Bz4xyyAVtVpg9fDKetUq4tLjI6qXQ228QWvPjetDrNMEYVAb3rq83FJbxHSxLl1vsFDpb8pYxcP5h3n1T17NG294YxuzOtETm99M7uG/E0PsNY0WWaKPUPtuxBX3puZbZHuc1P5jjsNg9WMwAoNFrd31VYMQwGrFXk5GklAWm1D90CRwpVDjKZU50jKJKTn9y5MAOK7DcHQYW8qSZONWx2PCjwozwjZp7PTQ/G2hrG9jeiObI6OMui4zDAVskV5jKCGS2gWdIInrJr5w9xe46BsX8fF9PwakuWIIzGrbsDGk7lRZ15mf65xJ9KiQhXsjku17XSr0WAYf8Kq9sYU3pDZwxNAReEWxtlk/QyLSW6EWjGPpDWZ9eUCV+wOrFXiSkuzjZqK3Lu1wdJjN1QkuL5ao9tlBbi84NFl0l32bTKK3d+AprslX908xMntq36wANf4aM2NEAnmS/sDq7WMiYT1oGlTK3UuotDOrq+2fDxGsPip7Ak7heCrlzvfvWrMWTO5U6ya2JpNJM0QWswRjbNdBlx7P90+v/E6o4idmxnCqEqwOG3Q9RAYEYEw2gg6Wly+8S21st2LVJD4og0UgLoEFH5/xtEjfDuY7ez8cKZ/iDgKsXncyAPV6a8+9dN2bAHik8EjwDqrwfZ+mJ4Btxa5ZsrDo8Hz/dH0vz187wXcL9y/6eSAD0gezWk2yGL74PifSUQEYBTIgnYHVd0z+lqeuX8ON9c5AnJWi2ChSbVZpuA0K1SbDyGe2D4PFEckYrGm1nop/EM0uxSTyvShZTbwberf5WVtcsOkCrq3EedvcAnGt3vN5sKe4h7nqHIUFka8UiZOKhTAtAmTTqQB4mlthrzg02mVAdMmO7Nf8d8loA6uL9c7Oq+BM9z2qfiR0GZAgnDLjsgHUy3dbaOQAGI62Pfu1PEiSxorMaoCMlOvLi1F2pZ3fK4Nfxb7SPt5y41v4u5//HflShWH5LhDvrqGkSAXzhiEMI7uUPVCh9mBlvqbJCSKv3+aIMrV062wdS+A7Is/tlFndkICmbdjosoYdBFidsBKsjWTJeh6jtngXVppKUud6wkpQqDVJDoBZnfI8DLnXZpPiPnQqhVNsFPnrn/w1V95wJZYEq814Npy1AesymwHYbxpM57qT8gxM6ttMnUMzZ5UxNpQVfwf1jqUCC40CH7z1g3z6zk9TrDmku9WshhazGsjKadmcrjNsiTXsD0kGZK5cJzL6Y6wt7+Tf7vo3YeoIq+pVq/jYlufxX/sOsrlZY64cLrNayVBaWrqlxb+KNImKmC72C12vhyK1BC1FgISZWMSs7sWbZdr4Lu8aT3F7NNoiS/QRat+1JFid15KYYXpS/JHEYbD6MRgBs1rT2lxfdbQek5j2GI4O85qTX8MVx16BLh3mnWgXBVBsKBhlHzdNvGaShhPOY3ba5Gnc8PwbuDDzj2Kt8XZmdfeMoi2+AHH21B4MZX0fPu/DfCxxMUc2HCqRkY4dnZeLNZKlPm/oraK9i1DMgJQcxZolE4qxlqZpATujrGvkcr13H3V5GLjR/rUjAc740hlc5v2UacNA67AoWy6cvCg6C0a25+8yJtmfHg1mfcWs7gPcpwVWZ6Xel7ac0/0qYegGF1XP421zC0Rq/UnN1JstoyikfEqFPnQupWZhjHpozGpTs4lJILEneZK22Dq8GYD9psn0bPdMyXawWjGFXfRW4ddrqMLTKXPptsuo7Xsh+dkVmGWHhGIBaGiUahoRObbW97raQ0mdNMpEDbHeh+ZX1lENNBCNKE3pgeCZITOr1QhtG/NwfVqw0xfqy7+zqsEbM+NY+EQ0OVo8ALA6Gk2xvdHg+NQWhpOi+JtagY14076bOPNLZ/KKH72idd/CZnxDwKyuOq0pKt3ZwGhsFB+fnYewTacqU5x81cmc8aUzAiB5ZKnGViADsvL5cMB3uMe2OdhYvOcHMiB9MIvUOeq64h2YTEfFeayaFB2Mvg7FI1TNBnsti4UQzGzVmpJWkkLVYUgyq/sBq8fjIh+q9cF4KjvloNnVdCJkkfdoNRmX1UICREmqPXuMXPLtSzjva+fxyKzI90paAqPPHE3FRDZO2hW/90KHjFJYLAOiyzPBiIbMrAaw0wFYXfVKK8ofgGgmtRtNV0Ie48eM4Ogmbx4b4aXX/TXD8lfu5bstN0UOOdr+7M/cJ/6ZWrP6iL96f/NiAmk4BJ17aI1/pyIp6kVxvvloXRNrNmbFGTRjSICjR93qQA5N7v+aPLe0fsFX1chuNtgymsBvinNUmYCvFuodiBgRdCXTNoiGDYAl1jqswOoVmNVFR9yfVCRFoea0mNVhaVbbKXTdDNi5ybi4D502bIqNIjfsvYHr9lxH1JUTLMlsOGsD1mcFKLvfNFjIdQfaBeQCCcS7RjRU6bGm1yTnV9hlmpiax965zohJuVqOL9zzBb5w9xcoVJstzepuZEBGWmD1RGKSzWaKEdcja4r9IjxmdQPNyuMbJdE8VszqDsHqk0aP57hGgzHKoZo+Qmu6V/MSrNFk/dMhWB1VtYTusBCCiS0s3tu8PpnVqUjLvLMX3GW5tZnyyK1pAyCL/BHEYbD6MRlKs1qMkYNgVutu/5vkWHyMvzjhL3jZcS/DlKMebqyLAkjTpA4cvHj4TMoPvB1yT+l7Xe2hunFDiUjA/u6lSNtkC63J/f5ccLj2G/XcfgAaPUoztMeGrAAh5w0Dr9w9IKZkU5JSy3zGD0ezGloJb0XTKfYAVp/71XO54GsXkGuKJMNbbcy7w1BM5pyhYzSKXZsxlZ0y/3Lbv/DpOz+NWxBa5iWz97UdNXIUf/+4v+dFR72UWcQh6PcpA7Iju4MrT7+SS4sShM105y7fHlZcMgr6BFAUk6J9lLPq24FxUg8LAyCqNfpmVr/gqBfw+ad8ngvXX0pMk6B6vL8CTTWSKrrOnrnuZXAu3nwx737Cu7l488XUqtIwUI91NEa3YrQBpNuz4njfNVem6XZmZJKKpPjMhZ/hI+d/hEK1GWishcuslmt0KiQlU3hvfuViSBmyRs0ozZpkboZuRLZYsxpg25A4y8ru8ntcwRH7bMxItFjVMBCwWrczfGvfQb583F+zISv2pZXej6JTpNKs0HAbuHLsWxsEEDB2JABvnZkhrU9Q2f1ypgo1jhwWP793/t5Ff1wBFLqmB6CQAokWhSoWVgE747IAqniL70WLWd37HlKW4JDjiGtNZKItverkZACArBSGrqFryoOi0vMovwp1tisgRcmAkOhdBmTUzgJQNd2epTYUG9HSLaoNPWBW9w1Wy0ZSkmpP50HDbQRMfq0sfreKHh4ovH4oTtoTe/dCtfNc7ejho3n9qa/nWdufhemKc9MMi7nZHnaKtDwDNL3GnvmVJ/UczwmaDlHPp9pP43mZMK0EP43H+PXsXSRi4h2b7lDSqD1qvjg71iTacm4lAbIaqxogs573DQ9x8YNf5NoHrw1PBsRpMXO9kqhTGpFs13Ja24dFflc0dGqa1nOutja5lqdufiqnTpwKgCnX17fOsfKycOtsGW3JgExXO8tzFbM6akQx5LlgRcM/oypOhY9VH+bvR4fJRsResJIMSDBlbCXJV53wmdWatki32rbF9Tvde9sJD3Ep3RRN9rnPtsVkegO671PXdXKlvV199uTxk3nK2iey0XGo+DbJaIhkB+DB3INc8N3n8GdrRI18cDbX0efajc0LNaelWd2VDEgLrL5w+Fiu3XQ5fzu/QMoQz9SBHvawpWK2VEc3xTk/Hh+HBcWs7kwGRJ25Wcp9T4kcGiPREbZktmC4Q0xqMkfrEKx+jjnOr3bt4dQDx4cmAxJMjVhxGiWxnl41q4dsgSXNGUYozGoFVssth7oevnnsH0McBqsfg9HOrJ6MT7JOP5Lj6g10N9wNyW7IF7Vb1rLctIabgo22UA5nQ1IxL683anstg8UuHbYBhlNHMOy6eJrPAwsPhLI2tyBZNan+BfS3DI1j+D4ekJ/vfnRYFY4pqRkuwOpwkoaW6ZFGpdgdWO14DvO1eaar09iefDZCAquHJUN7TjdIUulaq7RQL/C5332Oz9712eDZqkV6X9u65DouP/JynrbtgkAGpFHo/rtsj82Zzbz4qBfyPMnWsbOdJQlLhRVPk9N1yk5/YLUCn6JGNGAclon2PPpXtaI8bf0a7tn+FaaL/a1tTXINp02eRlJfQ1waGWp9AokxM0ZGMukemnu4688fPXI0l26/lBPGTsBRYLURQsfdiiHcDGBNzCVqQVPL88h8Z2ws27A5a91ZXLDxAgq1drA6xGIjkCopkZWF8nQpt2JjKWD5mVE8ZSYUtglTYLDYYuceOSrerSbLT2mofTZqJFp61YYtzCTDDlUo1wuMJZXO6/J7nErik5FkoFGq2wNgbkYSkJzg5HqDt4z8DW55B9PFGkcNCbDovvn7Fv3xQNPSsAMgeXQlZvUqbMS4IQDj6iE50GgILEk1YlpviO9zIm23SYCsbq6owjJEETSv03dzUAHoSStJseowhGJW9w5WD8nitmK4PRndgWC8bc1sZXNmM4Vqo41Z3fsZeqB0gMv8vTx73SQprdITWK2AQwBdTrLUjPDeg80jCZJyzHe+C7B6x9AOXnbcy3jqxidjykaL1WcjdcmwU4y7LqNOFq8xxiNzK4PVtTbiS9T3qfrhg9WaFWPUFUBdJCqe56kenjuHHADrUm1Ne2WuuJJetYrMBnKGzj63wkJtIZAB6Uc6CFogRdJKoknTzWYPE4RrU8P4nsijZg29Z2b149c+ng+c+wFeetxLATDlvta3zrFiSjbrbB1L4jdFntsps1o9a6YewZIybZFY+GC1qZv8e/kBvp1KYpriOVtJQkud68lIkkK12aZZHZ4uNPFhPjY1w/VnvIeTx08DOmdWLwKrffFdxtLhgdWWbjEhc9xK88Cq0xjtccWxV/DBE/6ax9XqA5EAycrGas7Q8YGp+VxHnwv8a8w4xapDGvmddsOszmwUHi4gmmEyn03o4nvrVt97uZgrNdAkWD1mD8HUPa2/s4O4ofAg/5lOMWtX+/LsWCredPqb+M6l32GIM1iDAqvXdfRZO5Ig7vvEaYQnA9LGrHZKAreq6kkso3uIc0zmUHOGHopm9drkWo4dOZasJ/LbRhh13h9hHAarH4OhSDm6BieNn8RzR9/MGxdyWH69b8bOVHmKe+fvZa46R9wRL72eGuvuIlIDLiW1GUv1ZlcH3XLxxbu/yEt/8FJ21X8KwFpfMF+xM91rVgPW6FYmmmJdSlqh17h77m7O/9r5vDciNDMj2e7B80Pjwk0X8LlHknx8epb52R7AaiUDIgvjWT8TWsGhmNVlXafepTlfO4s95vlUfJtoPJzCcSSmuqI6Sa264pjfUtHO4NTlQdWw+wfSo5ZBwRCJZCN/sO/rUZ3HRDy7ieHen7XrjZ9y9qb1XBvtL5kJwCfTxpXNkSq9M6ujVpyDpolrNJntovhfKfJVh5gEqwMpij5iXG5p+4r7+rpOU2owu2HIWmhaIAXi1QtEtv09yR3v5Y59nZssqihUnQFpViuwusKQLPyaVDmwgtZfu2Y1AVgdNrNagkRtMiDHTsp3S3c4kF961FQxsCwtQVwbnF71ous6lZbOawcmUQkzgSbvmxEdABgGAeNnA+KsmirUW8zqhaWZ1VEjGrB+RpZiVndosBg3RCFQOQSsVtIi/TCLFDBcrom9bDLdxqzuwFxRRcISedScYbSa7D1Gu1lavTiPpaRn+mBWK83fiu5zsNCbz8iG9AauufQavnnJN6kWcxiazEe7AQMOCUM32OnXeNCySNAbWK2+w7gZx62I97thhvcebB6JE28Kxux8vQc2Vpt8Tr9TP0uGneLkeoNXVZ9I/eCz2bcKoKJkvXQfTKBKJFyDRYBInFHJ9tZNsU91y+hvek18XXx2U3vOPd0FsJPdQFxKpFSalWAfmu9T51WdCwkrgSk1Xkl0WUsBhqFjVE/k/KKL4dMzWH1oRKR0hBXr0+xLMaubdbaOJvDq45Qf+hu+/NSvd/Rxxaz2XIMokmUdUj3QHhEjwohsatYs8fyvxKw+Z/05fOfS7/D/HvcOCjWHdNjMaoD4CBuaLqNukzVpcbZ3ur+pRrRtRAPWdzIdDulHxVqpyWxG5jiwgr73kqHkAP2QJYSArGRCu5pGUdeYWch19Ll2/5pmrYipyYnDbjSrDbMlxTF6RFBLqNpiplSn0exsknGlmC3V0Uyxh4xXcuDWBVt6ZNvKH5Txjf0/40MjQzxke8z3aUq80hoDzepOCYPB/WoEfiX9xmIZELEeJ9LbvjaZVGC1EYoMyKtPejVfecZXOB0B5jcPg9U9xWGw+jEYXgBIi4MklWo72PuUs/j2zm/zvGufx8d/83GSzRwAVqpLSQvZYbuvcC+JzZ8huuZrfY/yA+zM7eTXU7+m2BTg1bgjJDcY3tzT+Hx0YhtJr+XG3E/MV+eZrc5SkuBOcrizLuNKYegGrjS3LC50r3McjLFVcgDMkA1NBiTQrNY03C6NDFV3W0fDAuZJhdZ5V8zqecMgRbXrBKudwWnIAsON9s5WqLt1bj5wMzfuvZG6HC/yiv3JgNw7fy937rmRvK4z56fIpnpP7DMSoFjQmn2tqR18qkumsBj/6+171cwYQ5J1VXDyOB3KWCwVP9j1A770+y/x0PyD2Or3DAFMHPcM0q5LXr5f3cRtU7dxw54bmKnMBOC+F5bxnfzdzGaNiCYKq99N7eroo3uLe/nG/d/gpv03Uag5RJD3a0Ca1WlZ+GlGbUW2X7tmtZKZCV3bdQmDxYlkFnyRJt11YGm5l62ZrbzulNdxdPKCFrO6X9Oq5cKK89rxUZ78+09zsH43IIqj5QzxgiQ+kkBXRi8DYK0BgUv9uCvuk5IBiZmxltGsDLVfWHoER7K3hhNLyYCo6a6V9+CYbKZU/MXFj7rm7Ar3aLU4afwknrrlqZQKooiZSEdbzOoO9KpVjETF52dDKILax5k9ZYStx1vAUQ+RjQ1zfK3OCRWNg4X+dbXr0qC4odmBB0EvoRrjnqYR08s9SZS0a3w35TPVtMJjSG4aTRBzxVk3X+88H9pX2sfds3czUxDPk+MbxGMDGBOW++x4RLwfq4HVgawXosqoYIdizr0orARj8oz3dXHPumX0V5069blzcXKnsDEjgeDcHtj1C/Hva09a/SKZ9cR9xSCtBDr3/U6EtjOr7YZ43/Vkb82kyfrLeOW0yRrXhUZv72bdrQdSOL7vY0uwOtKnf0dLBqTBUCJCNhbHq08yX+ws9zt3/blcsu0SUuYYUa0hLzkYQGeNbFCVDPH8r0RmiVtxtmS2MBJdh+/TJgMSIrNaySNV5hlLifvYLbM6otlBXhsNUbMa4ImexSXFEsmmxd6FzhuYtWYNT+ZRlT4mLJcL27CDnCKvG8zlOttzW2z0OGZDfMbXre7JK+f/HRz/PCpbzuY5D3yeCzasBbdCxNDx/e6bbkvFdLGMbop3dFxNb64/vWOsI24LsLaqa5RL/ctZLBWzxTprupQB2WX4vH10mLvGdoYmA6L22rgZx5d4hGv3BlZvTIup+LBkQFS41QEanP8RRMit8sPxhwhVc6k9K5VM4SOha6faV2GgtBDTVoqUL/7dznQpaZERQG2tNI0e240vC4wNw/29pAp8rdVE0jxUl4zGTjWcDl3mmh1cXizxpEqV7YnOGVJLhWJmD7ti8x2a6LyIXSnc+AjUoZ7rXhdX3a+U7HDP+hmysXBApws2XsDW+f1scQ7yiFOk0mgSj3S2nQQsSSOCBuT8JKloOIXQSLSlN5XUqiu6fa+4NjOGXRcJgt/HaPVCbYFX/OgVmJrJZbE/gwbBSGiv8bHbP8aN+27kXfEYRxWyrEv0fu/GEmugCDnDB88Dvbf+5dnrzuaXL/glru/i3PIVAKpaDLtX12MrynDFY9oEzSgzV2owmemN3ftfv/8vbp++nedPvr7t+v0nDP+vmmHNgTv55Hj3MiyfvOOT3HrwVj5wzgfwpDyDF8KaALCTUALqBbKRCaYa8zywsLujj/5u7ne845fv4NSJ06g5z8XWJfg3EGZ1kdMmTuP2XSX2NEbYNVfmCduXfteOHT2WK465gmNGjuFh579BBzNssHoJg0VN09jmvZbf7qkxdcTS+9vW7Fa2Zrfy0akH2Kt9S/xwYMzqOHOGwcFmCd0Qe5Xj+uQqjvBwOCTaARNDApx2v2Pfy4VkG2Wq+4CTmS7U2ZzazC9f8EuMQ3Ra1T5raGLNSdtc2oApMFhcRbNaFq4Vb3HTTbEk602PcsPtadLjT4/+U553xJ/w39//PoDYh/Iy95BTZJ3EZHKM384rsLq/aZHx+Dgnj5/MpvQmiveLa9WsLL1D1WBGknz5wBS/9zbytQ39Gw+6EpCvmWn6yTpiZgwN4dQS0cs9SUUEEwaRBMgJCS9E0GlNOsqOms2nD+4muvWVHX/uy7//Ml+854u8dOulvAEBCqdCytEWhQSrRywJVi+sDFYP2UO87+z34f/oHwCoYZMOKUcLIhJntCzAakcrABMU601K9WbH76nTtGjMXCzWHJdP/40fAs+BzWfDmhNXv0hmAzEpQVWpF4RxO/3p3EPrmbONOBlfEGu6Jv7IGE5EKC/I369HZvU7b3on1z50LW867U08Z/sLA/DVTvTJrDYUs1rs6VtHE9y+O8fDs2WOXbv6tf/yxL8E4PcHCjRDnHxbKtZEMvyuPkNOk2B1B/VBXgJqaT1kg0WA+DC32TY/3vsjNiSzQJxivdlRPRWA1W0wTt9mmYfEn5OF2Yd4eSPD3lX2jPa49JpL2Vfax5fsCG7VJmWHL4k2ZA9RbVZZMHRy+eVl2tpDNXkjuk263VyxW7Lbcc+B455D1PfYWZ3GM00K9QoTGZs984IktX6ov2d4ujwHMdAxyOy/S/xw/Rkdfz4uCRMVXaPRpVTnSlFqlHjmt5/JUHQIs/hS4tIHqFOwuqDrXJNKknLmSYTErD53w7kMRYc4YugI9Ju+LX7Y43u6SXqFzRoGbmWOsGxBvYaq8wZUG/wfj8PM6sdgKGa1rsFMZYb/97vLOX2TBEeb/SVYeckKSesWBoLNGB/qjVmdkAWZpjd61kBsDwWkV+oiOUpW5Gh7m+FBN5EdHuesEryoUCTbp1uucscdkyNtE+s293U9FZ/LzHDFmnHmCo90/dlLtl3CszdeyLjrUsWmQjQ0ZvWfHPUn/O3Y4ziu0SBJlf1dOCCrJCuqSSaSnyIdC6dv1i4DkqLSPbO6zSgw6uQA0BPdm3eqUN3/pt/ETQjWt1XrbwRcNUaynscsQ6R6NTEEJiTYIrQQe58uMHSDZCRJxs7QkLIWjt4HwGnGAuMZzSz1NZmhnjevIa7noffFQFRhS6O6arl7plPVaekNhi5rkZTNxdIUaxNiL95b7MwgR41JWpp4biOKiR7C/QpCjVzWi/zp0X/K+SOvwy0fsSKz+vTJ03nT6W/igo1PwZLarpGwTZgUE8Mpg9eSrTpt/PG41c08PLvyM7hQabQMFgcFVlsJ4r44lx2/xpDcz2eW0SQMGCdWHEsauNn9MumWC9k0jpdFY6TheuSqzUcB1eK/iXNSlzDmkhIgTi1g0a8mA5K0EmRdl9gh5Ol4xCQeEX9/P7qNM8U6vg+WoQkwqyDfpy7A6g2ZSUYcnclms2+w+nlHPI8vPvWLvPiYF4PMPRyp49lzKFNb6ivqoK8U333ou1x2zWX8y23/gi9NoeuR/talazpxXTznllHhYKHWNUte7WsJM4FWkyy8bka/V1ujrjGkJXhitUay0nmOFUwkySnJCtHeTYlXCjuNC7zB+CXJI97J7tzKOUgykuQZW5/BM6viPa0MQLOaNs3qfGMuyGO6IRioMfJU1MQ0dFh4BH5zlfiP5/9dZxeJZoLnq1qZC4xea45HtdG7fOFFmy7i3U94N48bv5AR6Xlg9gpWJyPk/CilPgwWVW4bMSIUaw4JKVkViff5HgQyIOK72DKaxMzcxlX3f4Q7Z+7s+DLFWpOYlAHph3C1Ukzaouk5Lxnc08Ua3jJeGf/7yP/y8d98nFsO/BqAtJL4ClOzOjbMAxGLq4v3csvUL0jIs6qTekrltaYnPlMm1rV556oh85g49a6Y1UGN5/mU/fA1qwEyMl/L6Tr5QrGjM0Hl3ZYeDfSqtW7MFQ8JXdPJSPAx16ywJiOe2/0h6FbPVyo0y1vZnjkOba94BtlwesefVxNJVU2nUglHOghgviamyPcW9xJRWvz2UMfvbFSaqruaFxqz+sSxE3nxMS/mzDVnoss61uhR3ujo0S0ce/Ak3jM7R7PUP8j//O8+n4u/cTF7G0L+0x9UbfB/PA6D1Y/h0NCwTZuaW6aua8IKq9nfJhkwq6VWVd6Pk050mThIsDpeFNqVmt578dMeiinsNQUIFi1KAHe4N2a1buhM6WJ0sDjVPRjcHgGA6Ho0MEkPda9Nt1TsNArcHo1SbnTPrH7tKa/lndv+hDHXYx6xcYdacMikLaVVujqcg0RGbj8LpEJjVm/PbueJE6dzZEO4d0+toIO7VARyA7qFLjWhzWTv32X7+Lsvnbrt+oJgMfcYqjGSdV3yxhBaDxI4KjYOCbBlxjD6Nv1S4dREstA0+ig4TJshKf2hGWVm+wCa1PPm18X1Gnq0J9mgRy1RMnvrlR7A6jZzHAXIhQZWK6Op4kGOHBGNvLnG3o6SeQVuWprYYzOWLNbDBKvtxQzmzSPi9354dvWEWhS0UkIidLC6jZXUJgWyY0J8zzunl27m7C7s5r75+5gqzZNQzLABMqsDFmCzEowOL9cMXptcy4ljJ7I+uZ6IJ5+5QYHV8hzWF3YF8hvLnQtD0SHOWX8O62LCAG1kKQkQxarWjFWBxScPn8CNu/fxQR69V6u19GqYVmwU2ZcT3/14Koquay1mdYemQgAnjR/L6x5Zx8emZ/sGq9tDq+UAcPsGq8V+HdfqTHfp9aBiqjzFztxOZqozUBXravaoHdkeCV0857peo9HsvsidTEzyJ0f+CRdsugBD5rhav1q9h4QupQtyy2jbLxWB14PcmisDAnawUxhAHgfNqLK/U6Zdo+U/ET5YLWRAdDTqbj2YnOoGrH4kP4VmzZOJy/P8rq+B14Qt58Cmszq7iKYRl1Jv1doCiYhBxBS5aT/s6iOHj+TS7ZcyaR/FiCbPkx415eeNH/GG7Tk+MDK0aPKnm1ANQtuwKdWaAbNa6xd8DWRAxL3aOpbATN7DPeUfcM/cPat+PF/PU21WKVQbgQzIwMBqKRM4TR1dE1NJs8t8x9fvvp5/u+vfuGtWsFoDg8VQNauHA7m7hdpCwMZdTaYH4LIdl3H7i2/nFaMvAKCqDyDniCQFrmDlumJWB3WU71MlGlp91x5D8p3NGQa6V1u2Yd8eT936VL55yTe5fOuryGgyn+uzaZmR4GvOrbG2hz1suZgvpKju/gs+eOI7Ib8b0GDdqR1/Pi7lJiq6Rq1S6lkG7VHrkvKYw9Fh4nUhaeklO/dNisnc2NG90AwW28NsinrMiGd7+nwmmmbSOZ4nVGt45f7ztAOlA+wr7UN3xDMRutfOH0kcBqsfg9HOrG4Hwyq6ju+EA1bHHcGo68mUT8qAxJWWsV7nYJeg4Upr870YSdtEX5A6Tj3KgADstYf5jR3hnoO/7WttC9JUZ8hzyelDoYBhAMOy0Gv6ud4Om7I4TKb8cMHqWrPGlK4xp+ukqXYFVkeMCCeMncDRUjNy3k+FZt5z3obz+PT5H+MlhSKG5jOfy3X1+UAGRG6NRT9GItH7OJelWxiaYDsYKfH76rh9aWGp6Yes51GyepcoAdg6IpKMOcOgWux9TTfuvZF/+MU/cM3Oa2gqsLofbS4rxrBM4jWj3BezWrHq/LoAOPoC0dtiPhbhlRNjXDf+y64NZNvBak2uT7fDYla3wOqTJ4XBlGsc7MhkTt0rA5F0p0255xhhMqsXa0OvG7bQzAKPzC0PVs9WZzlQOsB0sUBMFrR6JOSC1oyAGtFrez/dyINYQz/n3vm7l/zYZ+76DM+99rk8WPtJm8HigDSrpZM6CJbQeEp8T8tpJP758X/O1U+7mmdueyZRXzxz8WS4IF0Q6hwu7GPHiDhnHpwp8cW7v8gl376Ez/32c8EfPWXiFD55wSd5/NAVAIFO7KKotEmArHaemhLsXmKybCQprj3X4/TUU7/5VF52w5PQI1NMpG1hHKWA9EznYPVEOsqCL4GOEMFqU54Hfh8MMQCsBO8YGeaZm1Psaf64p0u0a0Prsqnq9bsuICXzXNMU3+9KZqxLxZHDR/K2x72NPz/+z7EcUczqfZg+LhVWNM63kgm+Xbot2EdXC8V2jcp3ujwgYCcgFkgSykKtsOKZNVOZ4Se7f8Id0oOlSvgmaUTiPKNU5vYdr+AD53wgAKv3d/Hdfm/X10lu/wDe0DXiB3tuFv88+pKuljIcG2Fzw2HYF9JPSgqkH2NWFfOVBsOabGj3CFZn5fc3YxhQ67wZ0h6KxR8xIhRqTVJSCqPvsyqQAZFg9WgCvynXW1ld8u7ib1zMGV86g0cKewKDRcIwm14i1sQEs/2g7wjvAZaXxCnKfULzxFoS/gBkQGLDDEniykJ9gfVD4u/qlMVs6RZaRfzZ2gDA6hnT5NTNG7hhy43sWehs8tL3/dbEiO9Txg5tcrY9nrThSby4GWWz4xCl0RGYno6k2TG0g4Q+QUZrkwHpIzIR8Tzk3RprsuL769qM8pCoN12KNYHBjOelBMj4MV01SpSvVEXTMb06hVp/vkQqArKUPcSQKyZ0tEznUogxeb+amh8aWH333N38Zvo35Gs5Ik2lxd97nqvFRVNLC0GzWhGAYo6sW+wB1Qb/x+MwWP0YjJZmtYalW1hqhE3TqFT6MwpUQJhdEy/WAunuxxKjGYikSMlDWNM8DhR7YwO0R2CC6EYZjmqQ708GBODGjMlL1k5yTf4Xfa0tJ9lNQ65HuU8AsT3GkyK58o1SV+x0x3U4WD5IMS9Gsmc8sXGHVXBcdc9VXHj/v/Mvw9mumdXHjBzDl572JT4SOxJQmtUhJjORBL4mtrZSvrsxnrPXn83Xn/l1/m775QAs+Mm+tBo1TQuShljcZ8GXB1W5N5NFx3OCJHrI9aja/T1rykyiquscXNjf83Xunb+Xb+38FrdP344nwWq/H7DatNnkNNngJvDdZEesieVCAcPIZC0sg4tkNMUv4jGmY3n257obs2sHq5WWcGgazG3M6qNGhXO4bs/wwPTqDPCyTPQ0qX47GGa1TLhrBX6292e88VdPI7b+Kh6Zqyw7kvuBWz/ARd+4iO88/K1WQTsIXcu4lPxpM8D7Xf56opPfJa/9jkLt0YxO1USt1e02g8XByYDE5LnazqxerZnjex5RX/yZZHpAYHViVAIfPqdlxB7w4EyZklPi4fzD7C89en9RAPLoUjIgChCOrywBArQAE/fR92FUMat72EN83w+KDd+LCkCtKKecrAR0AcSuyUSZl2C1W+pPCuq1172WJ33tSVy/+3oi0ihK6+Q+rRRWDDRhyFR0egPEAlPnSDIwsFpNb7yT2BSfZEvDISk19PthrtmuWKOZ6H9d7RGNp/mnkSG+Z9zNdKWz873eVKCOfKcHYEYGBDI6KVU76CubT981cxd/c/3f8MGM2GOrfmQAzOo4FmBIxtlaOULfzXerwNCEMSym1fbcKv7Dhs61XQEuGjqWa/cd4O0J0dxV0xj9gNW3HryVG/feyJ78dCADQo/+JxNxUQfMGsaiqZ9uop1ZXaw5bYaBfTKFD2kUbhlrgdVTlalVP64aNnVHD6amBsWsPmvkeL6/Zx+fr0ZZm1WSDUs/b2ov890oNg0sZTYdOrNagtW1BdZJsHo1Tfn2cCpin62b4YNgI3aWiO/jaz57Cp1JyTW9Jq4v8sao78lpkfAbcM8/6vlcqY9xQr1BFKcr5neh1mxpVvfZTM1KOZK832SNarj1KQOi8iLL0IjPy+mEdSd3dQ1FZKzoGlHN6UsGrT0UszppZlmjiaa7me1cDi0aEe+Pr0G+unzO3028/5b385Lvv4Rb9t2ILuVr+zEbLSZLXJNMMNXsLQ9S4XgODU98lwlJJNWj4erK/7HEYbD6MRjq1VZko6CDpmuUS/2B1arwjtbEi5XXM73JDKTXEvd9DPmIHexT+8f3fclSNfG9KNvtnBj3M2xIdT6CcmjE5ehspdnffZtITDDhp5lwXRqxcCRAAEbl71YxXB7ef7Djzz1ceJgnf/3JPOOB/wQEQ17T6EvfuD3UM1fWhTb0vi40q4OQ7LL5EGVAANA0qhFhOlopLnTFSE9FUhw5fCRbNTtYW78Af1p2km27zqxkuFPqDaxWzSTNh5Tn0Yj1poGoIhFJcE4JXpAvUsj33kVu1/r2paGn3w+YaMb4k2KJd9ePxZk/u2dmte/7ATCs1UXS4IfE2hm2s0Q8HzT43XRnBoYq1JosLUrEE/fOCg2slvth8QAbUhvI+KfQmD+LB6Zzq35UMQI1T/oCDFIGpF5gTWINHh56ZIZ602VqGYawmnhwXYvoIAtaBfi1MV/Hpda8ZpSXlAJRRW2lZg1eszoSJ6aY1c0q40oGZJX3o1arYWniu0xnsoNZm6YFJovHx8T9e3C6RFaesWr6qD0UGLSkZnVZArodADxTboWXT47zcuPReYa6di8yIA2vQVOaNvqeLdh4eVm0p9d2NUGVjVv8ZM0unrxhLTfld3W9lvaYq84xU53Bx8eWBVWvY69BWLFgJN2jQKnePRNLEQpSVioA0fV+QXTgoye9nu/sO8ATG4pZ3V2+ka/nma/N47gOMVca34UMVieSKUbk/ZurdcacD85N+bmyPyCwWjbhsmpaySytCIgdyibYueoAAQAASURBVPhuGjFsM+RyUeUHshmkmNXdfLfzdbFHpCMjMHMv1POiiTR+bHdrUdrzOUGAUXvGbB9eNh/+9Yd59U9ezX0L9/QtA7JOkgrCYFbbhk2xWm8Zo/XLFFbTSM0quE02j7TA6v3FlcFq13OD/bVap02zejAGi4nYEOubLlazxjoJVu/LLc1iLilDNNduAfsQLlgdGwr23Hw9z9qseO46AV6/9cC3uPJnV3J7WeiCN63wQTDdTrFVTlkvOHuoN1efIKy6rbXHPCUDMoA9DQLj7ygNDnQAEP/4kR/z6Ts/zd1zd5FWsi79MqultEyOJmvSIh872KOMlorZUp3I2A+Jbns3/3Hw5+KHo0d2dY1z1p/DvzsZXruQI0qjZxm0Q0PlcXEzwwTi37UOzRUBom37jac1AgZ5P6EIBQk5OeT6GolE7+/Dg9Gf8faxEX5n+Yv8a7qN9gmrhKxhzMNgdU9xGKx+DIaSAQnAaskUrGo6pXJ/QvovOeYl/Nmxf8ZQRWz8ZTPb24Uy69CAIT2O10wxU+pPD1fTNK6//HreecJ38ZtptpsS7BvaDHrvj3EmIYDlmtdfJ/StZ7yVNxVP5vxKFS/RH4DYHsNxkaQuGDrTex/u+HNqk4wHutBJUrYp9DZDiKTU6apoGim6Y1a3FikOugU/FVoy47gOj/vy4zhzbYaCrhFxy+R6MXGQYNVCCBIlCqy2rDawurz6eORSoRj8ad/HALzERF9rA3jVQoq/m19Ar/T+DgQMMSOKL3Uu+zKSkOBo0hCJQq/MasdzaPoyGZIyIGEBiXokwdqmuPY90w91/DnXcwMwwHVbAKcVC59ZbekWTx65ksbMxTwy27kMiOeJoillDACsVjIgtQIb0xvRNR3NqKEZpWV1qxVY7TWtwY4KB8zqFtikwFbNqLBzanmwulQ1SSgAYIDM6ommy1YssnZ2VWb15ddezgX/fQG37b01+FliUJrVEIDVW+X5/OBMC6xWjTaAf73zXznt6tO4Of8fwHIyIPI76MTg1oxySyzK7br7qOakkgHpRfe+1G4660WYTEehIPWqu5AAAZHD1Cyfg6bJVK2/8dKKnMaIW3FikilsJXs3AhYXiAcsP8Mo9qRbre5XMpIk5orv2+zDoDgICRDF5Sh+t8zqT9/5ac796rl8+s5PE/fK8pL9g+jtkUymGJH3b6bSGXNe7WumK86RCoNhIaom3FpHvAO6lVsxZwuATfkuRaKJvrwxloxIHB+4cvYmrvj+FaQT4l50IxlYaIg9YtgehT2/Ej9cfyoYXeZs2Y3in7IRFXgBLNM87SRU46bZ0BlS+riJ3ogsGzOtOsCVWvDdRrsMSK3UBnj3O5YeGwJpEEp1nqhlMGyLGmhfaWWvHcU6BGjUm+ia3LutPsy5VwoJbuLUAhbzcsxq9f01HLulVx1JhmtiGEmSlZNSPj5DSbEPdCIDcufMnXz/4e8z5YiGgBsZAAhmxdnmiLxZt6c7Mn5UtYAOmECJaGgyj+3h+R4zpskjpklUa3Sk8/3j3T/mU3d8ip3535IJmNX9TZqtT21gc8Mh7vmsS4jnt5P7tFLMlRroZgGMEr46S0a2d3WNycQkjzMybHWaAqwOmVkd0dKs0SQ5oAuw2rRTWAGG5YQiBRIYicvto0SMTHwJAkSHkbTEeTlnGC2T7z7WFdEjxGUTx4ofBqt7icNg9WMwVC2my+SxfdyjXO6PIXzFsVfwxtPeSKYqCqCa1SP7REpzfC15HuUH3sZCPhwWi+jCaWzSJVjdo7miipGsAHbq9O9KG5Ejb910GVeLrBxRWtAN8lPdg9UJmUQW/XiomoPKabis6yS1alcakt+4/xtc+N8X8k9NMRa+QDK0As0yLHS5rc0ZBkmt2lWX++YDN/Pvd/07v5oROmHzpPte2xXHXsHbz3w7R4/sYAFZGPSohZWNZrny9Ct5uZSd0NL9g9WuajwUcz1fo91pXpcHtNaPBrNkzSZ08V7O9sisNjSD/3jKf/DJCz6JWVeM3JBYO5E4W2Uif//Czo4/5uPzrrPexVvPeCu+FyUmAc7QtMwCZrWYxNg2Jq774MzqZ8OLjnkRHzr3Q0xapwCQUGB1mJrVAbO6iG3YrE2I/VK3Z5ZlFCkmuuMagWb1YJjVS4DVcg/WjAo7l7iHCqBrNOw2ZvWgNKvjXFEoco0zzEuPe+mqoMpUZYrpyjR12YiqEUHrFsjpJiRYPemJ8/mh2TLpSBZYzKyuNWvU3Tq1hijUl5QB6YJZHZeFelMTDar2mJD3aKoH8FUVG7ofBXTB/gzMFTsffVUR00VhPNfnJJd6H0yipH2Rq0VSfYLCbaa2hlnqiR3Wrlkdd0NaFwRgddQrAX7XzGr1jiasBElfFrbpsMHqdMCsfmi+sym4Z+94Nn9xwl+w3hXPf4UocStEMEyF3NfW1aXJkzXP3hXAnZbxo0/Vj5Duo/BfNqw4GnBrY47bp28nEhXPSzffbdkVYMlYbAz23CJ+uOHMrpey24rwnLWTvNATE1KBF8AyxrUdrU3uHYaUVPTRepbE2ZQdBx88TWO+3tuU6hmTZ3Du+nMZjY7SqOQAaGpW/41ow2xNJEkSxibJVJ+pHsTzlzcTV9IkAM120GpAzGrMKFelU/xdwseMind0uZxDNaEbjUibZErIjd5IAhPISMA6GRfPWyfAqzoDIpIw4Q8CrI4k2NZQYPVURyC6ruk8edOTeZI5jIaaFgm/AXf9nut5UuP3/O3YCFEaHRGmqlKKwXUjLc3qPmVAXnXya7h23wFeUCwxGRP7/2yp3hELfbmYKdXRDLG+oWJvYDUQNH2iWqOvKZH2yEQybM1sJa6PMRGA1V1Mt1sxfrR7H19+BPxmOhSwOiDnyaZvkXhfslXZqGgqzhl6YDLcSwSMbysRGJzbsQGSRf4Px2Gw+jEYijmkeA4njJ3A8XWTuOdTq/THrFahyUKxbveY0I/sACBd2QWIcd9Gc/mkpdNQmqFb3EfED/rQqwZYO7YJgLrukq/2B1gnGyJRiwx1X8QuF0P2EKYvivD6XGeaYdDSnlVmXIU+N+9DoyUDopFCgNWdym3k6jmmKlOUJNMjbM3qYanPOG8YJKl2xcL6xb5f8LHffIyfFx4Q1/BTfZuDPH3r03n+Uc/n6LHN5KRmda8uw6OxUV68/dm8VGpxW+nJvtYG4NlJFnSd2VVGNleKwFDFjKJJ1p/RJ7P6oGHwcvP3JLa/t2dmtaEbnD55OuesPwdDaYaFZWRoJdguE/m95c6Z1aZuctmOy3jh0S+k1tBIKFmLSEgFWko2MBpFqBfZOppAMwvcP7/6Go8ZOYaLNl+E0RTPVVI2C0JlOikmi9Te3JzZDIAemVl2NF01QxzHahsVHgD7ahVm9a4lmN+BtqUXI6UPmlktnxEptdMyWFz6/VDJstJrr2qD0QINQnosJL0CEVOn0fSo1QUYkm8bX1f7Rd0RKejIksxqWaR1MDofayvUDzW3m8z0bnoU+GR44j6Pp3pnVgPEpZ9Fzu9vkqs1AWGR1RRTuE9QWNMY1gUoqRnlnsD9rJ1lLDZGVE+RQdy7aLp/sPpnc7/lOWsn+fuRLDYOBwvd3T/1HkS1CLY0DUxkQgDR20K3EwFY/Uius7P0sh2X8ZqTX8M6R2TzjhELbfptUUQzoBlsdRzGzY34zcyKMiDBee75VImEb64IwR45qon8yoyI56XT99RxHeq+OEPWJCdazOoewGotvYb77Qg7dQ88N5BX6sfYWe0dpjLAs7I9s3LHkjFMV+719d5kQP72zL/lExd8gu1D23HK4r7VjZDOKcUYl3XjkSPr8X2Npt9gtrr8lIF6zkzNpCmlJz3NBGMAzxuAFeX6eIxrYxaeKVjfSwHDvu8H31+tbrXMKMOUAIGgqX31vimuf951nLZeSD1MFVYHO9V0jd0U+ZAWHQAIFkkGOa4Aq1ffd0diI3z4vA/zEUPUwYPS4Vckh/2miU2jIylKdc+aTavFrO7XaFfXg7xsyGoGckn9NLpmS3U0Uzx/w04VNCMgAnQaC7UFvqaV+XoqIZnV4YDVf3niX3LNpddwTOIpjCp5o2QXpCkrzqjnMUoD0HubfD4k1PeaUGC1H+vrmRuVBIk5w+gLrNY1naOHj2bH0A6iCqzuQ57kjzkOg9WPwVCQoGJWv/sJ7+ZtuTGObTSoVXtn7FScCvfO38vB8kEMqbnnRHtM6GUXMJJ7CFMm372M4aq4d/5eXvbDl/Hj6U8DPseUpev35rN7vibAyJAY/6vp/pJARCdRaBQ476vn8Y7JWZpAYiw8sPqSbZfwA/PxfGBmDq24r+PPBZ1G2bEv+vG+jAIPDcWsrmg6luaiNWssdHjoKEZA1BV/vkyMZCS8ZGZEPrNzuk5aq3QFUihGUUSOyy74/WtWqxhKWOQks9op9QZWAyDHQB3fIJnq3yztv1IFztm0nh86v+35Gmr0zzZsDPn9Gv1oMJsxkp7Hfs1BtwrMlPo3aNXlO6GHpQ0dibNDMqvnnT09XaJQc1psXCukwtFOgQLvilPsbvyC5I73shD/MjWnM7aHagomtVrrmmFFG7Maz2NzejMgwepl2DHqvaw3DOw/iMHi0mD1I3OLgVDP9xYZ/2YNubaBaVbL60rwbSUZEMdzAjDAk+yVhj5gsFoyB/XqAltHxVoXimL/XKi3/ANU86HakGD1Usxq9R3EV89BTCuOLc861ahVsTYrtXB7GM1VIKcrma+TmTawOt09WJ2OiSZQjmZ/WoiyOHPdSAAKh6ENPSTNun2zu3NTxb+c/y9cd/l1HJE5haxcVxjMateIcL8d4aGIKZvjXTKrFXDoiGfE9TVS6Wzf61oUViyQAdlX7E7myyuL5nPVGJD5qaZBfJinliu8bd0bacxesKxWL7RpafseFaLhmytCsH+P+LIM1UXTL191qDRW1zFVIKjvG6yLRGD+QfEf1p/W9VJiGVEHVDUNr3iA8XR/MiCu5wZ5rl0T97ln4g+QjUdIFDdzSbGEXetvKgOgWRX5VCMssFpNv0hm9baxDJWHX8fpfJLx+PKyiO3SJI2a2GubxoAkQADMGOskE7mKAKuXY+R+65Jv8eWnfZlqPUYK+a6EDQjL83xz02HUTDCejBG1xPuw2nkV1FGOONv12AD2jkiCber6kRkemetCzlNOs5T8WKi1p4o1CcHmnTMNTL3WGbNa3rOGY7U0q/tkVgPBXqY51VBMFmeLjYBZPey6MLSpZWTa6TWqs7y7uY+PD4kG71w5HBkQFQvlOsPKOLYbeSN5rxTppF9mddNrBvuIAqtL9AdWr0koZnV/YPW27Da+9syv8e9P/iwxWefFkoeZ1b3EYbD6MRiBe2o7AUOyzBq13vV17lu4j+dd+zxe+oOXYqrufa8F0KgAq7/SOEhy82ewsresagK1UkxXprn14K1M1+/nWG0X2cZBseltO7/nawKkMoJZXdI1dh/sjVmaq+WYq80xZ/pipGt8U19rag9DN0jK6yVqUx2DTYGGkxfOWMyhkTAlWC0bEd3oVivgKd5UwE4yVDbRSEyC1QGzuvOkIZCzaIjPzJPuG0ifrkxzy4FbeKT4IBVTHFSN4vJsk5Vid2E3dxz8NbOGTpEY2aUYiV3GkHQRz3u9F0HtBouWK/Ygsy+w2ibp+4FhRsmd7/jZb4+Zygz/de9/8YOHf4gp12iGxqyOs63hEPWg0ej83So0Cty490bunLmTYq0ZyICExqyGNt3qAxw/LvZiLTLN7vmVz4cfP/JjfrDrB8xJPfmEKtLCHDENgG8fGkW2ZISUk24vz6xWRUbN0Vv3a6AGi61R6xZYXeaR+fIi93LXd3nNya/hgjWX43sx0ob6LgclA5Lg5qjNZckmb7rhTQGoUqw1H/V+tDOMvYpkpg8crJb3r7rA9nFxD6YWDMZj42zObA40SlVzq1JXzOr+ZEAwI8EotdL1V6GM26aLNZpud9Nd6UiaCzZchFMUk2KT6XYZkO7B6uGkaGTPmXrPRmntxZnjWGSVHm6PEgPtMaZHOb5WJ1Yd61oXuj0KNYeMXJcW6x9EH2ljOqW0Cgfzta6Mk9W7oEsQtEwcwwhZbsOKB8zq2Q41q+9fuJ+H8g/RkH++ZmXDXVN7yKbPmoi4FytJDQQeFL5PzY8MBGxSEzbqnpWbORIR8Z108uxZhkW2cTHO/OOZ0OW7ZKd7eg+UjJCvadQqc6tOrKwW7Q2zWE0AfM1o7++BoWtMFJ7GP87Os6XS277R/r64NQEyNa2Qzik1/SL37C1jSbz6JHvmVn5HbcPm6VufzpM3PRlH1q7eIMFqK8pRDXEG7a/cD4jmyKFmspqmsTW7lePHjqdY9UkxIGZ1e8O9UUbTNNYPiZ+txmJWOVG8KYgF5kDA6jjrmi4X1CM0Zs9n98LqYLXne/i+j18X+395QMzqjJ0hpon9omlWlvweDw3V5G04Rmia1fl6nstH4py/YR1uo9STUeyhMVduY1a7Xk8SIGr6uaJp2CEyq1XUi7MYSmO+A0JBEFaM/8ik+MCIiW4fCEy2ew31HgDEHHHPS36MpN37mbUuIxps/YLVKsqNZkBKiiezfV/vjzEOg9WPwTiUWQ2gWTF8wKn33s1TBkgZO4PVFMmMEe+xAMpsAMPmgA6u/RBnR6+jtPd3Pa9NjVprfpyLjF+LH257Ut+ARTa9jr/MlXnjfI6ZA7t7uoYyHFB6j9Hh8JjVAPHRDQBMMs+uuc42zmAsRrIICn68bzmL9hiODXPZ9su4tCqu3w2DOWAEyOQ5NK1etbboYhmQXpjVtgSrq1ambyD92gev5eU/ejlfuPsLNCPifXLLvekOfvW+r/Lim9/OF9NpCn6CoRC0JMclGFek973jvU98Lz953k94+tanY7khGAbK93pcHlG6me9pMmNXYRfv/dV7+cRvPkFcgpxmWEaGVpztjsO/PWxS2PXSVRNlFQ/lHuLVP3k1b/nZWyjVmm0yICGycRVYXZoSYLCvoZtl7ty/8h73z7f+M2++4c3M1AQgF/MHUKRZUTDkc1srcNzocZw1/hSaxWOWBVAu2XYJzz3iuTj1xB/cYHEyMclHzvso9b0vp+Z4iwAMS7d4xQmv4Nyxl4Jv/kFkQBxNY6eps7uwm5RtBkysQ8dOFZvUNmwc6WXhhsXeXy4UUFSdD7TSd881+cnlP+Gbl3wTW2qfq+aW74mCYmgpsLobg0XDZlyCXtOV6UX/aTRhYxkant89+HTk8JH89XHvoD79TNJRk1jEgIKU4+pBBmRdRrLBdKMFxncZjudw4tiJ7BjaQaPRVnSHAVabcb58YIot+8/pq9guVByyal0hML5VA3peN0hQodJwKdQ622+hlQ/pUj+4pA/gPbBinF2t8vr9FiPOZR195MX/82Ke9e1nMVsTz2zDDsfbZcmQTYNxswz4HMxXcL2lwcQLN13I3295Dk8uV6lgD4ZZLb0VRmSuNVebC4CeTsDq0dgoRu5p1KefwQg58cMeDQyjZgsgrVTnAhmQ6UK9q6aICqWRbhs2MdmU8mP9TRgY8SwAeqPYMi7qMHzf5+SrTubUq04VjHQJoHthnQeBDIhgVm+Q5oV7F1aWBxyPj/NPZ/8T73nie3CltJU/iHNdhRnj2LrYA+5fuDd4rleSxClUHZKBDEjIrEhdByvBTbEo/3T7R/jBrh+wLit+/5UmH6BVRyVVvp0YwN4RSaID76xEaMxdwL751ffcn+/7OSd+8USu0MX5JsDq8PcPTdOYlJMBri3uwWqEKdW0rDWslmZ1nzIgSSvJ/QbMmgZzpQOs7UN2TMVMuYgmJfiGXbc3sNoUYHVN14lo9Z6lFNvD930u+vpFPPs7z6aUF7KCNTPTnWyPFee6eJxrk1H0yFzfMiCmbvKm097EX5/012hyOqNEjITdezN6c1bImswZOk6ti2mCZaJUawTm65HYYRmQXuIwWP0YDO8Qzeqr77malyXv470jQzj13pnVhYYAqNORNLY0AIoksr1dTDdgZBsZOeq6xtzL0b98U89rC3RB3SgX6RKsPvqZPV9PRdSM8qJanBcVihRn9/d0jVw9B8CQ51LF7rtT2x4Nt8Eb9v+QK9aMM6zP8dBMZ2D1EUNH8Jwdz+HUqji8C4QrAzIcHeZdT3gXb2gIkEHpVncSCqiI+R6er2GFJcsgI5ABMfSuDRYVWB2VibMT6T8BTMsEt9AotIE5vRksqmct47kUiDMU7/87VSNPRb33DncykmQ8Pn6IkUQfh7I0/ZnwxC6nWfmeDEICExo9GoxhmWE1RyLCIColk8o9q7CWD11TzIxRrDnBukKTAYE2k8UDxK04CV000H514LYVP6YYYdW6eK5sT+43ITeUWlIgBY4ZOYZ/ePy7cXJnciBfXcRcVvHaU17L/3v8/6NeT7dpVg+gqFUMsTawOmpGuXDTk1gbOwpgyYbhfFk8Ay2DxQEZREUSxOT5X21WRcGWlgDPIftcu6mcUxFnuxsWk265aNvfFLP6voOPTvYVM9j3TLJxC8tYIhXtilkdZbzpMuS61JuLzyFd15hIK7ZT9w25g3mx1slMFOqlFiO6B2b11qE1TDo+a1x30TPWTcTMGFc/7Wq+eck3aZbLLXZTKOPM4p2K0uiaWV1tVrnsmst4yfdfQi4/g6VJpn8IILpqQDd0jfGYeP+6WZ/ac/WaZPTrA3gPrARrmy5nVF2m5lbPAX3fD3KhuCSKOH2wb1cN2TR46yNfIHnk3+NGdi+ryXzc6HFcPnIip9TrVAcGVouG6og0c5+rzbFWAnX7O/xuc9JnJuvJfCq5vOTESqFrOnH5GpVr88HEStVxO25Ct0c6kuZdZ72LK0+/EtvJiR92oL2/UkSSQzSAvYYeSCx0Gk2/ieu7NLwGlm4JCS5CNOU7BKxeNxTDiO3GG/4Gn/7N5zu6hFuX5+ogznUVhsURjovu+8zU5pgYkizrQ0DOg+WDfOI3n+Br932NfNVpyYCEzawGiCS4047wpYev5eb9N7O+DehfKZRZYErVLKnsQNYGEPPF3/HQbHnV5k2tWcPHB1/s/w09TsQcDNS0VuYzbrQzY8pgQq/ezqzO9rUGQzcYlVDaVGWKNdnecw0VC9USzfJWdngR4Ts1sq3ra8TbWPumXu9LhlVF2SlzoHyABxYewJQ5ZdfyRpE4MWm6ami1vmVAYmaMK469gr888S9x5NRJ0Y+R6GMi+vjxbbxsOsK7Z+cp5HM9X+dbD3yLp37jqXzyNx8MfqaFXUv9kcRhsPqxGEoFRKLVuqZT1lzmDAOv0QdYLQ2vMpE0MQlS2Mk+Co2R7cFobt4wGCrc1/OlFFhtOXC0vgdPM2DHRb2vrS08qalWyx3o6fMLNZEoZ12PnDna+mJCCEu3uGHhHm6PRomaOR6c7ixJPWf9Obzj8f+PS3OiIC744cqABCFBp6TWOYM5YFZ7vui6h7yuHUM7ODu2ju2OQ6pLg8WqK0fr5AhbP6ObKjIRUbgW6gUMyRLUa72B1cE76nkU/DjZEJjV69Oii1w03J6kNg4NWya2fRlJSHbNhJxW0M1CT2ZHilFn6lHiisEcltaxBJdTEuR/pMOph2B804xTrDUDxvdgZECE4/3G+HEA3Je7c8WPKeZJpSZYCbYaZw67SFPaj3IceSJlY+gajuuvyH7NVxrEtD+sZrWKTSPi+27/nstOmfvm72O3ZNu2wOoBJaRWnJg8UytS6qk1drq4ODI0gxPGTuDokaMDjdLQmw6HhmLRVhc4ab34ju/eX6DaWLyv7Mju4Ij0ifjNDMNLsao9r41Z3ZkMyEemZ/nZ7n1cvOHR0mC9sp0c12F/XtzniXQUCrKhbad70i89bd2xvH+3zSemZvB6ZFa3R70oJnTqWjQcw1G5p0WpcaDQXS5ZbBTZmdvJXTN30SzmAGhokVDAp5gZIy4loUaT4mze3wUYcNGmi3jG1meQqIt3p2YMAqwWv2eMOrvnlmctq2h6TTxZtKekdI3XJ/t2xZB7m+s10PQmujW/MntTgmFV3w51Ki8IBVY7dQzNoOk1W423Dr7bqdI0heYUaA0STn9gNUBKlsOl6gLxiEnSFr9zL1IgyUiSy3ZcxuVHXk6smQPASPYHVpvJAmds3sAL1k7gS9+STqPhtgAh27DR5NSNFta5fkiT1zYNhjJFIsM3c93u65b9WNNr4riOkI2QDHstMkCwWtOIG1G2SK+RVEZIP+49BOTcU9zDZ+76DFfdcxWFWhuzOkQiUhCRBGNyKmimOtOxDMg1l17DDZffyHHSmDLaK7FspZA5ludW0SIzlL19q8o2BGQkqR88EIBfxqSsrSqRpZsOh8ZnL/osVz31KprlRGC027fBIjCB2CumKlOBofP+HjwyVBRKUaq7/4Iv5zxBSuyBWR3RIxiS0qhptb7MYoN1SUJjRI9gy5yy2e2ZZcWJyrMxoldDMVhU0ZRgdcNI9DURnbbTPL6a4qxqjUKhN9klEA3YvaW9LMh90UUHM4Q87Y8wDoPVj8FQObCSAWlp9Op4jT5kQBripUy3vUzxVB9g3egOshJsyus6B6LddwdVFB0FVovrNWPjoYyXAuxLD3GHHaFW3NvTyF/ArHY9SpHek+WlQtM0hqRMg2M02DfVhXFPowSyGCoSH4ij+33RGL+NREhR4UCHmtUT8Qm2JdYx4rpUsEPXM7tw04V8auOzeGGhFOhbdhqKWZ2QIKfXjRbXMtHOrI5mRFJvyWem21DvQdLzQ9MhX58Vrtplw2dfrjfd6k/f8Wnef8v72ZN7CAuRpMYSfYxMyj1IjfZrPcqAKPaJpUXbtKFDYjBLcPnmuEt864f4/H0f6GxN7czqepNYIAMSIoCiwOpffgL+/QLOiAum9YH6Pct+xHEdHE8kjqWqAKtNVzGKQh5/bTdZRGhyjg3Po0emHgWgeL7HVHmKfD2/2EA4DHDu0AjA6vlFBng/3fNTmomfolnz7GozWbxz5k6ee+1z+dHs+wCI+gqsHpwMSEImAKqxsHaZ4mj70Ha+9LQv8a8X/iueHGXUB1g4Ai0Wre+xPu4wmY7S9Hze+tN3ccm3L+Enj/wEgL859W947rr34paPYMPQEk2Hej5gZnWkh2jYrWS2+eh9IgD0uywgP33np3n33c/AHv+e0LEtSV+L5ERX11ExnrJZ8MV3UM5Nr/KnVw+nLIqgihHS92rFeP34KDftuJYcv6HR7FzjexGTvyzAw4oe3vM2ook8IdEDs/oNp72B9539PoYkWN0wB/AeWDE84OcpF7LXsWt+5Ya0AnUA0jL31kLKaZcM+R6tReQMurWwLCB299zd3LxwLzOGTpXIYIgOpg2xYS4uV7j9oqv58HkfDszJOmkq/dtdnyOx7QPYYz8m3lCNrd7z7/VYbHIcXNkEbJcC6TU8zyfpiu/W6tNodGN6Az6C+DNX6E6yUE2ygDAzNBVYHZZhYKBZ3apPJuMirzxYWX5i9ab9N3HK1afwp9/7U3yZq+mDaEK3hxXl6IaDqRkk4rLxdUjtEnj+WAlqjkd6oMzqJGNNCVZXZtgwLM7z1fxFIkYE3Y8zJIH0eHoAe4fMSW8wGiS3fQh7zbdWlaIMplNl/mREByc99sT0Nq7IFzjRFfvTamD1jqEdnDR+ErrUR/fRQvFjmdDFXjFVnWPtMuSBbmKh0sDAxS7K93xkR9fX0DSNhDRMRq8v6WvSbSiwOhVJYdWkwW28S+klw0K1oyyt2jezutAocMf0HTyUfwhXAuh1s/9aypeN+5JsvPcSKke3PJGd1oiGSmb8Y4rDYPVjMHwWA6pK9mDWMPCdPrp5irWpC6ZT1Y8Qj/eROIzsaJke6Tpms3cDN8Ws1pviRfdDBAP+wdjPi9dOUjP3stBDl2+hLpnVnks91lsRu1IMye933tCZn9nX0Wfy9Tyl4gE8oIlJjUjo7Jiv3fc1nmtM85HhLCmt0vHo5lvOeAvfPv0fuKhSpexHBwKiq6QySZVivUmx1tn3+s6z3sl/nvMRTqnVcX0NI4Suezoiwep6geSQONhtt7gIDOs0VBKd9DzKWiKU8bpsYgJTNmnu71EK5zsPfoerf381c8XW8xlP9pEESiByS8Mho2/Fb2b6Ylbr2ANgVovr2H4Dw55hX+XBjj62CKyuOiQCGZABMKsB9v2ai5uimK9r+4KE89BQzxZAsSKeK1XUhs4UjrZkQAD+7a5/ozz2fiKj1z8KQFmoLXDh1y/kiV95Ik6t7QwZhLZlIFngQxt77bO//Sy/rV2FEd2/iFmtmiG+J4oVJYEzMLBa1xnWxPlcapapNWsdjZ36Ekg0B62XZ9oBO1erLnD6FlFAP7xwgIfzD3OwcjD4o7tmxX3cMrrEvZIgLJFUIAm0YrRrJi4BVrfuUXf5kXonfN9kNBUBZZzX40i/ZeiUzay49kJvhs53TN/BBf99Aa/88SvxpPdB3QqJ8WfFcAFP99CMEtPFzu+X0khPRVI45RwAjRCKRhWb9RhbGw5ZUxS3vWiCevKdblqDGefXgU+M2tjjP+C3B/as+McVqKOhYSMniEJoji8bEghfJ/sPmrWw7Nj8p+74FK/Y/S1+HotRwR6MwSJAag0moMsmkGIldtKImJZsNZMUhtKp74NZ/Z+R7Xx37wFOsMQZMKbA6i7eARUHSge4ce+N3DV9L0OI2sVO90dkWZNOMynT2J3z3U2pKma1pVvoWqsWM8I6Dw6RAQHYlBFeO3lnFsddOv9WILqpW9i++HfDHjBYbca4cm6BW87/DE+ceAbwaM1qte/buljLwDSrASIJRpUxa3WWTcNqgmv1yZZ81SEpvWas+GBY3wBjUl5UNwurSlEG+W0AVg/gnsm4cPgE3jSf4yxP1LadsJl930dXOvJ2RuiG9xkTusgvpuoLrOliD1sqao5LpeEywQKa1wTdasn6dRkpCaIjz8x+2dUKh0nbaaINkXtoye59AmKSib7e2M+ls//el4nh72Z/x4u//2LedMOb8JRxbAh5x++T8J1kgqliFwTBQ0LtI6YrnrH6oA3O/w/HYbD6MRiHMqtHYy2ndJp9gNVKs1oyWArE+2O9jmwnI5nVBUMnKcfhegnf9zE1U+25aHZ4YEBSGhFE9SIPz3a/aWbtLGvcGOuaTbxkb4fKSjEUFclzztApzE93xP5+y41v4fHfew7XJhOUtTighc6OOXvd2WjArbEoujnfXSdZHk6VATlFY6eoa5DRxfsw1aFu9bbsNk6Nr2XI88iRJBXvn70ZgNWNApkhUbDo+C3t0y5CJQtJz6MeEjtMj2a5tFjikrzDXKm3kSxVDEVkgur4BslYH++oZFY/s1Tm0vEP0Jg7v6dEK9AqJRK+3IZM5I+WiXzB3YvbQQOiHayuVistzdkwZUAOGRvcHjGoz55Pdf/zqTtLd/YVsG8bNg1XA3w0+byFzihSRZ98B06dOBUAI/EAexcW78GKgRg1ojg1acynW2AMYN8wrNaob5sUyJA0PtOMMrtmW0Wk0vhuNi10PExXgdWDk9tIWTFs2QSeqc4EAM9K4J0uwerIIAraQ6NNt/qMzeLfC2UBsCsTZyA4azePLPHcB6Bwh+CdpnF/NMErJsf4m1/+/aP+85oeNasVAIsbZSxpt56JPkDFr4/nuXDDWn6WW37KYaUoNopMV6aZr87jV0Sj3AkNrI4zEkyzlLoquBWzOmklaValBnOIoPCnMqdwzb4DnGGKvaMTqQgQkxm5Wo66W8eTchuuPYD3QMqAqPt33+zKsnKtfc1GQ0i1JRMDBOrkM7tOSiDo1sKyTMS6bPjYvk/NH5BmNUBKkjukXJVqKnVCfJirCrAkbmRaIGkfYHVw/srcdFzuGb3kHT/f/3Ne/ZNX86k7P8GwJvfeVH8yIOMpmzUNUbI/mHuoq88GxuHS4NZ2xe8YGsAZgNUtaaNtQ5PSQNdnf3lpEoQCqw0tEky+6YMGq60oQ56H5TZZlxV/16FNGwUyWZp4p4cM+TwOAniNJBiTdfJcbY51Q+I7mi3VKS+jl15367z1xrfyodveg6Xy2gFJlACMNUV+r5kFHp5dmXSmvtOorFOtQTbIJaklLn1jVjLKLDtlPnPnZ/jP311F3JN5bQhkJIAJqZ091cixVu5hc+VGT0zmXMXBGv4ZlR2f4F+GMgKo7hFQ/4d1T+YzB6bZJr1/+jVZVITGlJUiIbX4rR6acDFNTG4+wfwNl9e/Dvd9v+c1tddTvpzUdEPIv7+anOFtYyM8XD+4+h9eJoJ9xBXvQuMwWN1zHAarH4OhwEo1TaBkQMq6ju/XHqUP2Wmcu+Fc/uzYP+P4mGDlFfxEoNvWU4wfRdZKYPo+lu8Tp9oz8/sdZ72DGy+/hU0LoltvhAieJOXGZhulgO3VTbzsuJfxrqlRXlgoYUhJhTBDgdXzuoHt5DtKntX4SdzzKCISsrDZMWuSazjDFGs7mNnHwXxtSXO0JUMWtoNwis7X85xx27s4bfNGEoY4yJRJVkchAYkFPxXKPcvIwrjm1hhK2xR9eWBV5ru+VsBe87zwgAA7xf+bW+DKuTyVam8Asyq8DZmcVbFJ9lPgKimiZo2JdO8MJ5XIaJ7dktsIy8hQMqHXN5v4nomvOewrrT75ECRXVozGIlmLENm4a06EP/kyHPl0QMhTJCvPpFk4ianc0qP9KrGKGtJkTXMEswMGB1bL5PfE8ROxtDi6WebuubsX/dGg0DajmJ5ioQ8w6VtCt1q9w5pR4ZG5lsmQumeOY7WeLxgcsxrQIgm2Ow7bE+uoN+vLjp1+9d6v8uSvP5kP/fpDAZPO7keap9OIS7C6ssBpmwWbc6Yg8oiF2gKu53L+187nV+5r0KxZtowtUVh0Y64owzdtbo7FuH32d4/6b2uyvWlWB8xqzxZMy3L/YHXV1JkyTaaqvRksqqZS3IqjS/C1GRb4asUYlcCJZha7ul9KoiphJQJNXTdMBrPcMxRw1Ona5mvznP3Vsznt6tPQ6m2MurBDngcKrH54YWWwWgHCUV28G/N+ajBTZiqUDIgcgdcjC8uCO+o8t32fKpHBrSu1Bh+48sGvcMX3ryAeVfna6o0I5RWTNDNQkszqPmRAgj1bgdWSWd0LWF1uKLAzTlaTwFifrPnxtM1YQ3wPO0u9yYBEjAg1xyXmS+Pp0MBquU/XC8Fky8aRBJ4jzoJd+V1Lr0v+WR2LKAoQHTCgo67frLJuSEloLQ1Wm5o4WzO6YlYPZiJj2HXREI01Ty+Rlcbpy0mBlBolvvfQ97j+wHcx1A8HtDYgANM1vcnO2ZWZpi0ZEJ+ab5GIdTAZ1WP4RpQZQ2enUQW8FQ0W52vzfOKOT/Dpuz5JWhP3VQsJrF5vpdnScBjBIhOziFoCWuuFXT1fbqCbBVyzhosG6d4JcGdlj+KsWo0JXZIb+mRWK0JjwkoxhDhLo5nup8nVmYdsMgReID1EO1ity3oiDOPYpJxgVASxXiLwTGpKsNoccCPu/3AcBqsfg+EfwqxOWkkislPlGLWeXV8v3nwxbzztjZxiiy55gTjJflivdoqxl1/PTU+7lh/sPogGFBd612ks1pvEpbmWHiKzOiULF9OorKrHtVwkHVFc28PrQ1uXimFp8rdg6GQp8uAqY1jQAqsTvk/eFxvkINgxFyU2ATATzeO4PrPl1Z+9K75/Bc/67Ue537Io++Ezq1ORFHWpveuZYj2dMuquvudqvrTrfyjoGgXioUinJKwErz35tbz9zLczkY6Q8yU4U+3eZPGVJ7ySF7ljjLpueKPMbZIpB3s0BVHFkFcT72cFm7hlrPSRlUOBkZ7DeEqwcw52yI5vj0u2XcLHn/RxdsQvCMYlQzOZk+CEAegNUYjeN//Aqh87a+1ZvOX0t/CUzU/BlWNrrh4Jnyl81NNhvWAsUy8FDNbl9riJxAT/fO4/8/Kj3wDAmmgbq2dQMiDy97d0i63JkwDYWfz1oj+qip+IbgcF7UDMFVUsAVarPVgzS5QbLrMl+ZzLfbbumC1zRW3AJipWgq/sn+Jbp/wt24e2B2Onh+oxz9fmOVg+SK5WDMCJWDI7uHWpaGNWHzmRIh01aTTE/cjX8zyYf5DZ6iyu7+A7w2wZWeIs78ZcUca4HP1ccIqLDMWg3WCxN2a170UZTdp9y4AApE2Rbyy4S8vxrBZBI9qMY0jvAz/ahxF2e0QSLWa10R2zOpCoiiSDJpQf5ti8vJaalup0be3FrCULT20QLMRDmNX7VhkfTttp/vz4P+cF42cCsIB4VwYWilldlffAyrE3t/RZ0M6OrA1KsxogNYkG3FLZz+3Tt2NYYm0LFWdVVmJBMvsy9lAozOqrm9M8b+0kX5j/DdCmWd0DwKMaNwZRhlEszv40hcdTUbIN8Yw9WOmO7Rc1ozxh3RM4ffJ0irVmkAtFEiG9B9EsKABKNho3DMXwZV70T7f805IfC7S0favtbB8wWC3ZuJ96+Lu887Y/x0g8wFShhuO2mvhqL9MRfzY9UBmQJCYwLEkCM5UZNg2L/GY5KRC1p1laBB2oafZiKaywQjfAsIn6PnEpifLQwsrP3obUBp4weiJbHYcSMVL24BpwTTPChRvW8eeJEppR5mChtqyxrTo3bT1KBvH9hgVWX5jcwnf2HeDK5JFomtazoTNArtJAM8T6hj23ZwkQIHjWE4aoh/sFq6NmlG2ZbYzaaxjRpBZ/D8zql3pJfrJ7H69ZENdoFnuTRINWfRAzY8EEYRiNm7R8H0tu7xIlgWa19FpzjcNgda9xGKx+DIbSrFbMak3TOCO5mSdUqkRwekqu2qMp9QYLfrw/ZjWgjWwlNr6FnCY2j7np3jto+TZ9Vy1E5lpCgtWe3uhJBsT3fYZdkaClxjaGti4VQ/YQJhqOpjGklXhwZnXt78AgxPPIe2LTHQQ7Zl1MNDYaljgMOykgdxV28VBdGkMNgFmtazpZKb1R1+sdrwvgo7d/lH/a/V1Kuk7Jj4XCrNY1nVec8Aqef9TzWT+UYQEBqtSLs6t88tHxomNexBVVm4zn40VCKjTsFB6QNzSmct0xdkA8/6ro8Oui4KgS7cuNWenU+sC//P4vSR75D0yVux/H2pTexHkbziPqbyChKfO7kIBXvQVKWnVRlN059ftVP3bc6HG86JgXcdbas3Dr4j31BtVxVwyDRol1Iz5G4l5u3HPTkn80HUlz8eaLOWHoXAAmo5L1EEmGouu3KA5hVgOcNv54AGbduxb90aAw01vseG0Q5ooqlgCr1fRSPCbWonSrA+ata5PS256vQZqoqHF1mQhvWLiZPzGue9TYqQJaDT8WnJt/GBkQCcpU59F1jdM3D+M3xXmdq+e4a0Z8v25tA5ZhBGOzi6LSPbM6G0liyU7+bHXx3qoMFqeL9UWgxGqhGJK+FxFgdQ+M70NjKCI+u+Ctrkm6VKj3IW7FMaUxX0trvc+wYgHYqpulroptXdMZi40xHB0OGE5hjs1f78zy7HWTfNy7F+gNrI5IEFGPZ0NbVxBmDNCC+zdTWfl8H4+P87pTXserhk4GYG7QzGr5jIyX59meOZpm8Sj25/JLysoF0yy+T9W3B8qsBhiRpWjNyxGTTe6Vvl/f9yk3xbM/bGfbjE97B6vnNbjXjrBPvlPjfUx0qXPB8EyimjxH+2VWp2ySdXGeP1Cb7UhyTMWm9Cb+9cJ/5YPnfpBizQk0mEMz3NW01p4oGwcbhuM05s7Bq63h7HXnLPkx1VTUfLNlgD1og0WZs+2qTrEzfx+R+D48f/Hzpr4/zZNgH4MEq8XZ+J9j5/PTy3/KkcNHsnFE6VYvXY8GOZE0S3UGKS8g841ROwvA/uLBFaUoL9txGf96wmu5vFiSnkSDa8BZkSRjcr+1onlcz1/2fVX3LGLEyGjyvobVtFR4hMzJOvERWS7mKw002bQbdfsDq39bm+G/Uwn2RMQ96ResfuqWp/LtS7/Nn27/G0YQZ7zWw56bseKMuy5x+Rw18r2D1cH5bsQwlHFsCO9pVk66Vrzuv0MVo7FRNqY2EpNHgBvm9OwfWRwGqx+Doc4Jra0g/vSRV/CvUzOsc92eN6QHFh5gf2k/5ZIo0gskSETCOWiKehaA/Co6fsvFG376Bv7x12/BN2VxFiJYnZKHsKM3e2JWP+Nbz+RV6yPsMw0yE+GD1S8//uXcPvwk3jyfY0grrWpwAa3xk5jXYlYPwiRnROqlVw3BwlxJM0xF0An1fZHMDIBNNCy/0woNwOdAB6xcz/daOpKeT4lY6EVayjYpysZNYb63A9pQrLWwgIBIgn/NZjh303p+X/961x9vd5r3q+L7b+h9gomyoNCApl9D0x3ma9Ody8wcEsVas2VkGOa4pCysxnTxHtwztzqzuj08CVb7gyrQgtHmEvHUAeIb/5OfzX1+xY8UquJdHo/IDGsQ46WHMKsBnrD+dLFU48CiYkgloyY2Ue3/H2b1mGzK2bZIhndJxpNam+/ZrI1LEHSAEiBA63dvlMH3SX73L/kn67Ns1KYWafMHhpm+3WYQNTgt7SDamNUAZ+8YxXfFmheB1dUNbBiOYxpLpKGB3EbnbEQtmmG8KQrX6criCa6RRISIoeP73TElA81qL8posn+DRbEWIRW2oDVW+ZNLR3C2mzGiErDT4mGC1UoGpMTBQueF2qXbL+W6y6/j3U94N4YChUNirgE4ps0DkQh7fPH7d2qc3A5W202xLisR3rqC0HWwU8H9KzQWOjuvQpYdWzbkvmY0Snz5ov+ktu/FlOsW+eqj72F7HlTXLFJ9klaWDWkErO7ZfH2+IzPUSrOC64t1r7NtUJMUfciApCWQUJS/+3hKNrgK3ddTSr/dciQYg9X3uZCNW8ScIZ5crvDn0R00/aX1jFddW71JKgBfQzzbD9GtnkhH0RtbKT/8Ol6446+W/EiLWW0S+4Mxq8X1j7HFHh5Pipq0XULipce9lC8/7cscmXgyAAlfgZuDA6s3+wYjsRF0TW8xq5eRATkUrG4qI71BhHwv1kSzADTIM7XaOyG1gytEBzeVAWDFWCPP/KG0eOeW0+EPWK5ai1mN/J3CWAcADfF3TKZ7Z1YvVBx0Myeu03T7kgH53vxdvGt0hFui0mCxT81qFbmKw6gmc3f13ncTh7zjXrH3ift2WUVLesjo8f7f0+Go2Bur1HuuO9/zxPfwvWd/jyMaoiniHware47DYPVjMNR7s4i7JXW4bBo9bUi+73P5dy/nKd94ClMFcXhX9UR/7EgZH7j1A1y5xuB226a00BtAd+PeG7lj7udEw2ZHAknJBHMMj92zpY4MDFU0vSZ7irt5KGIR8SA6AM1qUzfRZKGRpchDqxhcQLsMiEfRjxMx9EBHK8wYzggZkKLuAR57FlZmi/m+3zpcfE9qVodfCA1JJmTOgBj1jlhY7aBrNGQgfVd+F7ccuIXZ6iw1aYZVyXXnMlxxKtw5cyf7PZEk6LGQWAGaxrBMemtu9zra7feNurjPfRtJ6IZwwQYmZUPEM/LMlbsDeH6+7+dc++C1TFf2tcDqMCUt5LW2WGO4tTVE/NUTt/vm7+P2qduZq87hy+R2YACnAicbZbYMiftYc5feP/YU9vCjXT/i7jmh+TsaUYaUAwA4A2Z1Sw/u6LF1AGh6nX251s8VcKIRaY0KD1JmQwGk7WB1XH6vpliXYjydueZMnjR5OW5lyx8OrI4k+F4izmV3f5J/uumdaNJobJ02y/7co8Fqz7UH8+wvF8H9E+s678hxfDeJ76TJRIbawOqNbB1d5l71AgrbqYBlNVNdvLfquhYwuHcvM1q9VBw/cirN0pFobpqheKTlM9AFiH5orMmKM3PB6Jzh3R7tMiCxpjgLzER/EgNBWHEm3CZH+jHc6vqeim0AW2qkmyEy+UflOzjrN4KcoRPj5HawOupJ7fZkSPfr0LBTAbPa04srSleVGiV2F3YzXxLThvOkyAyQhUg0A1IuMNbMM5IQmpxL6by2Gyz6ZiyUOmDJkKzBYUf8fXPVOdYso8HfHr7vc2T0WTQWzmSDcl2308HYe09LkbJqLbC6dxmQQPNY+geVzUzf0zaapuHbGT48PcuzmtnALLHbEI37ATCFE4uZ1YausS6rNKGXbiptSm/i/A3nM2xtIRp4igxas1o8I8fIHNW39wKLiTbj8XGOHzsetzGMhkdUTcEMRBda5WitvGyjlGxb7qwKtHB9sV94xgDzIcmsfvrYqUTLF+PVJ1efQJa/S+kPAlaLpk0qIf7OvcsQpgLSg2a3mNVhNVOtOC+dHOfc4i08sPBAsIf1pFldqqNZogk90XQh1TumkJITxjXC0axWUSiVAt3vXhr3vzc13j+c5aq0fJ/K3U8Zq2gxq6NElHFsCLXxiLxGQ292JG+6YsgJvYHXBv+H4zBY/RgMBaYuyh/l2HwEp6cNyfEcmtJMy5Zsv5oRzsF8//z93BtpcsA0qOe776A13EYAWGTV6FuIL/1pa8/i1Qs5nlSuQL0Y6JF2EoVGIZBlwU+GrzurQhbHnciAuJ4b3K+451OU2svaAEbThydP5j0zc3x0Og/4y2qsqWh4jeB+RT1/IAaLAEMS4FwwdKHF3EHSoBjfIMDqMJnV7/3Ve3n5j17OLw/8EieSFX9flzIgO3M7edH/vIg3DYnEwwiRtTYiC58G+WU135aLpJXkR8/5Ed+59Dv4dcWsDqHgkEXLpNRj1ax8R+BEe3zh7i/wdz//O2brv0XX5O8VJrtUMm3OiG2g8vDr2GE9b9WPfPw3H+eKH1zBdbuvR1PjpoNKYtR16yW2jYp3osnS7+hN+2/ijTe8kesOfgWA4QAEGECBpq7ZJgMyEs8QzT+P6t4Xsaet4FiTWMNzdjyH9fapbeyrPwSzutW4OWLoCD52/sd45uSbgRaz+rwN5/G4oStwy0cyGQ3/bFoyrDgNTWNnfZZdC/cFPx4jvwjgUYBJsxlpSeD8/8Cs3jyaYGPiCEo7/46nTbyZB/MPAuBVN7B5Kb1q6E1uow2sPpRZDbBVGjl20uxV8afbXk91z0sZjqwTgF0IMiCbxrcBMGdo4K7ODD40snaW7dntTCYmSXiSKRwW+GrFWNd0+Zy3kdr+F/RUbEMLrLZClNtYkxTNrClcJjMCaO0ETK86UjbFjJPwxDthp0Jioh8adopzq1VOmXsq9ZmLVzTsvmHvDTz9W0/nyrmbgT8As1rTFk2NrB2KguYsOQ332lNey6ubw4y7LnpkgOChYlbLmmOuOtcRKzEZSbKR51I/eBlrDHmG9CEBAi1gpyj9ThSzOl9dXT/70FATGZGGuFbNDKdpo7TWm+Xu/E5+tOtHnPmlM3ntda9dJAMyEGb17ptg322AkAIB+I97Pspl11zGdbuvW/SRi7dczMee9DGOiD2lJZcyaLB6zQkAHPXr/wLA0ebAKC/JyF0oN4hTR1c13gBlQH5dPcD7fvU+vvnAN4Nz8ZH5ZWRA5J5meNIXxhwks1p8h5eNnMixsefh1deuCFa/5iev4XG3vYvvJ+KU/RiZeGRwazOjAVgdiYp9YP8yvjsK4NeJkg6bWR1JMG8YzNNktjrb0XTIcjFdXkCTxoPjbn/M6qSUAayEZLD4tp+/jcuuuYw7DvwIABejp3s4pRtcnUnz3aT0/an2DlY/bs3jePWJr+YJE6dhICVhQmiSD8m6s240mcr3d980CVZrIXqt/bHFYbD6MRjeEjIgXzhwI2dtXM9VI73JgKjuFECkKhKthhlOYZuRmtA5Q6dZ6n5TandjHfIkWBEJD6w4Ze2ZvKrU4JxqjRTdmSzmajkA0q6Low8GCJitzvK6g9fxyokxspTYu1BdMXl2fZdLt1/KRZFxkp5HwY8PTHPQHNnOs8o1zqvkmSS3rHu1CpVkgQCEKwMwWITWQTOvG6S0akfaYYFOIzo6CLA6pOIxLZPcQr0QgDluaW6ljzwq1GhpSjZszER4BfeEJZ5dzyx3DQgbusGa5Bq2ZLbQlOZNbhiO7jIBn5Da3LqZ71o/Uu1rmmQ4+ejhAp2yeNwQFXvuas9/+5p0bOKSTWQMKolpY+0cNS5cu32tznz50fcxOAM8UVwMG/Ic+QPJgGiaxhHxi2gWj2PfQgvEO270ON5x1jvYFnnmH8aESY2S5/cEP8rYGc7feD6nrT0eWKwlqcbEx5Uh5aDZy5FEi0FcaTGIx7TcouJIgdWOEyGlGhQhuKSvGm2a1SrOO1Lc01vu+ioRH0Zdm7Vulc3LMqu7N1jETjHRbDKs23j+o1nL28bE3/XgdOfnu5pSG03aQn+tl3UdEkesO5r1TpNtjkNhoXtZtJcc+xK+9axv8WfH/hkxyfizk2HJgIh7pLThp4t1mh1qfH/qjk9xxfev4H8e+gFRBQqHaOg5lt6E7vs4GoxmxLvWCRjQLpuSlOP88dTgmNVrmy6n2mvxG2NBU2upUBNJtit+lznSg9WshoD08JWd32R36m+ITn57SWb1c494Li+oWWQ8D32QjUG51440xX4/X5vvmJWYk/IlI+QXXavXSEnQpSDlRdIxk4gpSuRua6oXHv1Crjz9StZJY9l6JJz305BsvwP1Ob5x/zeCKYvVotqsUmlWaHgNClUnfLNpaIHVt38RPvtkyO1howSrD1am2Jnbyf7S0p5FxXoz2HMGDlaf9TrY9ETS9QIbPFFDG9H9i96Dbz7wTf7zd//JvtK+1tmpGYNZmwSrdzbyfPneL/OzvT9jk2RW78/VlvRYULma4UkIZ5D3LJCSKwcg+ko1cskpUfYaaEAZ+w8mA4Ip8o3VZEA0PxK+ZrUVF/rSwFytNR3SjYyWirlKiWZpOyfUHaK+35dmdUpiL2UtHLB6d2E3O3M7cWQeVDKHepoYGZd56LQk90Xqcy192y7jzDVn8qqTXsXZIyI393wNO95/nvu4keN57/Qsz841e9IeB3jWt5/F8659HhU3B4A2iFrqjyQOg9WPyXg0s9o0bYqGTsH0me1BBkQlzoZmYNSkQ6sVThc5K/WD87qBXukOoIMWS8HSYiSVzmPYgIA8tNJapSuTxYW6YDgMeV5o4P6hYWgG1xXu5xfxGBmjhO8v7xINEDEivPsJ7+ZD1iYiIJjVg2LsmBEY3grANn3/qmCdYnxbaJgMLpk5evhozmn4bGwK5/OFikO9uTI7puqKAymqiW0xTHOQjARcC40CRkKwm/xKd+wY5TCvwOpImECAHIFtGjV296DbrsKviTU2w3gXJOC9UWoL6vbB1bXyDgkFVCiw2rXi4ZrfyQJ30hbremS+uGoB2dI5jgSmQvrAweoyE/J50TSfew4+mnmq7pUvweqsOQCNbxUyiaaeX/TjjcPiPiz1DM6VGm0mTAMce117kvjn/t+Au1gXNCjW5Bmxp7iHXYXdoDmMRhRYPXgZEAVWz7bdvzFtMbN6bXItWzNbaTZibXrtf3hmNcB5R44xSp6XPPJZXpTP8/jKPP9rX8lx+iNLX0PJw3TDZLNTXDmf44aJi3nxMS9+1H9WzOpODIpBTLBNF8Q7MZqyoZYHr3+ztHWZMa7eU+ILB6bJz/ZhLOS4wTh/LBkS40+CHpZXx9TFlFank2Y7czu5ffp2DpZmgxHhWIgMZjM5Hjz36bh4Pjphfk8mJnnalqdxythJ2JK9mcj23mxYMeReuSEh9oLlDNKgzfBLArVFPU1UmgsOLIa2AJBY2I1HA81aYM/80oW474h7a9oDBKvNCMRHGXE9DE3H8ZzADHWlRsRCbYGZ6j7QGgz5OfHDZA/aqW2RlgSHoi+eMU3TepYCOW/Debz4mBczXhPXcuxw3oOIbEq9OT7DO375Dn499euOPhc0RnSbSqVCRJO5cJhn+/rTWv/uu1DYF5yXjYb456HGt8okslhz/jBTUyCeucu/CMDRFWlCHN23CKz+0u+/xIdu+xDT1b0tFno0PRjjZJkvjMlcY6Y6w3jKJmrpuJ6/5OTDkzc/mRuefwNn588AQBskWC2/j0a9SDazgB7dt6JvUuBJ5HmCWT1IsNqMslYyqx0EtrAcWH3Bpgv4wsVf4NjYcwciA6LknxZNhyzD8l4pqtUU5p4/5Uv7ZSO7H7Ba7mkliRnNlOpdyZweGoWGIJdE6+JdrVq97Wvjsh6eM3QcwPCbIIl/PYfMGUvESIaAd2zJbuOZ5QonNepdE7gAHNfhofxD3Dt/LxH5TpjRw2B1r3EYrH4MRkuzunVwjkgDqLzRW/dMHTBRM4ohX/pmSCysgFmt65j17jVxFbPa1OLEA+3N8AABx3V4KJbktxHBQNvTATtSxUJNFORZ18MdEGstY2cwJIBqWmJtHRXcsulQYHDMaoDfDq/n28kEY/YD7FuorsjE8nyPLZktbJIayYNKZp5zxHP4pJPiWaUyQ4ZIXlZ7L5ROY9QX71WYMiABs7pRwEpKo6N6d2B1i1nt4/kasRDB6owcgfV1j4fnc119dl9pH/986z/zhbu/gC9lHVwrDLBaFIrHJ8T4txHby8F85+8mtJj8el0ktF4Y62oPmeyOmhUioz/iwfjruOqeq1ZeUwBWW21awgOWAWmUiBgRNF88z/fNPFovXa3LdcWfSWsDBKuXYFYDxJMHMVN3cs/sg8HPKk6FYqPITKnaxqweYEE7dpQASRslmL4n+PHP9v6MG6e/gWbNUag1yVUavPGnb+THxb/BiD/MsCWBzD+ADMiobLzNezUUB31Myy0qjt539vu45tJrsOsbMSWzZiDf5aFxiGY1wOM2Z/hk9FNs9eZpkOZJ82niWp0TbnvboxoCQG8af3ZaZERtOujtsa1LsHqqMsV77nkmySPeKc0VZaPdSvTNZCsa4vnPzx7s+RqlWpO4bN7YIRgKAcHv9XpthtgRf4+Z/H3HrCLV7MJrMfnNsIwfAeIjAYsuHhXfRSfM6lMnTuX957yf56+7RCzP10ilsuGtqz3sFA3gQes+IsM38NAKz5oCEKNNsac1QmLfrhgnPh+A9Q/9AgDdyj2KJel4DrccuIW7KeMDVnTA+1lqDU8vlbn9jPfxz+f+c6Atv9Jz962d32JX/O+JrvkWaeWzkZzoaxnp2AjDrstwG5gzJsHqmS4nulQYEoDxouF8t9GUyB1Pr4n9/JYDt3T0uYY0oLQNm0al7cwNk/Rz7GXwN7+DYSFzRLMWTM5UKmJfORSsfuuNb+Xkq07m7uIPWubJg/SjUJEYgWiWYxsNxiNj+J61CKxWU0nlmkFaMasHdXbK72DUEb//bH43mqYFrPSlTBYt3WI4OoxZE8+qMUipHnkm3F3cxed2vYrYui+tyKwOzFl9IfM4aGb1NsfhJfkCF05cDCytwQ8wGhvllIlTMJrrBiAD0gZWtzGr58qNriWEFioNJjS5p0UzfU2RJyVRsKgD+DSaHsV6b8as0MJi4jVxj+t2b037YTuL6fv4msasIRu0pe48nFTsyu/igYUHKJVF479APJxpbZl7xqn1JOcS5ENAUjZ+rdhhsLrXCB2s3rx5M5qmPep/f/VXwg24VqvxV3/1V4yMjJBMJnnOc57D1FTv7JI/xghyqbYm74g0n1kwtN7AannA2IaNLrtnnh3OiMzapDAIeChiEXdyXXf21AZp+LGW9maIgMDu4m6elXR45eQYaa2yZCd7uQiY1a6LFwnPTKg9dE1nWF67YYgNcKUiyPEcyk4ZT4LVRT8+0IThC2aNvx8bgeQump6/4sa+NrmW71z6Hb5SF4BGXY8SGxSbSALEG2IiCVyNlbsxvZH/eMp/8G5PHMBlYiQj4TCr05GWDEgsI1hdkUauq2uoCYOk50kgPTydupidxpLv5YNz3enK7y/t54v3fJGv3//1ACjywtD2k+zZ7fYww+YmmsWj2VfIr/KhxRFIbkjtSD/0iYwsAEN6BdBBa7K7sK+jNbmuFciAMCiXaFVgORXwXCK6+HsemlserG42xV6RGoSuZbCuNoPFtvPgvtp3iK3/L3aWbg1+9tnffpaz/uss7nO+9IcxWNSNFktsz6+CH3/ut5/jo7/5ECPD4v3YNVcJilq8CBlDTf0MmlkdZ8jzMGUCMCeT/VHyS0621Eq51v/5Q7iRL8Gsjl7/Ds7kt7iezY8Ovpa/rbyZuplCn7oLfvmJR1+jJ7Ba6aAvB1aLa+3LrSyjpUI1B31fE6BVIAHSO6taRc3MAlDOde/h8eYb3swl376En+39RdDs0sLa12QTyPVd0Bw0s9SxbrWaKPE9u2W+FA1R4zWSYFvTZXujwXhE7OcHuxjPLecFAFDSYujGoHKOFL4GX2jejD3xfXYtLE/OUM3xmCSKNEMCNFeMI58O8VHWFkTNpVk5Hppd3DDM1XK8/Ecv59VZcY8j0QEzXdecgAnoDwgdVMVKXOm5UyQRv5kg4ch73KcMyIbMZm7YvY+vtUlQ9cqsvmnfTdwxfQd6Q+4ZfUxitEcyLZ6RY2vi3jyQe6Cjz6nGSMSI4JRzgPQV0UN8DzQNshta0gpOjc1SziJXEOf1bG0xWF1tVml6TZym1mawOODnTUVilD/LF/nSsW/DWXgC+3PVoDZV53qhYrTpew+mvguY1RWR287UF/Cr+RWnzFS40iNmoGC1Wp8v4CLNLLB7rryst00gpyjB6uwgwWrdYJ2n8+b5HJdvugBYHqxWUaw5bedTNpx1WHFGJElrrjpHNm4RtcT9mu5yGnSuXGNSk7lTH+aKAGkpyVbSdUZtya7uQwpEMasTNZEbOdHe5LT0SIJx2XieMuUeVO4NrH7Pr97Ds7/zbH564JcAlPwYSbv/Z65uWPw0FuPGhLYsW3+lUHtIRI8Q8w6D1f1G6GD1rbfeyoEDB4L//e///i8Az3ueMJ56/etfz7XXXst///d/c8MNN7B//36e/exnh72M/9PhLWGwOCLNZxYMnYVSuWtAOBjdMWNYjkxeQ9JzOnHsRADusiMkKTJf7tzAEERCY2ommh9rY1aHBzqNSjO+gmGQ0IqrHnbtETNjjLsJNjSbaLEBmG/IGJXM+YLmYNFccQzrN1O/4XFffhzP1kUhXCBOegC60CpGEsIkJyYdjDvR7fXrEmyPJAdi/AhAdiMN4MiIKBhWY8ckrASnT57OyTVRrLhWQphqhRAKrM438qSGRVEVcwsrfeRRoZo2Sc+TbPnwvlMtmuayYokjFyY4mO+u8x4wxMwohlyjH8aUgQQkLdfhlTs+Re3A81kodndkqe62VZcFaNgyCJJZbTsFopooSHfl9674kQCsblotWYsQNfgXRTvY1yhz9shLqO5/LrO5Rxc3CmxyJFitJAYGosGsQCzfbQGTwJqkNEattYBOdb/qDaNNBmTABe2GM8U/97SYa2OyIZxNiX3kkblykJD6nk1aaXwPWrPaSqADw5p4/xUzZUzL88h8Be+QIrJWFvtM04yD/gcYplOa1bU8eC7c+RW4+VMA/EvqDTzor8MeWoPxlPeIP3f7FxZ/3vfB6Q2sPmgYvLxyN1d8/4pH/efhRIRMzML36UjqSzUH8aKMJe1QzBVVXD0EF25Yyw8Xbuz6s3uKe3g4/zClWpWYYiOG1VCSLDrF3NfMYsesIrV/uK7V0nkN05BM03hH3eZb+w7y5KGjgM6Y1XW3juM6VEribKozwEaXncb2IYZ4J3fnZx71PqoIZMck69WNhgNorhhmBE56AWOui4WGpnnsLRxcpIur9tuYL/gw0RD0P1eM46Up8d3fgma9I1bivNTD990EsYYCq/t8L9sks1Qok8VuACfXc/nLH/8lL/7+i/FdcY5pITS4AFLD4gw6WubPO3M7O/qcYlZHzSjNqjgPHHNAjUs1ddKssmE4jqZBpSb+rrnqYhlIlZ81HLNNBmTAmtUq4iPowIheRNOg5njMydo0AKvLOikG2LSH4IwbXdgNgKNpLMzdF+hWLyX5+MNdP+SdN72LfbYgRliDlOqRudaYmujWmzT8pQ0poUV8i/k+ZT+86dTl1yeelwn52BRrTQq1RxsX/3zfz7n6nqs5UHuw9Z2G1UyNJBYxqzVNY01GGcV2B3TmE1/mnm1f4xvJRF/migAbh3bwoakZ3jszxzq5vfUKVtfdelDrDakJ2niPDUIrJswjgd/qct8ud9+4hzbsSl6vRIyk3X9tXNV1XjM5xtsnhti/0B1JClp7SMJKYPviGbATh8HqXiP0ymVsbIzJycngf9/97nfZtm0b5557Lvl8ns997nN8+MMf5klPehKnnnoqn//857npppu4+eabw17K/9loEatbQNrYkBi9Kho6cXeWQq07wGk4OswVx1zBs7Y/C0tq42qxcMDqbdltZKwk65tNMEvLuvUuF0/a+CRuf/HtrK+9vo2JGN7hnI6kseS9jJj5rsDqZ2x9Bn89ewxXzucwYoNjxowlxIjjjGmQpbTiKLNKAONSD67gx8nGB5cwjGQ2AuAZYk2dgNUE7riDAXYezj/MGeVbuWDjOrbqQvurU73jdiA9rFC67bl6juywAPczXgHf68y8ClrgScrzKPpxUmHqkNtp/n5ugQtnJ5nJdXfdQA/RsDHkGrUwtLkUe7ZZYyItGE5TXYzj+r7fYnnIUWs97IJDMTOqOSbiIrE8UFrZNE2BAQ3HbO1ng2LjmlFhDATQKPPUzc+kmT+NffOPPvoDULguEr24P8AizYqDLp+zNq26jVmR/Nb8fFBwqOKnUteJKtGLQRe0AVjdykvGZMMwERf7267ZyiKd7+QApn6WDNnY2E6EHQ2HpkwDxrQcjabH/nyVhtvgyV9/Mpddcxm1qmCshC6Bs1wEOpA+VHNw44fE/z3nSi574at5/NYRPvCcEzCPeLL4+cIj4LYVl80aKIPELsFq0/e5xa/wm+nf0PQW50CaprVMFjuQAmlnCo8mbahIsLpfUAyoWzZTpslso3vD6ZZpbNvZEdYzJ6+jDO80s8TBDvUa1bvgNjSiUhs6VGY1BBIzEzLX6GRtH7ntI5xy9SlctfcbgJjmGljIvXJI7m2OX1z2zGrJjvk0fR0znh3cutrjxD9FB9Y6ctrInF8kfae8MRISZE+nBlxgbzkHL7WWN6RNrrjmuehmFdtcmZU40wZWW0pOrW+wuiWZpaZ9WszqzvOOcrMFdo9IJqKZDEcjPTu2DtfX2CHHyqcr04sM6JcLdYZGjAheTTUvB3QeSPk2nBpRy2BNOorfFH/XoTIgSqat3rDaDBb/QMxqyXa3avOMJi3QGuxbEGenI70JnGZksWb1IELWGRFgXOov75u7twVWL1FP3T51O19/4L/JR3Pidxjk9IPMN2ynFpBudLO4bMM3kBT1fJpmHCMkws+yYUaZ03V25n9PJiW+q6W0ov/nof/h/be+nxnnt+ETMawYk80mW50maxKiDphMr669f2g0mh6utoBjOkIosw+9aoBUbJiLqg1Or9WZlNtbt1MiKtQ+o6ExLPdcPzXZ28KsOBPyWb/XyIqflbvPhaCtuSrl5Ep+LBQZkFSiJSs1m+/eCLtl7BwPJuCiicERGv+vx0BpNo1Gg6uvvpqXvexlaJrGbbfdhuM4XHjhhcGfOeqoo9i4cSO//OUvB7mU/1OhWNPtJKmknSYuk8usdaDr7tn61HredPqbeNXxf4ntikPICMl8QNd0fvzUL/PNfQc5wi30ZOCmaRrFGgORAdE0jVFdmIrpZoGD+dqyI05LhSG7jJHkgMbEgDHZwZwxDLJaiYdmlmfPq45eXHYai8QZikcGtrbhoe3/H3vnHSbJVZ39X1V1dQ6T085sDpJW2lVOKAeQBEKJJIQkMggjsDFgDCIYg02yZBDJn7ExOWMQQQYlgkQQiijuanOaPNM5d9X3x723umemJ+xuV88u7HmefWa2p3vnbtWte899z3veV/xevUyY7Jzmj7/b+zuu+vFVfFRKc+guGQ5EvBFydoWErtNrCfbBfCYJ2+Lb+Naz3+L3KCC9cRvL2ta13HzCzVx/9PW09S4DIKgVSMUXvkGfteQs3tR7Lqfm8pIt30iwWtyHMFn27IcMDtQcug0/ZlmtHQ24djVgtWA4WQym55bYqA0bm38//9/5wGkfoUUWboxGzze1RuYTDET7AZgoDmPZsxchbj7hZt56/FuxyqFqp4hb8gyaVsMYS7OyUxkEZmesH688+pV86IwPkU8tByBgu6jVqGnV1uga091uyUDTjAy75DqiDj+CfaUOtC6D1UtOAk2H+C5IikRVdeB4vCJp3zGWchJlLJ8rfgp1Q86V/5jM8cO9gxwvzW7atBQ6FtvHMqRLaYYyQ2yJb6GQUutZk1gdhlll1D73SxjbDIYPzryZo3ujfOuNp3Pm6g5xEPMEBLs+vqv6+Rpm434BF74IrZaFbotnv5adr8IxWRxZOLPaAasdZvXBsyRbTZErpMrzA03Tw9FClKaxZQwwGrS/y+eqvSSeM83Yf2Y1uZrCQyOZ1eBc+3ZdXLd4tkSuOLekixqXURZrcrkJYHWLZFZrniw7xurnQyd1n8S1yy7l+HyBLH4iAfdytCnRuU4ak8mChDkxBXjKyOcvLPfMlqjL64ZuoG94Kb8P+HkkvYPJ/CR9LXOzEsclWO0hgi6/P+jn0gzy953tvLS3i+fGngKgK7r/MiDq+nl1L62WmKe+SGPA6u6WCGPEiFo2XdK0cVti27yf6w31cmLXiQxEBrCkTFLFrQ4gT5VZDbCsPYRdiRAyYnQEOqbkHWotyxWNaoHLTfPk2pDz5SuDv6G45H14O+5lz2SuKu0FYPnocNNoGqbkC/0KrI5vczSrd9U5T6m8wy8vpe6qwaIcXylLlzyHap7krGD1xq6NHGf5CFkWttu5EIDp5wOd7Vz3x/fT0iZkceqxvtVcs4oahiYvXKPIUmaIM/IFfrxnHx887RYAp0Nkf8DqeLaIJjuUe8rlgwarxdjE3OiTt2L4APSXQXRnrIqtYkVsBS1lsebqkQP0CTCDvHMizi8mDdbFJeB9gDIgVaNikQen8TeEWW2YASKSTJbODVMsL5xYBlUcxmdUDc69DSKA/jWGq2D1j370I+LxOK9+9asBGBoawuv10tLSMuV93d3dDA3NbjRTKBRIJpNT/vw1h9rra5nVmqZxmuXh7GyOFi194LpEhSSa5G6boZaDHGk1/GGx6JpahcGRA9MoT+ZKNUzExiZanYZIDHQzRdmy98v91SyLQ60/fGD6TQuJjkAHpg1FTaNNS5EqlBlN17/HDrNastWStrtgdXt0ABDOviu1wTkNKsfz42yJb2FQl3PMJQ2nFl8LGhq2puErC1mG+ZjVj40+xr/88V/4vl9sSnqgcXNsIDrAGze8kUtWXII/GGYMsWlN7ltYGycIsPoNsRM4I18gaYcaYyKhwhehDGhGmsHU5JS24PnCYVZ7fHgrDQSrzSpYbXrThNd9iELPx8gUF/Zs6prOBUsv4PSui4nIdaPhxRHFrM7HObqjH9vWqNglJvKza5Vef8z1vGnjmyiWvI5BmmsyIFBNyItpLM8oZngTGXtwxvpxSs8pXL3mauJJsY755b107ZBWB6xukxp4upFxil4KrMbyEtKb1Crsj0Ln0eL7wceBqgyIrYv847F91bbFvmgLhgLr3JYBUQfAyR3ia9tKQMPAog3BeFKJst8I4Jd6eZ5m6uUte574+rN3iK+rL5rJTNN1OXZgvGqo6YDVnv3UVPVFMYBWmR+N58dnvEWZLG4bm59Z7YAWFf9UzeoGgNUtkrVTsPe/cK/AV00aJRW0gCj+NCJkcaBDgdWe9IJ1oQOeAAFPAPLis3k92FhNXGC3P8TVS3p4+eYvEpEH0vk64dRh1iiLiVE2XFw7FFgtTZo1IzOrGdnzlz+f9x51Pefk8uTxut8ur0I3oGMNJ+cKrKwsxy5HpgBPilmtDuqtsSYcsNdfTaskV0wWJudlJapCVNjT0rjn0htiq9fkWZ+XCdkddSAyIKrIFfKGiNriWvpbDk5PW0VH2Msw4v854BF75db41rk+AsArjnoFX7n0K1x71LVoBSXV5tI+pfI2yf5e3hHELkd5Wfd/873LvzdF9s8Bqwue5mtWy/kSKhWxtDxGYDc7JzI1WrM+wKDDVFJLbjGrq4Duv4yOc//OPbzA086ydvH6zomZxKSqVI/M090E+FVuWsw6BXvNnB2s/uJFX+QLmQgdltWcArknQK8E+f1BkZvtqbMnOMSC2o6kRpFEavN3mb/0SqPY/fFVGM8U0CVY3V2uwIEyl2vinlCI70dCtAXEs7bQTqnp0Rfu40dX/ogfX/ljWqSprRk7QE3taB89lQqdnUczQQsApeSB4ULqvpqStJGxA4QaAFajaUQladGnJ/dbzkXXdPrD/bT5ul0hWf61hatg9X/9139x6aWX0td3cCLx//qv/0osFnP+DAwMNGiEh2cozerp55PPGP18fniUvhKzApmzRbqYZjA9SDK9D4C8bRIINvDBMv0U9SAlYHJ033599BvPfIO33/t2kvpDrrHX2mVLnO7LY4Q28bMtdy/oc6/82XXcumSQp7xegjH3NAfftOFNPFzu4u2TCdZEBAg9GztMHWZDcp6kCdAaclEGJCD+3+OGwYA2ys6J+Z2ig7JF2+sSgOLRPcRky1rOShMjPW8r5/R2Io9bbX/AmCHAiszI9v36XDElDmlpggS9DQQCfBE+2NHGx1YO4on9sW4b3WxRa86qAM6GFLoUQ6eUZ3VbL9geNL3Co4Ob9uufSeXLNRIN7mhWk4uzqjOGXRZzZl96/jUuXSi5Ims0I9RaWUjz3c3fxD/wZczoY3UZf9lixWEQmJaLzGpwWvrJVoF9BVZrnirIo7Rdbdsk6pHSDm4aLKoIC3Aa2TmjDmplLYFpaOyYkK2Qts75a/sOzBTwQGJaYSPRtsJpge/U4mwbzUxhdYRly2vTmNUA575LfFUA/vqr6r+vXYLVE3XA6v29jvL/52hH5maC1Sv3QwYkoUAdy0dH2FtjsHjwLMnONtFdk9cK++0v4pjG5sXhrGA0cO2QRaBOeQ31/dCsvvOaO3nwugcJSRmhgtF4MCwS7OQ5r5cdpTh9reL37JmcW3bMAatLYl2zPE0AqyXQqxnZWcFqAGRXUhFPYzul5ovOo3hjIsnfcyyVzDq21TKrS4pZLf4PbS1NAKvbVtAqC+QT6aF5WYlJaU7dYkaqMlIHC1brBhFZZEhJyZ/OAzBYdMBqT4g2pKRKywEyEKeFpmkkTbH+XGGs5fYLbufc/nP3799Q7fxuga8Os1rcOwd0rfMcqGczk9MXRbMa4LiKuOeGfw87x9J0Bjv5+mVf5/VrPgpAu9k8ZvWScoWYZaFlRljSEsDQNfIla8b8c84qqgPYzXxI5aaljMOsnksGBHBd5nFKmH4HrPZ44wDsrdMd6nT+SLDaMkON8/Dw+EGRB+Xv6XE0qxd+ltqXnESThIyuSqUhhfGPRL38U0c7prw2BwpW10abLXJfX+sBYnsrzoVrv4PnxbeR0FoAKCUODqz2SBJTQffj9TTmvkYlRGoa6f3uOD6993TuvOZObl7/L83ruvwLDtfA6p07d3L33Xfz+te/3nmtp6eHYrFIPB6f8t7h4WF6emavIP3jP/4jiUTC+bN79263hn1YhMOsno5Wh8ThukNL7jez+ufbf87zf/B83v/QJwFIEmpIK4WKilXh9b3tnL5sgOHJhbNJAZ4ae4p7d99LmWE82gFoWS4gOqXTc96bI7j0y3zmqffWbSOujXQxzRNjf2bIZ9FbLuMPtzR0TLVhGiaaBIVXhcS9nS1ZUJty0LLI46WMx10ZEAkwTeg6MS1Vt21NhdKo88tJ7Au5dxBqlUZfE5LxPR87xjFqkGwFb7CxY9syuYU/DP6BbClL3Cs6DUpjOxb8+ecmn2NLajd5TSNvNNiY0hchqvSzjSy75wEAaqNWBiRgSZCsEfqbSvuwnMcwdAxLHK52LlA6JZ6P85OtP+H3g/dXNeoanTwrE9p8nBUdIcrptRi5jfgMX92358t5Hht5jOcmnyOVL7tiGDsjaoyjItL4UjPybJ/GLn1g7wPctf03oOfxeXT0YuO126dEHWZ1q79Vji/Ds0PiUF1lVptEDAlWN4N9VSOfAlXN6onCGKevbMe2PBTHz6E0eQYXHt1dBVndHptkA2U1jVf2dnNeZQuJsDhEdmrxKcxqUwtUWR3NBKuXnARrLxXfe/yw7pL672sTXht1mdUHClZLeYN6zOoVHQo4mSmDMz1CRgfl9FrsYp/YPxtosNjfvRaAvF5mcj8Mp0uVkqOnqhXEultqJFNYHrp7yxXWRddSyQ0wnMzPahJYLypZwQwruaCJGwv1EJD7VGerWNPnO0Q6h1kJaNiugtVij1IsYc3IsHMWGZCx3Bhj2RGKQME2G2qYPG90CoPKZRVxltpRy6yWYKYiO3S2tbg/Hl+UNjnHJpK76YnNzkq0bIvTO15McfJUBkyV12rVLqeDiIg8EqdkZ5SSARnPFCgvsNssLfeLgB7AJ6UtfNHGyIAA5PwC+F6XsThv4DyHLLLQ8Mi9oSG+IvWipiMOYLnUXt5R51xwas+pnNx9CpWiB1OTcj7NKESDk3+symUxNR+aUeC5+FZ8ho+NnRtpM0RnVash90+3yCuGKWSyaiM9gtej0yfZudOlFdWaFrKacM0cLfcsFwxcwOVLX005u2LOIpwuCzYet+ZYbYQ66ZOGwGVdnNnrdds4Rd6i3AcamddqGvii3Njbxbk/vYZt8W30HoBm9c6EILlEKsKgshFgddgWa5rfK+bQgcqAqCjl00Skjnuw/QDBal1nZOBEPvnsV3m4ZycAVnr/DRZrfYm8Tj7UOGwo5oDVqXmL4rNFKlck5HTQNsk35i8wXAOrv/zlL9PV1cULX/hC57WTTjoJ0zS55557nNc2bdrErl27OOOMM2b9t3w+H9FodMqfv+ZQzOoZvgWS8RPTEvsNVjumCLI6mLSDDQWrDd1g0jAo6hpj2Z379VmVPHutGiZpg8Hqc1uP4S2TcZbUHGDnc9p+ZuIZADpKNm2WhdaAZHnOkEzEgYACq+uzwxwXWssmY4sN002wuivYxUcCa/n3kTFipEnmy8Sz9Q/gDrPatqnYGsGge8COA6IbBiu0wXnN+dTY/LaNZWv4go1NtN5015t4wy/fwI7kDnJBucknFl54e/t9b+eG5L087fVS8DQ4CfRFiDlssNx+bcxXrbmKH13xI24+4WaCiM/5GlG4MacydLy6+Pu+ZHxBH9+Z2sl7738vX33uNkczDK9bMiBJVrYHKQxdQ3zHtfSHVtV9+57UHq6/83pe+4vXCrC6GTIgNcZRYWmyp+k5tk8DUd7/wPt5/x/fjm5O0B7yoimj0SbKgHQHu3nFyr8jP/gSntwbB+C03tM4Jno2VqmVkN4kg0WYAvKD8HW4/YLb+Y+L/oPnr+8BK0hh5DK0iSs4Y1W7A2q7LwMi5krQtskZJmVsfhOUjFgSU8BqzQ403kxooXHhByDQCie/dvY51C6fk1pmdck9ZrXSAU3ly8SzpRk/r42jo88jt/u1RAvPR9e1qsFiAw6QnV0CLEwaGoNDC+80K1QKrIytpDvYjUcakFY8DVw7NE2YH1UqfOvsT1EYvJZSxWZ8PwD1Sk6A1WVv4/N0LdRBjwQmomExT+YDqx3N6pL4nO2q5JKYg9fkyrzlqI9TmjxtVlDn73/195z/+3/g3lCQAt6mM6sBOvLb0DwJto1VpRVP6DqB16x4FZelMxRsk5CvCePSNFqkb8xkepDeltlZibqmc1rr9RSGrmaZTwLIgRYwGmCqJbXGk5Ko0h7yoWuCILTQZ8DpahEWaRQw0Rp4XqlISUU7sfB14z2/fQ/nf/d8fr7t53ga6StSLxRwWqpqVgNsr3yHq358Ff+34/+ct9563q18+NTP4q/UgLXNkgGR52VPboKVUfE87M5Uu/YmMmJ9jSmDRbeY6ODsdaOGzsfaWvlA6gkAlrXVZ6Ur4DXoyIC4qVmtmNVZLlx2IW894S1YuWXsnczNKODsSe3hzG+dycvb1UebgNX0n+owq3OW2KP31jm/OPKY8po1vNMsEGNCN5goJhnLjTkFt/2Rj9ibEnK4XTKHcboPDyKimgJcxVp6oMzqH235EVf+6Er+/Y+fAiBnewlHWg94XMVKka89/TV2hrZhA1p2YSSk2rCxecOGN3DjMTfil8zqRuZDMU2s4YaR2W9mtYpctsaX5Aiz+oDDFbDasiy+/OUvc+ONN+LxVBOIWCzG6173Ot7xjndw33338fDDD/Oa17yGM844g9NPP92NofxFhoJTp2PVP7fTnLGsn9/0bmZkPxckpTurGK8pGgtWA7TLBz9bGadQntsUpzaUhp5PgdUef8O1EM/pPpmb4km67OoBdj6w+unxpwE4SlZqXau8A8likr8tbOXG3i66vSJxmY1ZvaZ1DRd3ncy6YpGsLZLA1pB7YLXX8HJFy9GclcuzxCfm0a5ZdKtrnaIz+Im5CKIrJuSIYbBSHySeLZEvzT7vHIawLcbWaMMjxRqdyE9QkTrf3vSeBX9eMXbCltV4cxxflFil2rq8e2LhG3PMF2NVyyp6/W14Ec9CMNJy8GNyXOVly6NHbPRDqfiCPu4w6jRf1dG90cxqx4TWJqZnaZfP2WzPptO+6QmQypeqhoFuJjE1DGHFrKYOs1ol87blFeuFlEFw7ZBWB6wOmkHefMJ1lFPHsn0sSypf4qaNN3Fu6zuw8gPN06yGKfIpIO7ZeQPnsb5jPRcfXW3rPnNVB37TaJ4MSOtyCHVB+2rOP/rlANznEetah5Zgz2SWRF7cO6vidVgwDZ/780X3MfDu7XDJv87+nnZhztsQZrUZAjQ6yxXafC113+I3DbolW3LnHN4KAGNSSq0jLNehtDQACh+8/mxruIeBksWqUomJ3ZsX/LmwN8yPr/wxd7/0buyiGH/F0+D5Jp8t08rTKf/vQ/OwsYYyQ9x4542841fvgIIAqy03ilzBNnqkTJffL+b4QjWrzZL4nOYmGCb/z2tyaS5ZdS52uZUd4/XNsKvsSIsCZvM0q8EBq68Kxgmv+VdG8rvJyjz2mPZjuDh2ARdlcxQ1b2M7uOaIVtkhMJkdnpeVmJBkiB5TrhUNKCABRHRxD9JFMYcNXXOe/4XqVq9tW8u7Tn4X50dPBSCpRRunKQ8YLUsA8GQHuWvnXXzx8S9ONQWsE/F8nLHcGMVKCb/sfjPdBqsdGZAgmgZFO8GW+JYZEmlj6UJVAgStmve5HU7+McHGrg0ApOxtPDO2ma889RWemPwdQM3+6SZYLfZmG41vxCLcYacoWSWWSlb69POUKsCF7WYyq8W86Y76MQ2NsmXPeD5z5RypYoq0rj7aBLB66WkOszpRGgMqdYFFZ72VYLXua/C+6W+hQxXK8+MMtIp7N5YuOmvrfJEveihnVnFCXl7XRjCrZQEOXcyZkeT+S4+B2OO3JrYymhLP7yiteDwHjsMoSRlLq5DQdby5/QerdU3nb47/G955yjvxFcT9rTRwf3+ZFuNfRsbozrTXlZaZK7761Fd52U9exq/2/QAAC615Ekd/geEKWH333Xeza9cuXvva18742W233caLXvQirrnmGs455xx6enr44Q9/6MYw/nJDOQBPS4CCgTbSuk7WU2TfforBV92FxT+etIOEG2ngBnTKDVU30vsFhilmdcCS/183wACZiAwZ0ljINjhryVlzfkSB1ccVVJuYe5IWASPAPYUhHvH78Wkikd42Wj9BvWL1Fdx61Gt4YSZLDi+GrhFt8L2cOUABxPZ5xX2d3ramojrPLLL4ibl4QDuu4zjODS2jt1xmlS4q1nN1HDhjk0B6ow+Piuk9mZ9EbxVgdSg3uKDP2rY9xfjIajRDeAqzOntALU9l2f4NEGoEs9rRPhT3TLGCRzMLM9hVkjMG/hpmdYMBO4+vOs5cXMoMWDw9VF9/bSpYXXZvXLXhqzKEo5LtqOn5KZrVtm1XDWhsL21BE4qpqZ9vdNQBqwHawz76JCvl6X3iXo+nxWHW30xdyxpG+vToifnZMOBH80zyvLVTD3Pua1aH4G//DH/zIBesuxqA+ytxChr0eZJYNiSyNitiK7BLbc2ZY7PFfCCNkgFJ7Abp5n7A11HXwRfhHZNxfn3x//CaY19T922zsdWmh9orOiM+Qa1UbvVSbu1goj3QzmfHW/jK4Aj5sW0H9G/YsohimQ2+r+qwV8zSE/MBlXnZYfFCnEdGHuGxkcfQpcY7PhfyoWC7A0zYHrFuzLdXnd53Ouf1n0e46BJIURsKoC+kGEg8xPvMb1IpFeuaO9d2wAnN6ibKgLQuB8NHl2Qk6t5htoxU17l4QtzDkt4k4BBo84bx2DalYrqGlTgTrE4VU+xO7Qa9QIchx9wgsDoq2d2pQjXHUFIg83meqFgZW8kN62/gFE3o0qf0xgJ2wXaRO4bzI3zkDx/hc499jl3JXXN+RnUN2pbH8TDwuiXBZ05lVge9Hla0h7DK4tkYmwZKjaWL+FWHmRlsKLA/ZzieGWOc1nc8AHpgF7/Z9TCfeuhTPJP+JQAh22XvDnD2uo5KBa9lU9EEOLhMdgJNP099+ZIvc0HoNtblm6lZnaVkldiV2kF3pzhPTZcLdMhIEkfwNwOsXnIyHRb4LAvLrqCZcUZShRnEpNvOu41/OOGTtBUlwNroM1SgZUpXVyxo0hoUZ8jZzsPTw1dejWfXdXxwXObEgYNnVkd0sa9Y8rkvViwm9qNTSoWDw0hPm0n9wFnVIEhurT7xbwwbBkYlV9W4PZCQebrdKNNM4FRvO5dnsnSUPfvNrN6b3sszE8+QyIu8sag30Aj7rzBcAauf//znY9s2a9eunfEzv9/P5z73OSYmJshkMvzwhz+cU6/6SMyM2QwWuyL9AKQ85f3SSYIaZrUErJIEG+OoWhMdkgFkezLsmsOEb3o4i2TFPbC65A2yzfTwE7+4tuHslQxE5jbyVGD1hqL7lXfTMGkxREJStIWe3q6JLKXZdPQk6yqHj9ag6To75jE7x4/DISq+hDO2ehHwBOjyttBascjY7oLVN6y/gc9ueBsXZ3OsMURyNdeBo1YGJG0HGn54rGVWeztWANBWGlrQZ4tWkbI0pQxbFlqjgSd/bIoMyO792Jjv3nk3n3vsc/xx9x8ASNt+QoEGHHIdzWoxlpgETSdyCwOrFVNYx1uj2+sCYKfY1fk4sdZdhNe9n89tekfdt04Hq4PNcImuYQhXNatz7BjPOFq0hUoBSzJObMtLT9AC1WLaRBkQgCdGn6Cn71k0T5wn9ibIlXOMpcR18zlgdTM1q6t71ZNjT/LlJ7/MHwb/wFXPSxBe83EeSH5q6vuaAQqbAdANjmk/hlZfKzm7wnOml2U+kbB3GSdzx5V34Jl4eY1eexM1qxca4S5xvWwLJneI1xzt7wN4JtQenE/M+pZl7fUBgOnxlW0fILz2g5T9DwuTTZkjNQKsBsiFRL5mT+yfLJoTjuxMoxliAsT66FNfYkfkbZitf5g3n3R8MswghszXdDeYm8F2+iVDuoAAveY7RL7n1Pdw+4W305WXRmo+95nVk1aRO+75e9pi93G2/ue6UiAOWG1bUrO6icxqwwMda1hdEp2Eun/Y8QjYMrmFpyeeIaFrlI0m6QcDrwqt4ZEdu7ml9WTHYHEsXXAMf1X8avev+Hn87QT6v0a71liwusXw0VqpYNaAJl0RMZb9MVkEKKfF/Mx6WhoyNhWx7qUAtFbGHAJEvBCf8zPFitg3KxWP02VmuNUJOo1kAHB0XxS7IvZFBVZvT2znpK+dxIcfexV+lLxX8+ab4z1QyrKhZQ2+0lGUU+vZmxQSMFZFFC78ymjaxc5ZtYbrwQ6WyALSnsTO6l417TzV6m+lmG8lgvLwcJNZXS1eDmeGefGPXkyy5XbAZs800plzhpJ5ZdBFHycnfGH0nmN5UzzJe/ovJSA1i/dN67g5vut4VoVOIaaumQv+Ne3yPK78MpbOYS5aL+LZIq2aJImYoYbc17Am5nG2knE6Pw9ECiRZFOeukNwzEsbBA+mKXT3iMdCxwFoYA11FoVJga3wrQ5khd0w95XMZpLDfBC61vxtlkXcUG2mE/VcYrmlWHwn3wpEBmQZAdresBCBp2Awm0vtliuNURGWLZdIOEWm0DIgpEvmKJzeF1TdfKPmDkPr/uAAGjGsWV/T3MWFoZHffQHxs7ZytMulimp1Jccg8plDERnO3TQzokFXIRH4Iv6lTtuy6B7VCpYAtF+48XlpclNpQ8V8Tj3FLZzvbvWJDm81k8W0nvo17TrqFG5MpV9jLM6JDtJkP2INoWHUZTipuOOYGPrvu1VyUyZJ2kVk9kZ8g1iOe1bCdnhNYUaEKNpotjI90f4OfgVAnsYqY74aRYfc8LfK1cd/u+/ji41/k4ZFHAMgQaIwbszn10HN02wZK8RPIZxdmVqSAYc32EnF0e10A7JRudS7OyvZuNL1CojQ8Z+t3wBMgVSjVsF6bKwOi6XkKZYtBmbQ6rGoAy0uPXx4eNd09YNhhNk1MefnTj36a5/giRnA7T+5NcO53zuXe4qvRzHG8lrxezTBh8s0Eq+/eeTe3Pnwr9+y8h3BQsGhC3pBghLgFHs4RuqazUu77O0wPSzxi/f3zngS2bbM3niO8GAaLCw1NgzYxfke3+mAY6jXM1tlioWB1ppRGMwrEAv6qBIg33DB9ebtFMC/N1NysyNr409CfuPJHV/Le374XXemSN5opLItvplXGpoxuJmYc/KeHowfqCWKWxXNgNMJkd3oE21lRKrG6WGIgKqR4Ruuw6OqFLsdo+t1ca8X8GzEMPugrcHtrC33aeF2wwrlmltV8zWqAznWsKkqw2jvMs4Pimbn14Vv5bOI/uDcYxG4iWO0JdQppw8wobSGvk0MMTwNWJqT5oV0O0Yp8zhug7Qpwg3cJv9m1l7/vrMpSdkX2TwZkW2Ibj408RjwjJN4KZmMZzJ19gugQJE9MdlUkCnPnkIqMVKoY1ZzDrfOKY7BYXTPW90WxK2LdVGPNlrMUrSIlq1iVQ2uWXjWIvULKvvRoJseb/0Bx7CJG0tIgtiTOTb6Ky94dUN3rejfSLztH9o4/y3JpCLx9ND0jn5zIFKvFezdNY1XRuJShMygKtbZWBj03J7O6YHuIhJp0PwdO5w2JJNcVNfpj4nxQ72ycypfc8/Dwt8zwy5jLXLRejGcLDV/TIobsFill6JbyStPX1IWEYxwrO8lT5sGbxvaEBFF1UMkFl/dvXNvi27jyx1dy3c+vq+ZDDcy/xwyTXwUCJAPDDCXzMwqnc4Xa3z0l8dyWjoDVBxVHwOrDMBxm9bTXW1uWY9o2tqZRIrFfpjiqImrKqlmSxsuAtEsdyZKRn5V5Oz0s23LGFnbA6sYfNtojS53vPbk+8nacLz/xTSal0cr0yJQyvGD5C+hkBW2WJRxodXcfp05ZhRzLjrJctofVM1m84c4b2PjIh7g/4Cdr+2hrAlitgNi8BEbmvL9y08vid/2AZkcHyBpefBTpY3zOTXpN6xrODS5leblMxg40fGy1YHVnezsTtkiWrMn5wQqVKARtsWg33GXbMOnyt3BZOkM0ubxuG91soVh1npLYyLNagzblaZrVV62+mvzgy0mMr1vQxx0A1vLVsEvdZFYnOK57OQAV8g4Tod6YAp4A2VwBvyZBYTfZuDVgdX+kn3ef8m5i+RcDsF1KCTlO6ZiATrcp9w5fxL3WtVmY1W0+8ZxoRoYn9iWcAxCWF29TmdUzZUBWxARQsD2xvcom9QRFQUXpRzbZRGV5dDkAO02TLl3MuQd3TDCeKZIvWYsrA7KQUGD1dGb1AYLVg4bBax+7lRvvvHHqz0Y3wXN3O2yn+bq78hVxf9sDUchIp/oGsaoBPmdu4cKBPnbY2xf8mYn8BFsTW9mb3lsDVje+nRmgRxrEaZ74vLrQ6lkIeAL4JFhtugRWX5jN8b97B3nP8a8j6BUt3bOB6bZtOx1JulxHzEYXemvD8IAZpEV2KcUNnU5tYoaZbcWq1GhW2xTwEA00UQYEoPMoB6w2fMM8OyTWjqo8idVcjU1peEdmDE3THHb1dBagysntSoioJUHaBjGrq2t+9X45YPUCZUC+/OSXuf7O63kgLzovi96Da5efHp1tbSRsMU5/Rcz/+cBqxawulQ33PQwcg8Xq9TqmtwpWKxa4WjM021/VrG7mfNO0KTmIKmKOZQRYWCyJ9c9TVmC1+5rVtC5niWTC7olvYUVHCEPXSObLDtHGsi0++oePsq3yHTStCYz0Gma1z/ARk/JOuic145ynzuoBWxTgWhrs+zNrLD1NfN31B5ZIc9baPStbyvKNZ77BbwbvJOwUaxrvX9Neo1kNVXPRhcqAbKp8kZ1rvsqPwyFHWvNg44XeXj41PMqVoZWOvNJQYv+6RADSJUkaLMgzg+/g19y+cB8Ag0r7urx/46o9TxkSHDYauL8/rhW4uaeTJzp3Ytn7Z5ap9lGPBLgbaoT9VxhHwOrDMFSBdTqGoIe76JJVWa85vl8P1qk9p/LStS9lTUVMiRQhAmZjTQx7g12sLRTpLGkLbovRNZ2HX/Uwb172bYf56QZQYQbbaZEbzbKWJP7eH3Dbox9zpD6mR3eom0+e+0nOSF0DQNkNxua06JQyL6NUOL5NLOr1dKszpQw2ELBscvhoCbrP2GmVLXVp5jZYBBwwwm0ZkMH0IKd953mcN9CDDazQh+ZkVouxiURVsL4be3is1azuCHvZa4trlhyeX7PUSRRkwcYTaPx86wr18vHRcY6PHw3Mb1ylQlWQTQlu5/RGgdVTmdV9LbO3BtcdV6lqGOjIgLgB2ClmdT7Ouq4OrLL4HXtSM80zaxmIlULNs+uq6VeVIdzmb+P6Y67n6Mi5AGyX67C6VjriYN4tGbpOq6wbUQtW17CG2gPidc2TYttYHFv2EvVEIuiqANGMduEakF9FPbA6ZIamsK+bDVaf3ns6V/dfwPpCkXBJHJKeyH6TV935Ujyxh2nzyDWv2QaLCw0FACuGfengwGoTmz+ltvHoyKMOUAnAd2+Ab1zDalP8nvkOkEXZ/t0djkFagtUNMFdUkTU1RjwebOILNjyqnXMeCaZ7Gg2+ykNyjzwe6GZifrBarms+I0DIFvfP50YLuMfnsJe17AT9rWKPmE0KJFvOcsLXTuCkr52ELe+nL+Dy8+mL0GKJvbCiacT0iRn5bm0nS9C2hcFis5nV7atZUxIgoeYd5+nB8SneGGHLRmsieJjwR/i7rg5el3oE27bpkSzA6YUIBXbalRChigKrG7RPTTOTA+iM7p8MiAIpgiXx/rK/MQxJFbquMa6LPdInscr5ZEAUs7pcNhzNateYwtMMFgHW98UcsHoyHwdqyQReAo5mdZMNyGoKJMvagxihTWzK/0SMr2DioYyhxukmWK1YtG0r6ZdymbuSu/F5DIedu3lYPJf5cp5vb/o2+dA9NczqJmhWWyWolBzjes1MzujAVMQCn22Tx+vq+W5K9B5PVtN4IrGVQFiQf2plG8bz43zswY/xs32fc+8s4G+ht1xhtR6kN9QLUKM5vjC8o2AlqRhFDNtuWAHuKH87L8jmWG0EHWb1gciAqNwjIvPhgv/gc6ElYWEWu9eQ82Q/mdW1YLXKhxopb6Q8fsqGyCMXeiaG6j6gzsWN1NL+a4wjYPVhGOpgM91gEX8L3RJwjXiG2Rdf+IN/xeor+MAZH+AkmTPkPeGG6xyf3nYMP9g3xHVj3gVXGkHInWQLBmFNbsxuAE66TtwQ4Hyg7QmsgmgxfW7yuTk/VspKlofLEiAAnbJlZsww2BgUv3f72OxaiGHbIoeX1iYwq1vl2OKUAZt9iVxdQPGW+2/hlZu/wkN+Hxn8xFwE0lv8LeTKOXIapHSNldo+huYo4Nyz8x7uGH2EYcMgReOZ1cd1HsfbTngbV6+5Go+hM2qIOZYdnp9Z1+Zv440b3shLlHZv0IX5FhVV7qOCIhlZqKHE9E05rzfo+XQ0q8U61ho08ZkVbC2/oDa2C5deyL+c9S+0VM6sOaC5AVbLNt9cnGXtQeyiOHg8Pbpjxls3dGzgLRvfwrn9FzqSFrZmVP+vbkSdA/gKp71UvNYR6OADZ3yAtsKV4u9IsLqBTNIZoZLxSnEKIKzYFtFIEltpWQLnrOpCqywGs7p63ZbHlgMwkhthJCcATAFWy/F7hJZ0M+OSFZfwT2d8kPNyOYxCnN6Qhu2ZYG92O5qeJ2aow9khKAMCVQZRToLVB8msbq1Y6GjY2FNBnKQws13qE//+SKpArjh790jZFmtGT6SloeaKKjoiYs/UjDTjqf1ba0NmCFMVCRtduJTFtx65f2tmnL3z7AXqIGvqfiJIUDjUWEapExLYsTNjLGkVh+/Z9ip1mC1ZJcJyvXXd9MsXwWdDQLKrg8bkjDZwTdN4xbpXcKl/OT7bpqx58TeYHDJvdKylo2IRsyw0zSZZ2ctIquB0cYVty11972nhDXVxdyjIg3aWTClTZVZP00uvlQEJluPixQYBO2OGwet7urh230+d16rM6oWB1c71k8xiu0EMySm/wyvWIV9BgCiJ4tzM6tUtqzmq7SgqFa+jWe0aWK0A51L1meyM+Gj1tWKVIwSNFqBa4KpUzObIWdSLGimyirmT4NIvi/EGeshNriem19xzN2VAzvo7OOfdcMJ1rPEJAH1Eanuv6xG/V4HV6rrZtkasGWB17T5cylbBak9yhrdN1BtlQ3QlK4tlCrbZPLA60sMfA35e2d3KptJXgal7grM/aQH3ijX+GGfm8/yvuZpbTr8FgOUdC5McU1FGrB2tltUwGZBqp0POKQAO76enGQid9K5AF615ab4bOPhc6MrVV/LfF/yE9yrS3QEyq/2GH68Eq81g4+6r6iIoSLB6cD8wNYdZrcDqJpNY/tLiCFh9GEZVs3raDzSNEywP52RzRC1rv5jVTsiqd9njQkIvQZ2IlmPXRJbybOaAdSKZKxNshr4rsM3z2ypYHa8PVhcrRWzbppIVSaKupABcjM5gJyagYbPaFInMbMxqEFqIOdtHa6gJMiASYJrQNTq8ZWybuoYEmyc380RhhJymkcVP2Ote62vAE3A0ekcNgxXaEPvm2KS/8PgXeN/Ir9nqNYUMSIMTrbWta3nDhjdwwdILAEj4xDWzRp6Z97N94T5uPv6tvCEuihS+Bm7ITkT7KAGd/jHQygvWrVbJs1eytIqeBj2fjma1uGe/3PVLvKvfR6D/KwuqcK9uXc3lqy7HyC+tkdtw4brVGCz6TYOgLhgHT9QpQhzXeRw3HX8Tp3WdX8PwCLnrEq3+z1LH98+jf6bifxq0gmP81eJv4aVrX4qdFO2ULbY8/IZdBKu9wSronBlzXu4Piw6S1lgKTRf3zbYNLlhdc+hvBgOrjsFi1BulIyAOk0+NPQVIGZCDAVgbEf4WR3/z/H4NTZdAieUn4qa5aCNCHcpyUnLrIMFqA2jRBcCktCMBkAfWsKfiHKJn6wCybRtLXre+WEsVrG4gs7otIthXKUNjaM/CpECmgNWWWAPNRhsZKma1ZIZqnhQjqRyF8uzAvo0t2E34HDBMd8uQLNjOuzvbOfM3b8UT2gTA3nj9+5iTgJnP8BOQe0AzmNUArTK/9XqS7BzPTGHPh8wQ7zv9fbzDuwEN0N0sVs4W7avQ0Lg6maY1cza25eeZwaTTxRW2LDyN1kOfIwLRJQ7AP5mfpFe2808396yVAfEV4+LFBoHVAV+UPwb8PFmKOwCXAqtHF8hGVNcvKj/fMImSmigERKErkBdjmk8G5PMXfZ7vXf49fHZPjSSaWwaLilk9FXg6tmsVmefex0t6PwFUn81y2VwcGRCY0t112dpTyQ9dQW7fS7iy4zNYxW5O7ZPnE48fPC6eo9pXwQXvg0ArJ0aXc++uPXy9+0IA1naL9WSTNEBV1w3bJOjIgLh43QwvaLKQVsw6utW6J8XotILvuQPn8j8b3sl7JiYp0ESw2huiH3F/0pVhYCpYrZ5JHb97zGpVlKrxIFIyIPsSc++fAKWKhaXLfLxiNWzdSOo6dwUD/Dy1lZ6YWMsOhFn92Qs/yz0vu4czMqJYaIW6D3psMV+MdZ1LKEnJsVxuYQx0FVVmtR9TFqO9DcyHorIrJqdVAHte744pn/VGafW14iuqs+cRsPpg4ghYfRiGMk6sx3z+W9r43PAo/bnovA7utTGeGydRSFCWC23JFSMyAVbHtCxly14Q4LRpYhNvv/ftPJr+JkFlwuHSQ79OSqCc6tuAVRSAxL70vrrvveX+Wzjp6yexLyhkQjzBxpqo1IuXrH0Jf2o5j3+YiNPPEABbR6dqVtdqIYalDEhrM2RA5MY1qesc0yKqkPWAAGdzsW3KRhBddxGkA7qDYlzDhodV2r45CziqVdJv2WTwN9xgdHrsiJ0CQNfOn01hocwalSIeRMITCLsw3yK9XNHfy0db/0jQv43J4Z0L+pg61PkK4sBRbhRY7WhWi3UsJP9dzSjsVyGukq/RjnaFWd0ivubiAHT4BQi1dXL265fMV4tvmttawtMYwm+79218f+8/oXvH2TGtM0P5HEQrEjh0k1kNNYfFqsliv5Q7ylojtKltyDI5o7+G5dcMg8U6zGqoSoE8MyGKTEEz6AChi5WQFuwSz0U7yWoap3eV0RQjzPIRVd8fqprV6pCXncasPhD2vARg2nVxcHXA6kpJtDEDlPOOPumOWdpzs6U8aGKtXRJrrcqAhBoHVrf4pWGyrjM5vHtBn8mUpcSGESQomd++RjOF5f1oz2fxaB40zULzpOZkFV139HU8eN2DXL/6H9yXGQi2U9I00pU8pl+sU7snZpcBAfAbASd/1N1+RuX/W0mBaJ402WKlrodMPi/G7fE1GaQDAXC1DPCOyThXek/FLrXzzGCy2pln2fgCTdTZDHU4Wt8T+fFZmdVjuSqz2lOQa0aDgJ2gL4ZfjkHpznZJNuJourAguR4FjMWUhmq48WA1EZHXbkx7+PyFn+f1x71+QR9L5YpVzV639gOHZDD1mVzfJ9app/ZVDRYBiiVPjQxIk3VdnfxjjO5ogKOCl1BOnMx//lpISZyxRJ6dmtA5q8If6aOzYkFagK7rumdhVlte/KrzzM18SNOq96WGWe3zqQ7Mqee8TFbKRGASabDv1VyxRJIIslYW9OyUbiC1prnqX1MjB6iiPeQl5DWw7dn3KBXxbAnNENeyxapAoDHM6kHN4h3dnXw89eRBGSwCUCkTkN0sWrSnIeOL+k1KstAwNjnT52eucPAEw4cuaZyNJHLFpLxURQP04pxkt+nxlUu/wm9e8Rv6ctL741A0OD+M4ghYfRiGw6yu98OQ2HzbSe6Xvs4b7noDZ337LB61xYZo+VwAw3xRXtXbzY3LNHTvMNvqSFhMj8HMIPfuvpfR8pMENXeZ1bfTyd+PT/LWjvOxSyI5Gc4O133vRH6CklUiJA8knlCLK2OqDZ/hw2gXZlTtJQGij6QKTNYcgtRhFoRBTg5vc5jVUmd20tBZHREJVD1mrmPAYdlNMRxQidWoRzCrhxMFp9gzPdTG57Mtip5Qw4F027bZNLGJ3+/7PaVKifHu57HH7sBbTsHTd8z52Yn8BNvGnmZSmngGwu7IgMTkQe3D/i9w86OXV0GaOUKB1V4JKlfMRsmATGVWK5a8phcWJHH06Mij3LfrPgpFoR1t6aY7chs1zGqAdS3rKSWPhcLAjLfuSe1h8+RmhtOTNcZ3boMnU7WXnetoVDtchjJD3L/nAVIVca2CZQVWNw6cqxtOG26VAat07JLFJJduFGuEqfuImlJ/2ON3l4muQh3mJSNdxYqoAKs7Ah1cs+Ya1rWtq8qALBIgfM0d13B1q4enfF42thZBAtQvOnYFPtke6Wob88FEYDZm9QFcS/l/7NDEIXk0JxnRtcXAcpGlUktytu6RkVSGcnotldxS+iKxGhmQxmm4t0jD6biuM55Izf1mGY6ZbQ1DzNvoLhu5nhn5OGf1n4W3sBGwFpRPpgpl92UGgm30l8RaYBti3ZiNIa/2dFP3E6BJgJgEtvokky5tFvFQntIKni/nGc+Nk8qLdWNRwGqA9jUAHB8U8/vJwVEsW+QAYcvC629i8S3YQauUMZxMDzot69ML0+f2XUpx8lSCeheaKnA1qGVe84Vpl4x4VejqDIucoVSxmcyWZv2sioxcvzqVPJoL3UmxqJhjkXSFs/vPdgqo80U+m0HX3DOqB2aQDFRsHGgB4OGdYp3vCHRwUtfJFHNdNczqJhSha0Npncv844KjRL6TkvIqJ3ZLRnEz904pD0VcFDDXShmQ50bSWJY9Revbp9Y0t4v3jslihjP7zuQtx7+FDuNEAHZPB6vTYt5XdK/rZKTaCIZ7aZdrru6dZDiVd9jMat+0Kj7CrjGrWwC43pPgnG+fw/bEdjRNqzFZnBvvGEolnU7CRjKrO7xiXJN2ia6IAE4PhFkNQD7ugMJmg4pwn330s3y4O8Bej8F44sDAar/M9yxbIxBq3H31+1rwKnKont0vZrUKN4wf/xrjCFh9GIbC2mZoVoPDhIvqkwzux4NVkC1bIZlguaLB7I+R1HVShobmSc9g9dWLlDS8w/K7Du70+tt5dTLFqgBY5RYAhjPDddkUinXRptgzboD79aJ1OQDexC7HXOjZoepB19HmQsML5Gx/UzSrByID/Evey0dGJ1gZEolnPZ0uZ3OxLawmADtdQZF8jhgGS7QxtEq+LsMJap2sbSyPO2O79mfX8sa73shobpTuWIjvlM8TP3jkK3N+7idbf8IVv7iBT7S3krdNokEXDreRXmLyoGYaEnzb9+i8H/vyJV/m65d9ne6CeBasRnVlTDPqCSmDCj2/oKThS098ibfd9zYyhmDAumZwMY1ZfcGy88jvfRX5yZNnvPX2R2/nmjuu4a7dP3G9+ObENIawAsm83jxly2bPZI4H9j7ATfe8GV/XnWga+OT61khwrm7Umiyql8wgHzzjg3zuws/xypOPZl34eZw3cHa1vbJZLKdZmNXXH3M937v8e/z86p/zoTM/xOm9py+6DMjSyFIAdpgeBrxpwgFx2H71aaurDLdDFqxurGY1QI8tQIbBjNCpngpW5xmYB6zOFkxyu19LaPzv8Ho8rhgsKj3EhGEwkVwYWB30BOkKdhEwYlWmcKMZYs79mOT2C27nGONm7HLrgsDqZK5UzdPckp3xx+gvi/mds8V9mQ0IcMx/dV/zTNzkHHxNIsn/GxzmknSWDhJT5trv9/2e8757Hh+wHwfA20Rt6CnRsRaAHn0nRnArv9s6wfPabuD4iW4Cto3ubeK4vCFaLXGmmUzupjdWXwbkvO5rKQxdTZ+/tVokbJTUhhmiXQLmCqz2enSnO3EkNT/IowwqOysCePHFGr+HtkbFHCvks/OyvXPlHBd97yJe+MMXksnUyCK5VbTx1GdWn7ysFX/ft9kT+jD373qYFyx/Af982ucojl1ESG+CnEW9kAx1JoQM04VHV9d3r0dnbYv8i1uSRvWi6xj+5Pfx1uzTfPzBj7OsLYjX0MkWK+yN55w1DaumY9ZtkL+GWX1q76nctPEm1kROAKYyhj/76Ge5buut/E80gt2M7rfaCHexRO4Lfn8c28ZhV6tuh3LZW5UTdUGzGiCuVZgsTDKWGYb/eRHvtP8bYIZvwfTYkxBSeIYtTHcbVYBr8bdg2MKm3B8Q1yOeLZEtluf+YE3kyjmu+vFVXH/PTRQ0SNt+IsHG3N97dt3DAyGNnaZJPLWwPEjFMe3HcP0x13NW+3EAZPER8TcO79D8EaKSwKUZuQOS1lXGj6b/EM2/D5M4AlYfhqGSk3pY9bOmyenL+vnl8j/tlwyIcvENSbBTUwBMI8MfcxJBjydR1xxweiiwulL2uw/uSBAkQpawITaKolWs67StTF46lA6Vvzlg9a2jf+BlfT38Kb2To3vFeJ8dqlYjdU3noqUXcZ40McnhpS3kvgxIxBvhcrOLM/N5BgLiPtVjO6l5FrBttCYAOw5Y7QugazbLtOFZNxw1Nr9tuwKka5pGm9TAmshP0BPz893KeVjosPMBh0lRL1QRImhZwpjSDS24aJ+zMSckg9vRqpsjVrWsYmPnRvxFyV5oVBJoTgWrw5KxremFBa1t6pppRWVw4RJ4Mp1ZXWOIM/0gqYo1VsUk5LKskRPTGMJKc7k9Jn7/9rGMMy7b8hELmOhZqSHdQHCubtQBq0FIHp3Tfw7HdKzj+9d8kdsu/FenGIALhlV1Q90XqwTlaoFreWw5R7UdRaDWDGqRwepl0WUA7DRN9MwIpinlXGqThENVBsTRrI6Lr6pl90CAMrn29FnClFZT/Welmr2oXGCgVYLVsxjzjUoztQ7JqiTTeBmQrkAXAxWd7nKZeCo9/weAd5z8Du556T2c23NllcHsmvZmHMApis9lsviFx7/A39zzNzw2+rsqc82topIv6oDVkyUhhzaZLZHMz2S9qnXNwF9lbzZJBmRDocgZZY12y6Jbm5xSvFcdcF5p2+L3LxKzumM1JeC6wq8JLvtP4vk4v/3TcZw73iGenGYCTppGm9Tdn0gP0ttSld8o1fjbTEiywTKZZ6IZjcu/zQAd8owylqv6KHRFxFhGkvMbgL31+LfylmNfR480Aw7EDl7bdXq0xsQcK9p5vvrE9/nWs9+a9b3FSpHh7DC7UrsoS9mZsu4H3aXjv8rbpjGr28M+AsEEhm+EB3fvAMS9BWj3yXNUs2VA+oUUH3v+BJUyx/bF6JQa5Scva8VblutyMwu93ceS0zR+7dX43Z7f4jF0VnWJNX7TUMpZ03SrRmLDbWPKOoX7egXfifwE45UUOV1r7toBEOlx9oXWmMh1FcagZEAKRU8N6c0dGZC2stiHxkeegB2/5azkzwHYNQ+zOp4tUE6v4biC7JpvEFhtmEHHP6FgJRxplvlMk2sjU8qwJb6Fxyc34bUhSZCovzFnUNVJuddjEE8uLA9ScUrPKbz7lHdzeZd4jrP4CTdSesYX5R2Tk/xzysIuxxbU0Qviel3702t59Z2vxpBgtafRRth/ZXEErD4Mw56DWd3StoqMrpPzFEkkJxdsYlhllco2moA7MiAKrPYbE/sFVpdLPvfBHQk6afk4qzpbyO29ljes+bjQJK0Jy7YcALvTkmNqEli9o5ziGZ+X5yoZNnSKx/fZwWo1sivYxW3n38atutDNzeGjpQnMasDZXHtNsQlOB6st25qiC601wfDrqLajOK//PNb4BCi2Uhusu+FMH5tbwE4tWN3XEmCYNrbrghXJ6LOzfk6xKYKWTdb2u6MFF+l1ZEAUWJ3PxBf8cY9kFGmNAik8Uw89Ifnca3qZvfH528UcWZeK6n5wKVlQ/25BJForOkIYOqTLE+yepsFWC1Y3j1k91SiwXUr2REPi928fy9Q4zJu0hbw1sgfN0qwen/t9UJWJaIKZLTB1DSjOk0Q7MiCLA1Yvjy4HYIdpQnqYrmAXnYFOwpKpiOF11yDqYEKBo4Wk0JZugAzIm8o+fv3yX/OmjW8Sr9cyqysFB4CdjVk9lhZAU0dYXrN04w0WT+09lW/lO/no2ATJ/WQUpQqlGsNpl7Q35fPWF/OBnp+TWf3k2JP8Zs9vmMjsrb7oVnHEH2NAyoDsS++lPSzNMusw11p9rZzTfw7dvnU1MiDNYVbj8UPXMQB0a5NT8iFVSPXL9DzQTG3o2uhYiwmskFih7t9HpljBry2O4V2bEcBj25QKSdqCXryGjm0LuTsQ++eWyZ2g5+n3yfkYbG+cLJQZrDKr89U9qSsqAEw1jrnihvU38OaVVxKybfK2SSTS+LzD4xX3xdZLfOrRD/OxBz/myLdMD5XXGppBRYLVFcNFILGWWR3fBXd9EL7/OnjwP2mTa8tTQ0LGUBUFW5XEV7OZ1V3HgC8m9u/hJ9B1jUuPFTIc56/rqhZQm3S+E78ryjHSQHN7ahfZUpZ13WItfXowyZl9Z9I++UG8+14o3q/pYLhMSKphVlu2xc7kTizfJsCasq45Zyjbxmi2pEu4m2VyXwiExLOrMIaLl13MJ8/+NLmx59XIVLkjA+LICKVFV5fXymNSnpdZbZfbyO1+HZ8ZkflPgzSrMYNTCnBLpHHtnv3ovHeMnQ0fGpCyg0QDjTmD9oX7ANjn8ZBK7x9Y7YTMGTO2j1Ajvaa8YS5PZ7kik8GuhEgXynWL4tMjV87x5PiTPDLyiFO8b7hc219ZHAGrD8OwpWZQvfSs/aTXo9s2FU3jBu8PF5RcQQ3j1bIp2B58fheSZ8NDB4Kp6TUXxqxW7TvFkte9w5kKlZDkE6zqDFNObkTLrcFnTNW5TRQSTmKo2BPNahNb0So0Brd7TY4Pi7b4Wma1CkuyXHO2l7YmgdV/8sCPwiEsBCNl18TUFsVCpUBHoIOgJZOZJmg4PX/587n9wtt5WesGAFZp+xiqw6xW8x/E2DSXWnYUUDiaHXUMhLZVJCA4sW3WzznMatsijZ+wG+aP/ihRxL+bMMTWEJ+cG0RMFpN84fEv8PWnv45HslD0Rj0LDlidBdt2DBYB9iUTs3yoGgoYDkoAXnerDWuatrbPYxBZ9WnCa/6Fu7b+qe6YCiXTdcNYJ6YwhAvOHPT5xfpby6zG8on1otlg9aafwz3/DBVx2BjKDPGzbT/jv5/8b+LKsEZ9daPrp14YnuocnBesPgiAtQGxskV4GWwxTciM8L9X/C/3vuxeutTedaiyqkHuuzKbycUPjqWuCs65aevDFBmQgsMK2zOZq9tG/9DI/YTXfpA93s+K8Si2d4OfB6/UKk5n5m/nr410vuxe8V4VD8p57tl2J/+995UE+r8+JxOr2sUi/g8VzXDHHwDAH6W3XMZAkCyWtIvDYz2zzBO7T+RzF36OU8Kvwq8pqYHmaFbnW5byv0EfX2yJ0qlNsmuiOj7HlLgirlcwtDhFLqVZfVROsr+CW9H9ewhFFwc8vNm3lId37ObNrcej6xrdMTGHVM72+Ojj/Of2NxBc/nn6vQ2WAAEw/XRWKrRZUw3sFdt2ITIgAIWkyIEniBANuJB/y3W9Ve6Xlm1VJROnj0UCiD7DR7kg5qDl5jOgQErbgrv/CR74d3jy+3Dnu+kLtwCwdWKEW+6/hfc/eg2e2J+IemS1xG2G8PTQDVh6mvh+5+8AeM+lR/Ef15/Ea563vCpN1cg5toDo6N5AV7mMjc2myU2ctEysyQ9sGcNv+BkeDxMsyzWjGR4ejma12Keu/PGVfH/fB9A8ySndSY7Mo2VjeJsPVp+bzfEu2ji57TIAto6K+d4X7mNN5FSs/IB7BqOGOVVGKDvq/ChKZl7N6slsEbCJWPI83yBmNd5qAW4sN7agTqnpoXCYkDSuThEk0nBmtYd0Zv/A6rHcGEOZIbLyOc0QINLIs7EsPGuFNK0SnF+IBKVDlDL8RGSedkQG5ODiCFh9GIbSrNbqbFBmoIUOr0iWX+C9l+HBXfP+exWrQtESoKvftkkSJOKGzADQrol/1zAS7I3nHAOE2WIKs9ptJmKN9uyqLvE7No/MXDyVBIhJiHZNbkBNqrxXGXQe1pqiNXnTcIqKnBQVq4Jt21RkUprXfERdupfT47biLt7f2c7u8l40DbLFisNQAwh4Atz3svv48bBJ0LbxBZvIVug7HoDzjMfqSkiYhsmnz/80H5qsSCDdneJDT0gwJoayQ44m49bKVN28elHLrC5oATyGO0t3SCZwObm2ZFOTc75/LDfG5x/7PF94/At4ZWuzp1FdGeqZsitQzGDoBhcMXEwpcQLpQplMYW7NNXXNwrZiVrsE2KkDfQ0gFvGIRPOp0an3VCUxuYLeRIPFCA4YmE84MiCaR6xtO8YzDnhiW14GorpguYL7YLUyExp9Fn77Kdj2KwD+OPhH3vPb93Dbw7dx0fcv4jd7ftN8GRCYVbd6RhQUs3pxGJJrW4X27F7TQzI9VP2BGlcTulgOOPSaNv7cBMhC6wGBimoPV4UNFdNkQPpa/Gga5EqVuh4GY9kEmlHAY1SqhRuPv+Ht4IoUoFsFh2U4V7z1nrdy3c+vY9vkM/gU+Nro9cMXceSf2jWTsl1EN8fmZFartVaTa3LRCLsHoPiimMCpto9z+8+lr0UcIut5ZDjjy9bkcW6D1QrYalvFByp7+VxrCzFjbAoDUcmA+CULLxRcJGZ1pAe8YdYVxNzztj9AaMVn+U6HXEOaDB76Ql3iUCqfud6o+P2qG24yL/IRuxxiuS3MgGlf1bgBmEHeHE/y6wTctPEm5+WFyoBkShkeH32czUNPARC3IwS980up7XfIQlBYK2Mgvk8W6nebKT8in+HDLsh93s37Wiv/UEvAsC1WxloAGE5PMJ6bJFdJomk2Uc8iaVYDLDtTfJVgddDr4QXre0SOrTq+mgxW07uBNUVxTZ6bfI6z14g87JFdk+yZzJErVfAjr1kz5DaU30tJ5OG9IdG5q5sT7KkhJdVKKZrNNo2NdLO+WOSGTJFT5Xlv22h13R9JFtCwqjiCG52WgRYHGJ6o6cyIaln2TObm7HSfzBQJUsBjy/vaMB3+qd0iilm9EA8KFep8EJIyTUk72LDu3lpmdTYzP4GxNj7x4Ce4+PsX853dvwIg03AZkDA7PB5+5fPQ0yr2pMEFSIGoNder+6odtIdyDn4YxBGw+jAM2wGr6/+8Oyb0KydNSO7dNO+/pyrvAD7bJmmH3GFuAu2GWCg93iy2Xb91szZURc+2ArQiNx63wIoa7dmN/S3o3mF+P/Izfr/v91PeZmgGFy29iCjH0oOsvEd63RnTtFCu3ztMk87iXgKmQb5kOVXbO7bewfFfO5536hJQ94cxmuTI3GaKzT9RjNMngdh6utUeebANRZsDVtu2TXL1RVTQOEXfTG5sx4z3mLrJBUsv4NJ0Bh0wg+5sLD1BCVZnhgh4DVqCJjttBVbPz6wO2DYF3b0kcI2/gxemM2wsCAAnn56bwZyTAG3QDOKzJFgdbBDQ7w05DCJ1aPj0BbdiTlyHXQnNa3ahgOGQBKtdY5c6Go3V8XQHBVtgW3xqsVCNKZs3amRAXE5idKO6ZmbGOKHzBN558ju5fPlLxBhHM1Mc5k/qkEUAw+t+EW791XDW30GLlMKR2sD9kX7nLZZtcWzHsc2XAYGFg9XNZn1Pi5gvRo9P3ONnc8PVHyi2XbNMKQ801PzMTtRIqhzAcyHnhp2L86a73sQLf/hCoT07zWDR5zHoiYrntp4UyGROXLeQGa5KgIS6Gg7AXlvZzoUDfVie9Kz62bXx9PjT/Hn0z+SyNSzKRq8fmuZcxwFDSi+ZCQaTSacoPj3U/oQ0bap4XCzAyTXp/+V8fPbCz3JUp8iJ6jHXFIhSqGVsuQ3uHHMFnP1O/Be+n06V75rjDCcL5EtiL1Jt1QqsDocWiXWlaRDp4Zji1IJNuyEB1ma38itD34xgJvfI7rMhSTBQRBG7EmZJURaCpdRKQ8LjF2Xd0tRnsUsyq+crKD03+Ryv+vmreNeWLwGQ1KN1SUWNGCeAlxKaLQod9bx1AApSqtBreJ2OS1eLqrXPV2pwyo+WBMW6YOsZhtMCXLctH2Fdyc4sQtFmqQSrd/2+erhWkV0cZjU9G1ldEqDl1vhWlneEWNoWpFSx+fTvfoK38/8Itsn53wyAv4ZZDVWAUfNOkiqUSeTEWFUeGbBtvG50Z88VYUl8SA2xslPsiap7+4G9D/CLXT8laNbMRzfy7hpfrvFC9ezUbuQoW/acmscPJb6LsfZf+UxrTJx7GvUseEO8NJXm1jS8YNkLWHIgzGqZkwUkZJhqoGa1mkt7PR5yuf3rMHMkjhzDZR8Bs4HFQW+Y70bD3NzTiRERXbILAfmVrK6p+5pHSvoLjyNg9WEYSgZkNgyyKyjAr2HDYDI+f7s8wDVrruGy9uPx2zYpgo3V/amJPjPCukKRLk08uPNJgXzynE/yrYvvpRQ/hTZdHtDcShxqmNUnLm3FG32GQst3+PbTP5rytuWx5dx2/m20pG6kR5PJTHSJO2OaFopZPeTxkB/fzFpp5vbskLg26VIay7YwLLF4t8Wax15ulYz+yWKSgTYFVs+8v6Y0HIhE3B+bbduc851zeN7PrmZT10kArB35xazv91iSGRBwB0DsDYuixlBGMJd6YwF22DLJmgusdpjVFiXDvSTw7OhqPjY6zsuk4VcpO/f64YzLEyRgydZm2ep50KFpNeZrE87LqhCyd54KtwLSo/JZcA0UrtVolInW8pgAW0dyUw9rKpnP5JvIrIYqQzo7xurW1dy4/kYuX3s+APsSOVISjLUtL8dEi9XPuN1e6gvDRR+C/lPF3yUg3R+ugtUXLbtIaL0vBiDslSDSfDIgDpDeRNb3tHjlyhfz9ok4P9BzXPqDS/nB5h/UML4PcVaHes5T+0DmNwf0XMi5oUlDoF2pXexL76vKeABI6a65TBYn82I/jfnDNeaKHfs/nnliiDIjHg+WkWXP5NyFe6iCnHZBgANlzXRHi1zO4zbLImSG0DSbij7BcLL+mqv2AUMWOStuzjdHrk2AXcvbxTypx6z+t4f+jVO+fgqP5f8XgJKbxnLO+KJw4fuhez1LZAHJ8Il9VBVGHFkvCWxEI4t4kA13c1yhiFljphxWgEGTwcOkL8Q7ujq4YexX2LbtmCyqbjgFyNqVIJ25reJD3Q0Eq50uqanzvKpZPXfO4RQhbLFvZgyXclzJrPZRolIS9yhRrJ+rFeV65zN82HJ8mpv3Vasx10sPT/lRiy7JB0aWvQkxXtvy0uZVBouLwKzuO0GMNzsOY5un/kwxqxulH7zQ6DmOVZJZvXXyOQDOXiP2n3u2/w5fx6+wo9IfoCnMajlfHvkKfPdGlgQExhAJiX1SkZLUHIxaFv5m6/DLLr1dpSRb0vei+wYZSRVI5Ut889lv8oNdn8IXFNcSTXdnrvlb6CtXWB3oolerYihrpKxSPakqFalSHIyCyH4aqcPvDXF8ocjF2RwD0QH6DoBZrTqBgnJdSxFsWMfIssgyNKCgaZTtjFP4WEg4YLXUKi8YgcYWB3WDmJTG9Jkil94fGRCP5nNfvvavJI6A1YdhOMzquqrV0K3Aao9BIjF3Gz8IVuSHzvwQH++/DJ3GtnhMj9N9nXx/3xDXcAIwP1itaRqFkgfdNogi3+sWWF3DrA54DZbFRMVv6+Teum8vJUfwahVstGo7u8vR4m+h1SOSgJ0TmzhagtVP7hVJgkqW1SGorbWlKeMCaPWLg9lEKcOyNnH42jVeXdifHn+a639+PZ9sFxXZWMz9BFDTNMKm2CR2SgbFaZn7ZrxvIj/BT7f8hAdlLu1rFDt4WhzXcRw3n3AzrzzqlQD0xfzstCSzenIHWPVlcZ6//Plc5lnDqlKJssfFJFAxXGVUcnMbGTrzzRMkaIvvfaGWxo1HHRKyVbC6p8UAygzOkTTYts0HzvgA1yy7mVZ1Td0ChWs1Gisi0VrVJtaOdGnq+nvd0ddx4zE3ks4Gq5rVzQAEHMZaVUevPeQl4vNg27Cx5SIKI5dRyS5nVSg39TPNCAXyStC3M1iVH3np2pdO+dmiyIAU5gGrHQZWkw+1NfGaDW/k9Ykkw5rNnvQekbQXFLP6EE+U1T1N7Km+dkAyIFVwqC8g5tBgZnAGsxqY02QxKa9beyBafWYaaK6ool0TQLNl5NgzD9PJsq2q3EZeym241WUj74eWj7M0IvYEzTs262FbFQYNCaLbbh7MVJdAIYFt23TEBDu5XhdXtpwlX8ljSZai1WRZiyWyk6roFddNAeobOzdyXt8lrCqKsfua3TJfG+Eu/LbNcf7q/I6odvVmAGE1EQh2cXcwwKOVFJOFSXpl98NQUswvx7+gEiCW2iK+71rfuAGYAcZ1nde3BXnZT17msPwcGZB5mNVKBsEnz2g5j1tgtRiPjxKlkpg7szGrPZqHta1rxXMsn1Pd53JxxFOTE9VEu+6jxdcOlt8pkHeGInT45PsWA6z2eGHp6eL7LXdP/dliyYBEelhthAhZFgGZU56zVuxnWQmEDUTktWoKs1rOl7HN8PSP6MvLvD8ozge7J8SY+sMDtBa9tJcrBAJNLsAFWkE3+a+WKP/04AeJtj8DCIyhWkSS7/VG3CFiBFp4Xi7P/658Fe/1LnNeXh4S+/VcutXZiriWLRWrsTmuyqPk8+bIgOwHs1pDozPQSYslIMOCEW4YKBz2hvlZ9HTu37WH8Dzs8+mhGMxGSRTk3CByRXUlXSv27noyotOjamrrJaQ1yZvoLzyOgNWHYagEara14pj2Yzit7GdZqUwmtTBmNQB58d4k7smAqMPkEr9YXOaqNKpI5kvESKMrxpVbYEUNsxpgQ484pI3mprIDSpUSlmXhzQpHayvU7b4bc02sjixjRbFENrmbE6XxxoPbpcGA3JTDZZHgdLU3D9hpk+DARCXP0nYFqFfv71hujMdGH+M5WZFtbRKQrtjMk0uOomgbrLF3UJnYMeU9OxI7+McH3svH5PUKuNSWuyK2gjdueCPnLxWs1t4WP4O0Uda8wgCvFqypiZeufSk32Ks5uljCMl3c9E56DaUzb+bBpa8Qf59FB1GFwxDz+PEinbjDDTygOcxqAVTedPdNPKK/GU/0CfbNkTRomsYVq69gY+wyYkoDzq1koRYAkQeJdZ1izpW1JJM1mrivP+71vPOUd5JI+2s0+JsAJDpgtTh8PTn2JL/a/SuWdoh1a3BwOcXxc+j0rSRWkaCw23rVtaEKhXLt1TWd/37Bf3PrebdySs8pU352SMqAKOZ/sxlYteGLUPQEeNInANATuk44OEmNZoa6bvHd4qsZPDAGrG6AT6w/vT7xbw6mB2doVgP0OyaLU0FOy7KdfbQ9FK0pkjT+3nYaAtQpefLzMqsdqR5Az4s1xbXCpZMLTTIQGRC/0ztel71s2zZlW6z9ZkGsaa75A4CTQ26u5Djr22fxgYdeA4hDpJLZUKHAfeQS3HSwOioAi5QnB9jslID6VWuu4lWr3sOZ2Sbqzs4WYVEsf1VgGUE5n0KWAg+bOy4z3EmbBMqHM8P0xKZqVidka320YmOUs6Jdvm1l4wbg8ROwbf4Y8PHMxDPO/FEyICPJwpxt6rmKeEa98v9Q8LY0bmxTxinW+KBexq6Ia5Qo1D/rHdd5HD948Q/4xNmfISAL5B6fywXy6fM5JtaQC2Nr+O0rfsV6881oUvrjRccuR1Nr22KA1QBrLxFfN9059XW19je7CK1prA8P8Pude7h9lcjFz1jVjmloznU7vlsW7dwysq2NaYXjPrk86F5xfXbLveuDp36CN+5cxrpSiWCwyeCcpkG4m7VS0igQFuf2WrA6YEnQxK39qdYzo8Y3oz8oxjSXr0KhIgrkLZbVWPk9b4ikrvFL0+YnW+5wZECGU3lKc2ho18YLV76Qe192L++1xXNcNBt7Ph7wtaIDPq00r7xjbaiuEY8Eq8sugNUxmaNVJFlyIYx027aJ+WKYWqiGWX0ErD6YOAJWH4Yxl8EiwBWrr+CT+kquSmfIZuo7RNdGySqRKqYoyY05absnA6IW4S5vHrDmZVbfcv8t/M+mjxPzSMMXX8w9YNhpL02AbfO8FasByFbGsazqov6xBz/GSV8/iVJMaFlrLc2RAFHxnxf/J3fsHeSkxChn9Io58PieOPlSxdH4jljiENTX3rwkqzUkDj2TVpGlEgioZa2phCEkJ3B7W3PGpsxAskaefQgALjG0Y8p7HGMQObZQuDkakr2xADY64+b8UiCWZHfaLoLVjxdGOHHwx7zHfAIAfR75A0cGxKgmzCE3wGrJcPHLxEHTCwtqx0rny+63YXl8OAaGsn24NyzmmebJsG2sjklrpugcHJsqAyJZom+864287b630dMu7t8dj4vC2/q+WJVJGmo8k3TWmMasBjil5xQuXnZx9T2Lyaw+DGRAbOAXbZ0UdJ2IJygkow5XZvXBdBtIg9c+eaDal9k3jVktnrsBh1k9dR0ZyxSwZSGpOxRzivhu6Ld3yMNV0ZOfl1mtdCMNzcDOi/G5pg3tPI9xlknAVTfH65ILNE3jwese5JHrHyEoDRZ1lwyKASGzAXRXyiSLSUZzw0T84vdOZ8mrYqolGcxakw1Q+7uOBWDYsFnCGFtqDLtHUoWqSeaigtVinb+44uUFy18gXqpI6axmawgH2uiWv3skO0LvNM3qSckeXiIlx+hcC0YDzypmkKBtE5D5/nhO5B1KBiRXqpCew9i5mkeKoknFNbBaXJeAXqY4fg4v6/8nLlx64ZwfSRfKTs6huw1WTylyaBAVnWaqQ+kVpwyAJgCmy49bXl2fFxus3vm7KV18VWZ184vQui8iskp5zaJ+k9uvPYFj+8U1CqrzfzMKcNPWzSVFMc/Lurg+qqtlOFnAJ40fDe8irGmRbseYsuIROe3W0SpYHVJMf7dybscoOj4ll+31iuu1Yw6wuiQ9uVorlcaaP3pDjBoGf9/dycf+9HE6Qj68Hh3brq6rCw1bSm9VGgxW18oazUVCmh6KWa3AajfyoZh8voqoOT7/+M7uP5v7X3E/L+76IOFmkpL+guMIWH0YxnwGiwD+oFhMyrnUnA60IFh2Z37rTK7c+2PAZWa1L8qH2tt4dekXeKKPzwtW/3z7z3lk8pfENMnwdDNpUIw9qwSlLOetEmA1eoknBqvasxP5Ccp2mVZbLEJ6rJ9mhhGIQUQkf/3WID1RP6WKzSO7Jp1NOSKT5b7u5rWvtbWtBWCSCiuCIimurSRXwWqLsq0TbFKbWE9ImhpmB0no4hAeH53KYFaMGL9tk7O9RAPusRV2JHZw/977mchPOIexvbo06JwFrN6d3M1EMU4Fd1usFbOqgJg/nvI8YLUEA3xS16toG4SCDUyep8mAhCRQrxn5OSvw6WKaX+/+NZvif65hMLs03zStRutSMrGCXbRYp1JObGTriJj3JavElsktbI/vJlusuD+u2ghOlQHpCIi/H7dUpADDhc3o/l2s6TZrDOUWTwakbiyKZrV81uZjVh8CMiA2Nu+VU6lNafc5zOpFMnBbaKjrpsDqg3km5Pzok0CwYFbXAatnYVYPxvNYpTb04jL6I0tcBas75XpWMArzgtWObqQZxCqI713rsnE6HSY5ruM4VofOwMovYefY7IdtAw+mXP88fhfnm8cPuknMsmjziXF2d4qizHTmmmP8qED0ZoPV0hC7pGms13fw9D7ZvVhMMphIYcpuJFd0xxcakllNetghO6jOvKaD6ME2usoi9xjODjua1SOpPOWKxek951CcPI2ji/JZaaQECDiFZ8ckLS/AuKDX45yJhpOzS4Go7gefOnP53SqQSxkQrYSVH8DOHuXkubNFKl8mIFsMNDe782AqgOqPVaV75D56xfFL6A2soi+wmt5oa7XzpcmdD060rRBGnXalKgVSylXH1WwZEKgCloWkw+a/5NheumLi4B+0JXzTjO4HlRPKWJHPcNPGm7iw+3qgWiQcTuUXtwAXroLVOXsU9DzbRtPVjmNFOnPrDCX3zeuG7+Zseye7PGLN6DBFrj+bDEihXMHSxNobs6zGkgs8ATrkepQsJinbJUcKZL6cY3poMheyGpxPTmoa7+ps5zsDm9m3AO8OFQWZy5lF8dWNfCgmZURzlrhWw8n8gk0gC9ma8/MRZvVBxRGw+jAMy57bYBHAH4qS1jR85ObV2FEJltJzclOzWh34clTQvWMMJwtkZmEqFCtFSpIh3KZa+d1MGrxhUCYzuTgtgRCGLRaYe7c857xNOZL3SJdtos0FqwFoX4UFMPYcp60UB/0/bpuYsSkPdDUvyTq65wT+JQP/MDHJ8soOQLCHckWR+Dtjs21yWsB98zYZKokfzAyS84nrkR7fN+U9DiPGtsniIxpwaf4D//jbf+Smu2/isZHH6JVtrtsqksU6C1h99R1X89bgEwx5DHS/e5teUDKpCvJ581XmBukuW3kZX7v0a7y894UA5PA3zHhDDGiqwWJYJZl6gcE5tM12p3bz1nvfyi/HPtWcNiyVmMt51B5o54K2v6Mw8iK2Smb1aHaUq+64imt+ciVAjcFiE2VAsmNifH7xHKztg1OWtxLo/wahFZ+nvTXuqkbvrFHbPjlbLIYMiDo0zMWstipVQHMRZUB0rZrOHR+QwIXS2m4kU8eNcJjVUgbkYJ4JOT96ER1YglldcwCqTAWr98ZzUwr6g4k8xbGLWFH8Ry5ZcUnNvW058DHNEp3qIOQpsS+em/MQVLbKdAW66Ap01Rhnus2snuT8pefztmM/QilxypyybZlimRAilzRd8nwARN4g88iVQVHkbYmKItf08anOH29ZXFePW+DhLHFU21Hc7FvGF4dGWK/v5NkhQR659qfXcvv2l7BJafUeAjIgpId5/rLn8/rjXs96KefSdKZroI1uCRQPZ4boCPnw6BqWDaPpAuf2XEFh6CrOtWRRs5HmiuAUntvlejCWG3N+1DON5V0vpjOrDbc6WiQT0bQF+LxldPb96etPf53L//dyvrnpvwkq/VS3GfO1AGqgxVmnyoUUN955Iy/96VX870v+g1+87H/pCnZVDS0Xi1kNM6VAVAFa91TB9maGN8Id4RCXb/kKn3zok87L6rweUHtFM9aO414ivravAaA1Ncpbjn8Ll618ESBAz00Tm3jfQy/jK33SkLgZ8iTTI9xNq2XRZYh5ZPiGeHjnpFO0DCv/GpdlQCatAnHNZsyQkpe6uGe7JrJY1sw9fiJTRDPEe2IVq7H5mq4TNfx45HwZz41XdasXaLL4+cc+zw133sCvEM+E3eDCfdgb5t5gkBF/gc2T2xf8uctWXsY1a66hraS8MhqfD0UlMJ+SYHW+ZJHMz95dUxuFnCii22jN71L6C4sjYPVhGGqpm81gsVQpccbEfZyxfABDzzl6UrNF1RRE/MtJ3JQBibJUsjb8QbHwzXYAUiwPgA5bLqpugtWaNsVkEaDFKwCbB/dscd6mwOr+iryuqsWtSWHZFjeaCU5f1s/Y6JOcukKC1dvHOartKI6NHkdfuUwFnWATHZk7Ah1c3nosJ+cLhOKbiMqCh7q/tczqglvGUHVCyYAMZgYpS13tYnxoynvUMxCwLHL46Ay7l2jVgud9kjn0dEGCiRMzN+qKVXHanYKWje4i8OQwq+0SFSBIbs62145AB8d3HU8XIpnPa77GujHPxqzW8+ydA9xRCb2Or2pk6CZY7TCrq8nfyk6REG8bzUwZk09KmUT0ZsqAKGa1OHwrZvV4fpwPvXg9mi7W5PW9HVWwOngIMastqwY0XAwZkDmKNvkEzq7cTCC9TnwpcAwvTGd4V+uJ4oXDRgZEPueqWHEwDFjFrEYn5otJMGQms7on6sdv6pQqNrtrGEaqY0OtzU6RxAVmdZ+vleXFEtGKRqFsMak0jOvE2ta13POye/jRlT9Ck8UT17Sh1TMm78cy5UExnp2x5u5J7eGt97yVj/zxnx2w2gi4DO5IKZAVfrGfmwGxrk03WXQ8FRyN1eYeGCPeCG9c/iK8wAZjJ4WyxbaxjAOitygSxmIAOypUUTI9wiUrLuHtJ76dDTl5HZsOVrfSrZjVqd3ouka3NFkcTOQZTwtw9ihddmA0mlkN4PHTJQHz0WyVUaq64PbN0dF1QtcJvHnjmzk9Z8l/yqVcTcquGVYJ3TPBM6l7uGvnXXXfOpwdZkdyB5P5BH4nF3Jbs7pm3gRaneKjp5ThmYln2JbYVjXLhGoxcTEBnbVCAocd94uvtT4UTSLWTAlfGAvYUUqweWKz83IVrJYvNAOs7j8Z/nEPXPFZ8ffkXgAGWmXBdzLHaHacVHmctLGIBThpEH8UUlYiNMhgIuOcn2KWPMu41WkmyTUd8hKMGgJiC1lpPLrY44fqyEiMpQpUckvpKQQks7qx49O8oSndIvtrsrglvoVHRx4laclu8gbnQqYZ5GipNb4t+cyCP/c3x/8NHzrzQ/RKNr3mwlmqw9vCe8YnuKXzLCJ+UXwYTc1NAL1j6x287hev44m0KHyVjODirCF/QXEErD4Mw56HWW0aJqZkCFc86XlbPZRzqWIDJO2gqwaLy0piw/D6JVg9S2tpRgIEBj7apZ6T623W00wWX7XuJrI738jmHT3OdVetgcstKU0Sa65mta7pxHWNnK6zafxpTlshAPxHd8V5w7Fv4bUdb+X0fIGi5mv+AtklmC7ayNOs7RYb7uZhAZio4kPIslwxQpgtlkWWcW7/uZy15Cz0iDiYWemRKe9RyYyQAfHRGnKvLVeB1cOZYecgtqMsizDJmQaLtcZaQdvCdLHFOlhzWMhqGhFyjCxAoyufEc9CQWtwgqqKU1I7MCyZiJpemBPcUWCAZnsJNkMzTB3qy9VrtbzDj2ak2Toqxq7uoymvUdUlugnPgqNZPRWsHsuNsaY7gOERY1nZ3l411Wwm8DofWF2oAYQXRQZkDma1YmD5ok012q0Xp4UG+NjoOLGydJQ7bAwWpxUgDubQIeftyorO/a+4ny9c9IW6BouGrrFKFpRqtYRVJ1pPVD7TLsqAnB9dy0/2DvLyuBjzQnT4AWwJvus+t7Q3xXjU87ikJYBhJsiVs4ympsogjOfH+fWeX/PQ8B8Ja2JcmttMfsl0XCFlQEq6KD5P1wRd37GeNdENRBRxfjHAsN4NABxr7EQz0jy1L+EU7lslM/aQYFZnRkWXiG1XizvNlmXweOnGxLRtKnIMCiTeM5lm0/h2ND1DryXJBh2rGz8GM0inBMxHstU8UQE8cz2jJ/eczN8c/zecLU2VzaBLz0FNccPr30u+5Zv8x+P/Wfetaq5ptr9auHe7CFFbfAm01nQoZWiRz+y+TE1342JrVgN0y8JHZkSse45e9SJIgAD4IqyUjNHtySqJ5d/O+ze++6LvcoKnRbzQLBNUXwSi8qybGmIotY+d2UcxfWMUKxbbJ8SzElYet4tRgGsX64ECPrs7xD08Sns7ub2voA25EbhV5G0R/g49BbEPDUoZEL2QoK9FeWTMxDsmsiVyu1/H342toNWyGs/kN4N01BTglMni3vjCJDfUGhJTJKBGnw08Po4riLVprLh1wTIbKnSZ3+ku3Negv4Xrkmku9/U6OeFcUlAAO5M7eXDoQZJlsU+5ZoT9VxRHwOrDMKqa1bMDkZ1SaL5k5thTZ3GsDYdZLRezjBbC53FpavhjLJVgdcUYBWy21zEgg6pGo46fVk0yxNxOHKYxq189eC8PVG7FSMXZOppmODNMqpgCNI6piPcshgzIuojYFJ9N72FVZ4jemJ9C2eLOJwcZGhfgSdlofuL3dKSF70bCbBp5nLU9U8FqDQ0Tk7BlU2nioXEgOsBnL/ws7zjpHXhjgmVtZqeC1Q7r1bYp6n5Mw72l0dHQzgzhNw3aQ17ittxkFYuvJhTwatjgtV08AAFe3YshC11ZXSc8D1h9z657+OpTX2VzfCsAxUYz5qfJgChmtc8rkvjZDo4OwG97CTWDWe2Zyaz+4uZ3EV77EfYUHqVUsZwxGZpI4l03fqyNaQaL7QGxjo7nxvn9vt9j2RW6Al10h7qhuAgsJ2fdTQgW9fRQILYZbK6+60KY1Q4Da/HMFZ1QxnbSCKfKrD7EZUCC08Hqg3gmJNCqFRLV16Ywq6vr2Zou8XueG6kaUQ8m8gRX/ht3Jv6GbfFtroLV6kAfNcWcXyhYrcm1xOOWUZqay7IQ88a7X0tw9b/iCT83AxBW7GVT8xNWa5rb803JgBji/iUrAvjaNa1L76NnfZTXr/4U3UVZRFoMsLr7WJ7wennZEh/hpV/kyT1xZy9QZtMYi6hZHewANKHXm52QxRw5rkUADy/TQjy8Yzf/uu4GAKeg9PCePXzy6dcQXvsRTEpCss+N3Nv001Up02ZGpkgrKcm2ueTHVHhly7g/5FKHQU1xo90Qz8Le9L66b3U6VC0fAUcGxOVuLnM6s7q6jx7feTwAr//l67niR1eIAkmlSSD6XFELxo5uXnwfCm/Y6TIYz41jSXPAJeElHN1+NFFHBqSJ1yzSA2hQKfKFRz7NTfe8mb7+pwH486CYf1FrEZnVHUKm5LLxYT5z/qd56eo3AAZ/erqXcvJ4TuySJDy3cu424VGwJC+eub2m/H35BANtEqyuQx4cT4v53+px6UzgDU8pwO2vDIgCq6MydzJDLY0dn8dPf1ngQiUtTnyODjMVtm0zlhsjWUyiS28l3Q2ZLwWAF1IOuWw+k0WFqRkV8YxaR8Dqg44jYPVhGEqzei7SrNJCLBr5uotjbShWqU+6cJe90ca28tdGqIsBuSiVyaIZGbbPwqxOq1ZXy09r05jV8kCaT8DuB/E89P/o0SY4x/gzv982weOjjwNglPpYYctkpsnMaoB13ScAsLk4iZab5LrTRPvTl3+3g+ExAezYi2BW8o3ks/xzRxu/zu5hXZdIUDcNiXv3rlPexd+XruP1iaSrJoFzRbhdSLb4ixNTXr9g6QW8ve0yrkplKLkM8tfKkgD0tvhJIJP5Opq9CgzwWzYa4HVRD1TTNIddndU1dM1mPD676d0dW+7gkw99kmfSQianbDQ4QXVkQMQYlkaXcl7/ecQMkRTOB1bbFV8Ns9pNGRD5/64BxbpDAhC2jTS7J7JTpEnAxm8vgsFiPg6VkqNZPZYf45c7fwnAxcsvFofzxWjJVUxO26oyu2vD0atuMiC8EINFBaQfCmC1YuSoa3i4Mqs71h7Ev9UivtYU/uziTGY1wBrZ/bNluIZZHc+hmwnSlTFM3WwKWB02xEFyLrD6Fzt+wfU/v57PP/pFTNmOa7rlX9C2UnwdfRZKOfrCYt/UvaOz6kJ7NL8jA+K6oacsyqzSfDyv73mc1Xc2ILRTpxuKj6cLzWOU1gt/lIHIEsYNHfxjPDpU9T8JNlN3drYwPFWZqPQw1HRyLcb18gTahMChBAtPWNoCwGN7hfSAXvGKg2t0iRh7o8MM8NpEil+f+mHeduLbnJeV2eNcMiB7UnvYGt9KUe7twZBbMiAmSBnIdTHRLZguJZwzU20ooMmu+Ag0jVldq1ldlQGhkObdp77b+dG2xLapXUuLbUKm9p2xTTXM6kUCq30R2ioVNKBiV4gX4lN/rp7TZjGrQcw7KRu01ieuSygyDMBTw4JFGquoNW0RmNWtKwCNlZlJzm87jhevP8r5kUfXOGOJXC/c2MtBkELMEEskxrFPMqvJxR3JlHrMaiVvFNVcKvZ6g/RKsHooO1RlVi9QBsQBq6WMitcFsFqB6bonOac3hoqyVeb8757P8771PIoVWbx3o+vYG2GLaXJPehvRsFir5mNWK7UCvSxyEdeMsP+K4ghYfRjGfJrVIHR2AHKeYt3FsTYcvd6KWDArXhf1BqNL8Ns2PXIx17zjszOr5QJpWU1kVtfKgPzy/VjAHeEQQ50P8cCWvbQH2rl46QvQEsvxaBa2ZlTbKJsY6/pOBeAZrwmbf8G1py7F69HZFnw7X9P/nSHDcI91NUcs7zwOgB26zXEhAZhsGq6CT8VsCg0XtTZnCdu2SRQS+DrEoSxWmZhidLEytpJT7H5OKhSwXAb5azWrQTB2krYCq5MzmKUKDFAHW9fYOjIuGLiAS5dfimmL9SUxOT7re9XYzJIYc8PlXaYxq0/vPZ3bL7ydowNXAcxqHqsAfqtiNsfIcJrBIlRNDDUjzZaRdFWaxPLipYyB7JdsxgEt0AqKJZYdZ2PXRt59yrt5xbpXcN+u+wC4eNnF4ucKrG6mvqvpr4Lj9aRAVBGnmRIgUL03hdTs71lsBlZtzGBWK4PFQxysrt3Xl58N57zrwP+tGrPOH2z+AZf98DL+rbi7+vNK9aChWJvP1ciA7Etk0XSRC4W8oRqwuuXAxzRbeHzc2NvFTV3DaObYnGbYe9N7eWz0MbYldhJAygy4JQPSsUaAgeU87Pwdy6PLAQFW75wOVsv1wsDnyIC4Pt98AmzosWy+ePEXueWMd+H16JQtm33TmK+j6SIBTcptLBIY1tK9kfWyNX1L5vfiRVtzfGIWVbMappgsOmZ3mrE4skZqLZB7/onLRCFr86johvNbEgBqXebO7/cExMmqNBXIWYgMyL899G9c+eMruS8kcqdguMWdMWqaM2eObo9glaV2cHrvjLeqc1Sl7HPWDdefgxnM6qqcVkegg0+d+ykATus5rbpH6Z7FLdoAdK4TX0c31RShF49ZbQKtSJ1cqZ/+ucc+x3/++T/JqOvW7GsmPZrWGwIYTFjbAZut4wK0brUXkVlt+qFlQHw/voX+1iCreiw8sYe54IQ4UeTe5ZbEnaZB63L6SiK33+uRZvP5hGPoXM9D7MnJhwmv/Sc+0SI18hsNVptBrkhnuHXFS7hq9VU1a1m+ruHj9Kj6TdmUbZ1go8+gHp/jE6B5UuwcnxuzgirJEiAswWoz4AJY7YvwsfZW/jbzFGWfKDTPx6xWxCSPBKsXvQj3FxBHwOrDMKx5NKsBOv0iwcsa5XlbS5dFl3HJ8kvYkJMVeDedj4NtYPg4I5fn5JYTwTZmtJWqOKf/HP74yj9iDL+BtmbLgDz5A9j9B3TgttYWHm8d5Q97nuL4zhN59ZpbWDZ2NABapBd0w90x1Yn17UJfbYfXZPKZH9Ee9vHC47rQ9CKWUSRg2wTCzXewXt6ySozL9LBG2wXA7okcGWnSV5LuuB432nXmiHf++p2c9e2z+ENRGJW0k5ghb5HPSudelxmlS8KCiT+SHSFXztEbq2FWY0t93mpUTaLExhcIu8QKkPGRsz7CJ879BO22SDZTidmZ1WpsHpmcWY1OUBUAWExPYUQq/bfZWE4qWahUzBq5jeYaLLbJQ47mSfPcSJqc/Jll1YwJ3G/JBdD16tqZGWNlbCXXH3M9pm6SKqXoDHRyQpfo1lgUGRCYAjLOiMViL/+lMKsPdRkQfwzOeCuceCNc972DK5TUMKttbHandrPFrlknpjCrq5rVlmVTsWxG0tX1N4ynCm67wqz2M24YxHUb3UzO2ZarDowmfoch6ZpmtabBqvPF91vvZUVshfx9ozM8RpwuFsvXdBkQVUjQdY2lEgzYOSGuU6KQ4NRvnMo3B1+LV41rsWQGejdwRk6Moez/s3jN8gpQ1PAuvvlSjckiWeFrsGjrWbCNWzrauG7Tf7EzuZPVnWEifg8lRH4WqshrJc3UGh5Ol9TU/FBpZw8m8rMbO0vQJCQBu0jUxVxNgtUrW03sksg19qRnep6odaNUNglqi8WsVjIgYj96wfIX8NOrfsqt5986tftnsZ8Dh1m9+ZDQrAbokKSR8dw4ZavMFx//Ip959DOUJPmh6aBwRIDV6ywNQzNIliYIBtJohhhPl7bI3SJSt/qxXb/mC499geOP/TOBvu8xav6gxiy5xb3f37aCgXKZlcUSK+2qDEi/7MzYM1FHBiQbRzNyFJEGkA1nVodZXyxycXApS6NL6Yn50TUoVizG0nOzhKG6hgRtixRBIoEGFzE9fjorFcIW2JXAgpjVir2soRGSskteN4hcvrDDlNc8ItcfmcdgUY3NkGxx1z08/griCFh9OIajWT37WzqlJmnaU2EomZ/RGlkbFyy9gE+e8U9cm5Tawm6C1ZoG0T4+PDbB59e/Hivfz0SmSKKORpGmaQQ8AZIZLy1KBsTtKrfaxPY+JL62r2adZMRk2M3je+JsHk7Tp8mEfhEkQABa/a2sDgm9vof3/R6KWW44q8f5edCy0BZBn1ExsHaYJuH4JjojIqF+biTN++5/Hz+OPchm03SnAjpHKI3e4YrYBH1amUHZtgbw0NBDPJTdwrBhuOIoXBtt/jbeevxb+fg5H0dDozcWoIgpDDFhhm51e6Cda9ddy6VpWd2OuAtWqyhL3ftsKj7rexRb2CuNYBoO9PtiNYzgqnRLNJRF8yRnsOhUnN57Ov946j9C8ji8WhMYzHUMFtv8Eqw20jw3nGJVyyquP+Z6ItbGKtvb43enlbleTNOtBjiz70y+cdk3eN9p7xMSILa9ODIgMLfJoiMD0tKs0YjYL83qQ4BZrfZuxQZWjHC3ZRkaES/4KLz4MwcPpNQUPVbGhJzFdmryixqwellbENPQyJUq7I3nGEsXqMhn09RNvOpZ0HR3OjMMHx3lKqNoLma1KgzqBPArprCboNOqC8XXLfdUwWrv6BR979pxVSomoWaY2cKMDoJEIUFvm7gmipWVKWXIlXMU7QxhxShdDM1qgJ6NDlhtBPZSSmzElxKF/UVnk8JUZnVSah8vUm5LoI1nvV7+nB9hZ3Inuq5x/ECLA4Z1KjCsxSVmtRmkoMHrN/8PV/zoCmd+K83qbLFCMleu+1FVkPZbzQCrxbxZ0WJgSbB6b2oms7oj0EFfqI9yKYB/sWRAfDOLvsuiy4h6ozXdP4fAHqXA6tFNNR1TiwVWi2u2umxzdNvRaJo2xWw9IGU7m16Ak8zqQHqU1S0CGF63LI5dDlMpdDJgy3x7sbpFJFh91/Af+fzjn+exiXsBiPrC1bzIzTyydTkD5TI/3jvIrYbU1LdKLIsKwKYeszouCRox1VXrggwI4Dx/pqHTI/WX9yxAtzpoBgkYPkKWTdIOEvE3Gqz2saRc4aejJtkdN7NrAcxqBQj7DB8BSUbwuyGR6Q3TK8HqoiYKWCPzyIAotQJT5nbGInS5/6XFEbD6MAxV09fnQKtXRVdwbjbHMYUSlg1D87Qt1CYRZsBlpl9MLOCB3DBdEszcPkslLVeqUKxYzWdWq9j4CtYWxUHXDG3ih088wuahBOt02Vbc7oIb+QLjvBUv4LwiREp52HYfnVEpE6F5MGFRWERLo0vRgJShMz65hXVSE3TzUIqHhh5iVyBOXtfwh5oDuKpQbOZ92REympjf48PV1vD/+PN/8EXjTzzo97nHVpOhaRpv2vgmLl1xKX6Pnz5ZcU9rMqHPT2VWr4it4OZjb+ZvEuL1cBPA6pJVoigBh1x6fma1t6QS5wZvyrpeA2KKw8O/P/zv/Pfu12K2PsDgLInW0e1Hc+1R16Ilag7cTTZYdGRAPBmeG0mzoXMD7z7l3fiyZ9UwnJqYxNQwq1VomsaGzg1cuEwCU+U8zg7TTBkQmAeslq81WwZk+iH7ka/CvR+tuhzDoSkDUkiKMRYPExmQRkYNs1qBrPs0i5zKl2rAao+hs7JDsqtH0+yZzKHp4udhs+Zw64uKtajR4fHR6bS/JufsglPsJh1fjQazi8/oyvMADUafYSkmGhqakWfH5PAU8oMCUMplk7DSrG4Ws7qQ5MtPfpmzvn0Wcd8dAI5MidqbNLvWWG6RDo29Gzg+XyAswQir0MvxhUvFzxZbAgSmMquTEvCMLhJYHWxzzLb2pART+MSlrQ5Y3aOKz24xqz1+vDb8ObuPbYltjOXEfhnwGrSFhBHmbB0QqjU9YNvkbZNYyMUcXM6b/oiOVRR75+7UTGb1Fy76Ar94yS8o5waqMiCuGyzOzayeEkVVUD0E9iglAxLfVX0OFs1gUayhH0+V+e7l3+WMvjOqvieajrdUQ3hoZkiwmuQ+1neIDt+21hEKIy+iO/kBXpjLLc64VMgz+dEFseaP5IR8UNAM1sjJuXiGkiaLgLhWuiCjDAQEjjCUzFOQIKaKpHwGWiyXmNVmkBJwV/wZvvb016hYFac7dSG61Xe95C4ePO1f6a5USBEkGmgwwUbOFb8mrtGCmNVlBVZ70eWZxZVucl+EPnm/shWxFwzPw6zWNA1TN/HI3M5o9lnqLzCOgNWHYTgaQ3Mwq0/vPpnPDo9yY1IkeLMxEAGKlSIVKT2QsX0E/S47k8vNzo7vpr8jD1h1davv3H4n73/gA3gjjxNTWlPN0qxWseYFrLOFzIcRfZofj/0tvxi9jQ3aNvHzvhPcHc8c8faT/pbbl1zCafkC7Li/2qqjy6rnIhzMfIaPPlMkAttTu1grwepNwylSMlENW5Y7FdA5QoHVe9N7yZhiDiVHqywUde3Ctu2eadUsoRg7cUe3Oj7jPelk9TW3r93f3ve3nPi1E/m/sFgHSpnErO/NlMV1U8xqV1jpjsmiAAVXt4pk1BPaMicTMV+y8Mq2XNvwuau/WcdgUTGrdalZXZHr9nim0Bwd7emhmNXZsdnfU2tE13RmdYv4OpdmdbOZ1eqapYcgsRd++nfwm0/A7j9W33NIyoCkBENe6UceCkBAs6KGWd3qb6XFJ/6+05QHrPLUNWO1kgIZTvPH7eNgiJ+HzJC75ooAHh8dFWUslGJ4ji441cViW94aozQXn9FgGyw5EQDfzt87e2jFMzzFtPum42/ikVc9QixzZXVdcxusrukgUOaPRV10SilmtbpeWE00lpstwl2YkV7eOS7WilDXA1x7mtzXjEMBrK7DrFagVLMjUAWrlQbzCUurzOoeaS7qmma1GUQDOj3i2RrJjjg/qkqBzC0/5rdtcvgxDReP2HLedPhstMzJZHe9lkv6r5317WPpQhNlQGbRrC7UAasPJV+FUKfcP+zqHr/IMiC1htNqfgU8ATQlT7WYYLWUo8S3mxvOWMbHrj4OTRWDF5lZvTExOuXlkBlqjgxI6/Lq98E2LJk7tBlZAqaBbc/EYzJlAVZHy7KY5IIMiAa8c/Q3fOJPn2A8P141WVwAsxpwcqGUS8xqAC9Tu6PmHI4sDPr06lgarqUN4Is4zOrJotBlH04WZpWCArj9gtu575o/si4l7r3Ht0h5x19QHAGrD8NYiMGiqmSr5GQuxs4tD9zC8T+9im9Ew2TxE/G53JYe7cMGXrjj2zzn/0d07yjbx2YuTo+PPs4vd/2EgH8numr9cxsQqD2UGj7oOpoTQkvx1CxME+MDHKdvF3/pO9Hd8cwXPRvE15FnqoDrIoLVAMtDvQDsyI6wrkckoI/vmSTjaC/b6E3WrFYH7T3pPRT9wmQxPzno/Ny5dpaFtwljSxVT3L/3fu7ZdY9zAJqw5IY2TQYkVUyxZ3wneU0jh891jXSvIUDqvCkSCKUzXi8Ue81XEkmG4QYrfZrJ4qk9wlxU9+9jKD3hgMC1sWliE7/e9Qd8Hsl6ddvgQh3Oato0+8J9XLL8UuzMBgpli6eG9jKUGWI8m6oy/ZppvFFHBmRGyOcAw/15NiNqGLEzYrFkQGL90LYSrDLc82HxFWDrvTVjO4RkQGrlERxgQPvrMnhROUIxDZWSw67eZsp9URpJq1jTJdb7R3ZN8qtNo2Ab9PnXcVTbUU0BqxWz2jDTWDYMp+q3mNbq8DdFBgSgd6P4OrmdF69+MZH8RdjlMM8NT90TTMMkk8pV87QmyoCo+ztZ2gPYM8DqSsXbPGO5uaJnA1enM7yt8wx+es33uHC5XI8PCWa1BKuT+xYfrA620V+ayqw+aVkrYXsVwdyZnJyS661rMiAiH+vSxdfR3KjTSdM3j8miY1Zv2eQ1l0FECVLqVpFlkRVUMmtJZWaf3+PpYlUGxHWDxenM6jm8H2o1qxc7NK3KrlZ7/SLLgFBIO/OvFqx2NNXNRQKrE3t43pLn8eEzP8x7T38PH77iWE5b0VYtBi8ys7p/fAedgU7nZdEpFRd/cVUGROxHn2mNceb4ffxPVADPWj5BvwSId01U8Q7btslJecpYxSVmtTeIh+qaNpgZXJBhbG1YOZELJQkS9bvDrP58EIIr/p2E/hDJ/Exp2NooyjxOgdUZ20c44ALR0hehT4LVY/lhwKJYtkjk5h5fqlAiIJnirpyL/8riCFh9GMZCDBbxhrCBCgU0ynNWz9QG6LVtMrafsOtg9RI0oEsaR+iB3Wwfm5nEKAAxoIhG/pj7+q61m1j3ejBM+jqP4Yd7B7l28jgy224mPLqMDi2JrXvEexYzuo5mn8dgcKwKVoeke/RisYjefNSr+O/BYZ4/OcpZazrRNHho5yiWNI8IW1bTE9P+iJCemchPkA0LsLqUHHZ+ni6JhDlkWfiC7mvnPTP+DDfdfRP/9tC/0R31o2kwadVnVn/72W/z2kdu4l/bW8m5fQACgpJRVPCKjd8opcmXKjPeZ9s2//WC/+ILF32BWEGC1W4A/eqwIA1vuoJdrIiuQNNstMDWumYXn3/s87zrgTdDZBMAmtvzrY4pU1+4j0+e+wmW6y8B4PbHPsvF37+YbODeGmZ1M8FqMe9rZUBmhGKGL0bb2qEoAwKw+iLx9c/frr625Z7q94eSDIhinFqlalHiUDCuambUAsv5RFW3WoHV05jVFx8jgLq7nh7mkZ2TWPl+vnTxV7nt/Nvc17iUxkIAPp/Yg2Y7PHp1L0FPEKviaw6zGiAsfTBSQ9y08SZOjt6AVexiy+hMhmROGlPamuF+7lEjA7IsugwNjVwljWak2T6WoVSxnEKqVfY2j1E6V/RuQAPeUPKK4vligzq10SaeEcafW3wZkECrY2ilDAMjfpP7/uZm7rv6H7k4kwbdhEjPXP/KgYd8pjp1kf+M7HoAPrUWNt1JnyQW7Julo0uB1X7bpqC7zV6WRY5ygRUdIo/YMe0clSgkePGPXsy1P7uW8Uy2Rj6oiZrV/pa5ZUCUr8KhwKwG6D526t8Xq2NK5qx/8Hm4/H9fxFvvees0sFp5izQZCOs8SkhbTGxlSXKUq9ZcxdLoUi783oVcc8c1pFWusVhFuFg/GD60SpETWtY6Lwd1X3XNdTOPbFkKmoFmQ8ousVeeo8gnHBPg3TVgdbZYwUL8PWq51Akn17ReTYxlKDNUZVbPIwOyLbGNG++8kffs/AmAMFh0iVk9olkY/iF078S8utUxX4wrV1/J+Z0nAZDFT9jrAj7kDdNVrqDbNiWrREtEzKHheXSr04UyflUkPxT2+MM8joDVh2Eoku+c509viIsG+jh9+QB+7+CcYHUtGyCLn1ATwGqA9RIAM/x7ZyRZUAWrQ2oBb0aFu3YT6ztefO1Yw4pSmVeHbSL6ct64SrRlaV1HN7+qPS0+M3gfLxhYwn+ZBUKWxWm9p3GclOFYFMAJOH75BZySLxDLJ1gSKHPW6g5HBxQgaNtNB6sj3ogwcwEmoxLQSVfB6iqz2iYQdh+sXtUizJX2pPZQoUBH2EcSeb+mMUsVQyxoWRQ19w/bIZn8FjxiHQiTY7QO20/TNE7oOoGzlpyFT7b+edyQUJkmAwJwcs/JABiBXXUljpQ8iV8VulxnEsl7V565zq6RMgO7k0Ij3Sq10B9SSekiMKtr5v2MUMynZh+AoLr2zsmsXoSDowKra2PfI9X5uJhjmx7eMI4+mGJIHgrGVc0M3aiC9rk4R7cdxbGFAm0SFMYqg1Utvq3vi3HSslbKlk3ZslnZGWJAHipd17g0vPSUKywrVQgbAjSfDay+7fzb+ON1f6THOK1Ge9bl/SBSIw9BlYW+ZaQKOn3piS/xrl/9A0VDFAabUhypkQHxGT6ncyoUHqdYsdg2mnH2dNvyEm6W8eNcobrghv4sviqGv8dl2b2FhDKWy4zC8FPi+8VkVtdoVqt266jfJJiVmswtA+51/khgoQuR/4yMPAGZEdj8C3olG3E2r4xXHv1KLg6cTHulQslwOf9WAEg5z4qOMJ7oY/x8z1dJFKqybelSmu2J7WyeeA4qFh5N5h1uF7mmGCy2VPegUnbK2gvUMKsPkX3qvPfAiTeK7rJgx+IVbeRaZQA7UrvYmdzpGHgGPcFqrtbsc164C9ZfLb7/3e2AKIqMZEd4Lr6FgAIoFgug0w2HXX2ir8N5OaSp9UKr7h9uhGFCrN8puO015F6YTzh5Ra3J4ni6iFVqxZPvFnITZqjxa5ucSz2SyDaUGXKY1fPJgIznxnlk5BGeyoscIKOF8HoaDB3KudKp5CQ9ySmAfr1YEVvBPz/vn3lj72ViXLafcKMZ3wC+MCbwvvFJ/u3sj9Ml/baG5/CBe/ev381HH3o3eY9c2xazSP4XEkfA6sMwbIdZPceBwBMgKNvjA57JOVs9nGqtbZPGT8SNB742ZBJ8bFZU1I3AHnaMZWZoAKVlEhNV7sLNAKtrGVS9x4uvHaItrG/yIR5/aY7XLBcMz8XUq1ZxQu/pANwXDHC85eFLz/8S7w+sET9cLDMhX6SaDCT38bKTB0CC1X5LLjqL0I57+arLecW6V9DeJt2sixMk8yUs26rqfVsWobD7BoZt/jZafC3Y2OxI7KAv5ic5i2a1YogFbJuS4f6mF5TzJmuIxCai5RiZpTVdhceS3RkBFw4cwZmM2+M6jgNA9++uu7appN5JnF2XAZnJrAYoW2X6O8qglRgt7ALAKnRxVLvcepsJnrQMiK/x3bO/R7F1FpNZXUez3QHYVbt6M2P5WSClcfAEoG2V0ILe/mvxmiMDcgiA1bpes/ZKhuShwlhrZtToVr981RV8a98w16ZqWH3lqevZ9adXJQXOW9tV/YGjcemWDIifU/IFfrp3iJPDbwTm9hcBSOXLzTMMrGFW27ZNd2sR3b+HrTVg9R8G/8D/7fw5XlM+B/4mgE61cjdUfQy6O8QYnhlMEvPFWBvbgFXoIaLA6sV8Fnqrkm2Ui4cWs9oXhqjoPnM6MhaNWd1GX7mM17bpDHQ6xfrB9CCJsU1Y4J65IjgElE5b7NGjsuuOfLxGBqT+M/rmjW/mauNkWi2LisdtQFjuSeUCKzqC+Lr+j2fy32d7YrvzFnWGCniCBKgZs9vrhgJnzJBgTdbmX6VpINShpFkNAox98WfgXVvg5ocXj5Ck6+ANO54GY7kxNnRu4Nsv+jYfOesjNbnaIhALzrxZfH3qf8mNbeZLT3wJgLDp9PVWc6bFCCnlckK5ipFc2CHXX79LZsm1MXCqIx2xVxWI8nFHBmTPRPXMMpYpUBy9hI0T13JRNucOuUDm8z2WuB5DmSFnLPMxq6vdIuLvRY8Lz6lkVndWFFidmiKVMlfk0gJHymkBjDnlBg4wZBHtZak0z+85nZ5oCzA3WP3Avgd4bPwBDF1KhRwKe/xhHkfA6sMwqprVc4Su06nIe+YCwWrLJtskGRCAY6UBgu7bR6qQZyw9VUtSAYgtlnzgF4tZ3X+yAJUyI/DdG5xq8qEAVp/WexpBNEY8Hp7eLcET1cq/SNW8slXmh21d3NraQjG+k+ev7yYatLEtLyE1eRchwXrPqe/hfae/j9UdAszv1OJsGUk7YDAIg8VA0P2kWdM0h129Jb6F3liABPKazMqstrGaAVbLQ1ZWE9tDmCyjdaQ2JvITfP3pr/OzbT9zjAx9ATdkQGbKV2zoFImnEdjD3vjM1tJqV0aTwGr1rE07iL3q56/iq3tfiyf6GEXiAFjFLlbH5OrdTFA4Jg/48V3V9pzpsZhrx1wGi2lpcrUYYLU3BMvOFN+vOBvWXiK+33KPAJ0UM+xQAKuhethRzOpDQQu02RGQ4HIuPtU0VEVlKlh96XE9dEhD2UrkPi7+/sV84bEv1GhWt7gzTtUqbVdYEhN512zmbSpS+VK1vbSJzOrBzCD//MQrCC77AltGkg65wCkMyrVWawZDUt2PUgYqZaEvDvhDoqj1zGCSc/rP4S3rbqUw8iJChwKzumWZ6BKqFGHvw9WCyaGgWQ3QuXbq3yO9izOOYBs+Gx7csZufvug7TqfXtT+7lrOe+nee85ru6VWDA+R22xpt/jb8yqQ2n6iRAZn9GS3mxH5QaRZ7uVJgRUcYqyj2n1qwWuVBPj1Y7cbQPe6z+dXY1J7o8YPMJ2eYLCoZkENtn/JHm++RMT28YTrKAqxOl9IYusH69vVivVN5x2J0wfVugJXngV1Be+ybfOOZbwCQUoUdj39xpcc6xX6wLjnOD178Ax6/4XGOMuVcbIaU3BWfY8l1PwZgn10SBbYaGZAd49VO8nGJe/T6Jc7hRtFGnn96pHnzYGbQKbylCuU59ZcLMlfyyv2+ZLqwvytmdVmZTSensM/rRbFSJFvKks3ExTjdkl0yPFVPokKS7ojYr4dmkYKC6jUL21KD/Aiz+qDjCFh9GIbSrNbm2Qw65O01PAn2TuZmdS9VYHXQtsjgc18GJNgOhpf+cpmoGUbTK+j+4SkLOFR1hDsla9M1jbra8MeEqVDHWug6RrwW7hIV9rPfKRIqxfRWzOtFDK/h5Wy/OFT8z977xIuOltniMKsNzeDj/hJfbomye+xpfB6Dd55/Hv2J2/jFpEz8F7M1XR7CerRJtgynMQ2Tm465hdeMavhs2319YxmrYgKs3pbYRk/MT2IeZnXQsrCbUKGtgtVivQjPwqzem9rLx//0cT7zyGfw2rL67oYbcx1jwBWxFRwVeCH5wavZG5+Z1CgZkLBqOW0Ws3qaHu7R7UcD4Gt5GACrFAPLz7JIk0D02lDM6mKqPnsZFlcGZDbN6lIOVGtzuItFidNuEvvWaW+CleeK13b9wdFRB21x9LTrhb/a1QIcOoy1ZoYqbD/5fedQXzK8lBRgMo1Z7fMY/NeNp/CJazYQCeUYygyJvKgJBosqloQNwJ6VWHDzPTfz5rvezFhuuEaz2uVDkGJWp0fo9nfg0T1oeoWsNcGgPKypYmpY5UXNmG++qGjTBxh+klN7TuXl617OyV1nAfD0oGBcK7PFgL0IHgHTQ9Ng9YXi++d+UQNWHyKsK9lBCEhTvEXqzPOGQTcFQ1OuYbZtO/IWsYoFrS6C1fJ+XEKIX7/813xYk3tOrsqsHkrkZxg7l6wS2xPbGc3LwqrrYPVUzepKVhi7feWpr2JJgF2B1R4tUKPb3oT7qtbfqCx4aFpV5mO6yWLxEGNWH0rhixC2bfzSRG4sV+M3UlxEZjXAhpcD4N/2K2FeWBuLXYCThTdjbBNrW9eia7r7/hO14fHRu+QUPLqHIhZDHgNycdZ0i2dgy0jaWT/G0+K57PEpsNqFs7HM53vL4ncMZYYIej20h0TRas8cwHC+IvZOr1rv3Fg/5Hzpkl0Eglk9d9H+jq13cNo3T+Mj+74DQNFNjwBfhGHD4J5d92EHtgCz+xZYtuWA1RHrCLO6UXEErD4MY0Ga1UCnbMjRjSSZYoVkrlz3fbUyIFm3dH9qQ9ch0osGrA8LAMXw72H76NQkRiVaPbZ8vRlMD02D198Lb/mD0J5SEemBC98PN/0OjnoRrHlBVYNwkeOCLqHf+4vCEP/z5P8sOlitaRrLDbE5bp98DhBt1v/3t+fgKy9ugpUoJNgtjbZ6tXGeG0nhM3wcHT2fK5JF0a3QpCpob1jM57HcGH0tNWD1bMxq227K2AaiA5zbfy7rQ6ItOEyOkTpmEo4xq+FzjHsCIRcSrTpgta7pXD7wZsrJExhOzFzXqhrkTQKrHWb11ARrY+dGAPTgDkBIgER8Htq9cszNZBOZgeq1jO+q/55DQQak5j4DVVa14XMPNJwv1l0C794m9KuXiPWW8edgx2/F9+2r3G8tXWhMlwE5VLRAmxmnvkkw+R7/Fvzkbby9q4NTB7r5vfIjKM88aGwcaOFlpww4ha6gGXSfWS0B139qb+UzO16PJ/r4rBIDfxz6Iw/se4BUPl9lSbq9roU6AQ3sCkY+Tn9Y7Am6d5xNw4IRqYqpIbfMoeqF4RHPJMCfv8spPadwy+m3cOXaFwCCWQ3w8M5JTMp4WIT1tl6sEeNj8y+rc3Ax2+Vro5ZZvVgSICBy8CXCNItfvBdsm0wpQ1my1GKW1RRmtbOXF6oyIF0RH7oGZctmLD01JxrNjvLiH72Yj3nuFi+4PddqCuQdYS/ezHnYFT9bE1u4c/udQDUPMvA3r8AFMHAaXPYpeOG/VV9zTBZTU9/rGCy6qCN8uIYvjAa0Szbr3Tvv5ktPfInf7f5NtTtoscDqVReIr/se4/+d/Ul8ho/XrXixeG2xwTnJrGZscxUwcfwnWpoyBI/uYSAi8I0dHhMKSZa2BfF6dAplywGIR1N5Qms+wveC32TM0F2VATmuUOLW827lQ2d+CKCqoT2H5EZBFlV9cn/XvS6sH7oBuulI3gjN6pk+ZlPGJee/R4LoZTdll/wxfhv087eP3cqW/E+B2TvgCjVde2FbgtVHmNUHHYfI6epI7E+oAtecmtVApy4OQqZPLESzCemf2XcmZ/t7iVUsMjRBBgSEYy9wSWQ1q7yXUcn3sX0as/qOK+/gFP02jlEV5GYwq0EchGYzOGhdBq/4Blz3XfG+QyDOWnGJ8/0J3SfUtNUtEjMGWOEX0g07Unum/sAxBWl+gvW7fb/jrG+fxdsevRWAFi3D7iEBhI2ni1XmSZOuW4uvBYB4Pj5VBkQBJDJqmdWaG4nCtDiz70w+e+Fnef3AxYDSrJ4JoKiKu6n7HQ1VrxsyIKGZMiAAvTFpdjStwm3bttOa7ujdNwusngaCKbBahVXs4oRlreilRXoOlNbnbLrVTqFrEZKr9jWiRTkzCpM7q6/XSoAsZmupilA7tC4X3//+c+Lr0tMXbTgz4gizGo66DK7+T/H9tl9h2jZlTWO7V7ERi7N+NCP3qLAZdp9ZbXhAMyhqGulKEt2crCsxYNmWUxwsFSx0TbGcXH5ODU+1wJUacg7funecJ/eIa6OKqTF1MGtWQWnjteLrE9+DigAyj+qJomswli7ywfs/ym8KbyXQ+pvqZxYbrF59oSiijDwF41vFa4sN7KjoqAWrF8lcUcWLbuOucJRXph/nkz97NbtTYr+KWLbwoXAVrFb+E/I5VOBqLo7H0OmOSimQaecppe3qlVrXutvrbg2zWtM0VrR1UhwXXT+ff+zzWLbldKdi1YLVTchvdR1OfYPoUlWhrsdszOrFfjYPxZDXpNMj8sSfbvspn37k09y14xc171kksDrSA13rAZvj4kPc/4r7+duVV4mfLTazum0VaAYUkpAaFK85RtgtTRvGqT2ncnZoGX7bhkISQ9dY1Snu6eZhMe+3jE6ie9IktLSQ0nKjaCPnSEcxx8XLLnZks5QsiepAqhdVZrUAqz0+l9YPj5/OSoWwJ4RVamNvPIE1rXulNhywuiLe46pHQLCNvpI4S2YsQaYZnIVUkK85A0abJdf2VxBHwOrDMqQMyDzv6pD6tppXLESztZd+9KyP8vnYSfRUKmSbBVZL5sbVnnZePPBmrPzAFNMeEMymfD7MEi0uXlgsDb1DPKJ9J3Lb8Ci3jE2wMdhfZdQtIjtmuWTlbi8IgPFXu3/FW+66ia/ItqPFSEz7QuIAtjc75OhupYZ3Mpod5U/Dv2WXYrs2SQLhtJ7T+OQ5n+RNG980lVk9TaLhnP5zODbfx9JyGaOZBQjJyAxTXwZEgRQercqsduXaKemHzOgUreWuqIER2MGe8q+nvN3G5p2nvJOu8pW0WE1i1M1isLg8upyoVySfLdoxlNPrOGt1++IVbWLKZHEWZrUqDC6GDIgvDH0niu933F993TFXXCQJkHqhmH+Dj4mvS89YtKHMCHXYiUvA/1DR0m52HPcSR8ZiRUmsA9tlV009ZrUKBfCEzFANG8tFANbjZ4nUatTMSeLZEtni1G6R2gNQJV8DtHuacAiq0a1WYLVmTvDnvRKslgWuVkvuAc0CA1ZfJOQGMiOw7Vfkyjm2JJ6mv0usrc+MDIKRIlBrcrTYBINgG/SfKr5/5ifi62IDOypqZUAWG6zuPob8+it4wu/jydE/88TYEwCsL8g55qrBosyxyjne/et3c7k5ybNeUxSubHtWk8Wc9O0wbXEy87hRuK8NowpWA6zoCFGcOBOvFmRXahd/Hv0zpm7SE+pBt6IENAWcLJa8i2JWTwOrDzWDxUMp5F6+2tvC0W1HU5b5bFCX65juWdzOjNWSXb31Pvwe/6FjGuvxQttK8f3os+JrM/byaXHL6bfw+TWv4sRCwSGRre0W8/y5EfH3zWPSuwtNdM+6cVZR+XxxKsayrF2C1fOYGfoNP34JVps+l3IOjw+fDfdf+F8Ud/w9xbLJcB2SlArF+DbluCw3zyyBNvqlYeZEYRCwZ/UtULmajkmIIzIgjYojYPVhGKrbUp/H+XSZEeKsbI41iMPGbMxqwFlIM80wWATHrZeRZ1jXI0CxzcOpGW+LZ0t0O2B1k5jVh1t4Q1zkaePlqTRMbK0y6hYTrG4Vesw7ymJz3JHYwW/33c8m7yKC1eE+NDRy5RyTLeLaeNJ7+cO+h/n56L/w2Xa5CTcJEB6IDnDJiks4tuNYemIBEohrYk+TAXndca/jBRMrOapYcq+qXScqshocoMBoHbBabcoeasBqN66dMli0SlNY50F/geDyL1Jq/Q7xXPUApGs61x19HWbqYlrsJrXLz2KwqGmaYwb5uhNfxKeveDmvPnNFDZtokZjViXmY1YvVlbFcaM7WB6sXwVxxtlBSICoOJbBaMavVwVEayv5VRq949laUxKFhu0d2TFXmYFYrCSFvE5jVAB4fffIg5PXFgTpAWLmau5WlnJule5sDvird6tRgDbN6jCf3JihZJYqWuJbtShe6WdrthgnHXiO+f+K73Pbwbbzy568k1PEnALaMCT35pRF5UFxMverakFIlJGXX2aECVoc6qoWtxZQBkbF+nWBpPqGVeGhI3NPjCgVx8HezcOmpMqv3pPeww4C9Ho/wqimm6ZUmi9PbwB1mtTyfmX6X5ZccZrX4vSs6QmD76DROYEPHBoqVIlesvoK7XnIX/ZUbqszqxdQih2rnp4ojzOrZQwL4H2w/ne9eLuSOAAJS4hMztLjdZqukBv/WewSRxAGrD4E1TWEMo5vFV3Wuara3iJL1yAtpqjVdEqweTmNZNjsmBaEropmCgOiiDAjFLH8a+hNffeqrbJ7cvCAZkOuOvo4/vepPvDsu/m76XNpH5bprVAosaRXnqV0LYHybMney3QSrg230lsvoaBStIponRSpfJl2YKUFZqBTQNR0dE98RZnXD4ghYfRiGzeytEbVxnK+dLwyPcrkhWj7qMatt28ayLSqyup3FR8RtzWqA7vXi68gz9LVpGMEt7ErucxhF8XycDzzwAUY836UDeWA8wqyePVRb5O4HwSqLVtNFvF4rOo8DYIdWxrbtqg6obYFuuu9GXie8hpfukAC89sVEa3OfNsb2cXGoDSvX90Vgnvz/9u47PI7q3B/4d7YXadWrJUty7wVj3OgYTAnVoQUCl0C4XEhoSbjhB4EACSSBQEgCIReISQglkACBhADBgGkmFNNs3HCXLclW16psm/P748zM7qq4od2ZXX8/z+Nnpd316lg+Ozvnnfe8b1muG0FoP1fL4EkkwlrWjif1C+6N7Rtx8J8PxtHvXgcA8Ct9g2ZW64szRTjhVvTaXCkYn9MTzxZNqGc8urACUN1QFIEV2zcO+Gut3WH4lDQ11hqiwSIQLwXyRevn+Nq0SrgcNvMaGRplQIbKrNbHZVaweoG8TQpW62VALJhZDcgyCXoWjxX030ZaMtGccViBtg1dD1Zv1Kt77U1mtcOftmD1CG3BZXfL5qIDAmHawsxj90ANpblUj55Z3dWEkQF5/LC5ZIPF1mAUH53/Eaq6foFSPVidxm3WmHyGvF33Mibky4syXr88XvRqO39GB/SL0BYJVtcelvy9VbKuFCV+rNB34JiornoByqJRRBQF/9r8EgBgWl9YfoalMkCXULO63C8v1DQ4tDVRQpPFoS4o6Y3IXL4U12A2zjnimdUAkBs8H4+d9BgOqTjEeGpLdyi9NasHowejh8ysPgB7K+yJ8TuTvyOjv5QeujH7mDZynlzPdTUAHfXWahprBKv1zOo0NlhM5A6gS1FkSRLAaLK4rqkL9W29CKvy/ZCnZ8unJFitzRM1gse/+DPu/PBOfND4AWr2ogyIzq5fjPOmKlgd3ymilyfZupsgelhLOHDpda5TFUQHAG8BnADKbXJe5/jl/2XDIDG12rxafPLNT3Cwci88+m4WK7wfMhyD1Rlob2tWG3WKtPIGg2VWN/U0YfqfpuPw3o8BAD3wIuBxDnjesCvVToqb1+HuFTfBV/MQ7DmrsF6r49QaasWzXz6LsPc92BQBYXPEMyxpIL07+pZ35W1upalbXkeWy+38nTYb2jrrEdROtvyqGu8UboLaQC0AYLNHngRWKC14Z6Msm5JjNIhKzwlgRI3g1S2v4q/r/gpFEXDlyN+LImJJ2SctvS2IxLohALi9qQ8iuh1uhGIh9GgBEi9CaAmGjO7VOj1YbRcJHyOpytrR61Z37gBevgFY/ypsNhtcQl50+LQpHqwOhoP4sPFDtEe3JmR8pzqzul9TpgSHjTgMF025CKeNOS1+p1llQPYUrNbHb1awunqurDXYsTVet9qKmdUV0+Q4AdlMygq1tHX9FzulB3CwWmuCXKuVAWm3AW02W3xRPYiqnCrU5dUh352XngVuQrBatbUCUAckFug1+D0OD5xqmoNOemZ1sBHjCsbhgkkXoCAqt3+v2tEJl92F1k4n8qEtLNOZuVZ9COAtBPraMSEsL0g09K3DCVNKoNjkQnFcvp5ZbZFgWPkUuX1fZ4UsRN3Cm4E5lwETv2b2SKA4PZgXk7+nXLsXp+VPkZnVqaxXDSTVrK7w6cFq7Vjf147KvN3XrPZo50luX7pqVidkVgPY3DzwQlxzMJxQBsSkAOdQZUD0muDMrB5IL42iBfS7tN+VTy8Canaw2umJr+d6W61TBgQASifJ2y9fleXt0txgEQBa+1px6PLrcHhNFSJGGRD5OfTlziDWNHYCdvm5mauH41IRrE54z1f5ZNJHfVc9aork/dvbexGNqbt9Cbt23uFOWbBazpkntr6CDa5b4Cp6A9vahq4GYNTS1vpVKKm82KXN8SpFJtnlB+T/5Y6OwZMeFEVBTxjwGJnV5vUPyxYMVmcgPelyj+tj7YPM6egGbL2DBqv1urP6iwqXf4/lRYZF3kh5chILY5JdjrPU+4XRYV5vcmRX5cmqyCmTTTtocHoQaqsWrM4zdxun11+CPzQHsXTrdhT0BeNbq1UB5JSYNq6agFzobHbKuTRCacHH2xsBAH5VyABUGmvAXfPGNbhl+S3oDHeiMD+AkNAWsdqJlRACRz11FH4zeg1a7Da4U10HEYBPa1TRp4YRBeBHH1Qh0BJMDvAcV3scfrfwdzjYdxQAQIWSupNUv5ZV++mTwPLfAv++CQCQ55QBzPWt8eDr+vb1uOjli+Cs/BP80DOrU/x70xe4g2RsTi6ejGtnXYv5lfPjd+q1oa1Ws9rsMiDuHGCEVrd6yzvy1oqZ1U5vfHeQlZorAslZwP5SWSf3QKVlVnuFQBnksXWb07HbYPW9R9+L5097HpMCtXKXEpDazGq7G6XRGByKDUKJQXF0DcjaDKtheB1euGweeLQLcLZ0vUf18mtdjSj3l+MHs3+AOcWyqfNn9R3oDkXRHAwjoGhBqHRmrtnsRlmN8dtXosBdgGAkiMXzI3A4ZPB6TMBiZUCc3uQLSHYLBatHzgVO+LllslzneuTn+whnLm7LmYgiVY0nZqSKXgc+2odKr7xInphZXZGvN3bud0FJy3r1aGspX06Ka+PqwWotw7BWC1bv6gohGIqira8Ni59fjPP+eR6a1Q/h08+FzMqsdidnCRtYs3po2vsw3NeO0/9+Ol7f9joA+XkGwLzztET68b63PSGz2gLHtPEnyPPdjm3AW3eZ0mAx352PsBpBVFGwQyuJObLQB5fDhlBUxetrd0GxyfdlQKt1n5Jjr8MlM+ABVHnkMa0+WI/SXDdcDhtiqhhwzqH746o/4vJXL8dbHhnM9vlT9NmgzZlgJIgudRtsrl27LU8yqWgSjq05FtVh+V6we1J4/NDOoatU+X/k9bUDGDyzWhfsi8Kj16x2WuDiTYZj9C8Dib1ssAiXHzcVF+LC0Etw5n8waBkQPRvArX32pfQNn8hmA0pkeZIxq/4JACh3f4m1DTKTSd+K61K1ztosAbJ7erZJr9xGjLwq88aime0fgdJYDErHViNY7ROq3DZvEj2zeouQHyLV9lYoNnmClSNUeQU0TVmSTpsTuVqjx7ZQGyryveiEtqDWTqz6Yn3G+92nCjjTULPal3AVuFdRYFcE3IgMKAVSmVOJQ0ccisKovOocsXlS97vTM6v18hBdsi57mU82gtrWGa/BrDf8EqoLObY0ZVbrC9xIr7zwp8aAze/EF2L9mVWnMV8LVve1GzX0kphdBgQYWLfaipnVAHDMTcDk04GZ55s9kmSJZUAO5KxqIKkR22FhFccJn8x83E0ZEIOeVW1zpPb94HDDAWBWYDSq3NMBJTLgXG1S0SS8f977uGP2k+nPkNTfd/r7EMDUKhmI+6B+Hf7n5R/AXvQSSuwmZFYDMigBwL7uXzisSpbYWNHyDkq0t0GRXTu5tVIwTG8kC1gjsGNRcwtlduSavp1oad0g70xlc0Ugqf9EuUvO80Z7PLN6hBas3t4vuFMbqMUZo8/BnG4Z1PH401UGRI4jz+tEkdbA/J0tq7Dob4uwrm0dPmv+DL2xbnj1LD+za1YnBqujIdmLJPFxitN2g7giPcaaGEgMVlvgd6Yf7/varZVZ7fIDx/9Mfv3Or4EdK+TXaWywaFNsqM6Ra/EtiACxKOw2BaNL5P/bSysbAOFCsXM06tQUZlYDxvu+ypUPQGZW22yKUXJjS2v3oH9tTesavLX9Ley0y+Najj9Fc06bM+UOeV6jONt3G6w+c9yZuPvIuzG/R2h/PYUXWL0yWH16xI5fHvFLTMg9EsDgmdWf7voUV79+NRptf4dP0S/esGb1V8VgdQbSP6f2WAbE6Uep1mXe5mrGzq4QwtHkrR5GDSw1DW/4/rSF9MgOuQhqcqpwbVkGIN7kyKNdyWJzxT3on21igQY5RgC9bQvaQ+0AtMxqE4PVM0pn4OzxZ+OYSlkbd6y7HdACmn5VTfuJfL52otcR6kBFnhcdQgtAaJnVPQkN+zxCpCUrxmVzwaHITKIebTeDD33YOURn5lCP3A0RsaVwbPqc6dAygnvbgGgItVqmcHOowXiqfuwQqhu5tnQ1WNRPzoWsTffo6cAjJwJLbx38+WaVAXHnxptoDdZk0ewyIEBCsPoteWtkVlssWD32WODMR+K/T6vwMFhtSDhHunn7ZvzSXolxkchuGywajIZMeam9gKkt0h4a/y1cMvZnEJFiNAyxvbQlGE5/hqSRWS3P07oj3fAFtsHmasInO7bg47ZX4chdhWKHduxId03Q0UfL3VCtG3FkYBwA4M36NzG2cAzGFYxDQKtpaZnMaiC+ewSwRmDHooqKJ2Feby9OsOWhR//sT3kZEO19pUZRYZefg0ZmdV+H0WCxORhCSFtfAcDUkqn4xpgrcUan1ssj1YHEhBqvOr0USF9PsdEMFQCguuMX7s36bNfff4kX8BObLVoh8Go1CWVAxuSPAQAcX3s8DvZou8ysUF7AqpnVADDhJNkEUo3Edw160nu+VqMnSDmdRt3qw8fK5Ju2ngiiXVPwv9MewPUR7XMgVcFq7eL2CC1BantwO4QQRt3qoepDh2La+ljIY11uTmozq8u1daTN0bHbmtU6Z0w+x+lNZRkQGaye0RPEcbXHYawWbxkss3pHcAeWbl2KkH19wiD5Gf9VMVidgYQWrd6bMiC1WmMhh7sZQgBNnYM3BfFq9XpT+obvT9tGXa3Va+yw2zGz7S8A4gEnv14nl5nVu9f/BN4CDXIaAqX4dUEe7t72ojHPxofDpgarpxRPwY1zb8TXxsnGTPmRnXA6tMxqVaT95C/fnQ8AaOtrQ0WeBx39Mqv1Mj0uVTtYpyFAoSgKvNrP6dE+ZH0IoakzObP6Pw3/wbPrn0Vjz2YAQDSVV48HmzPBJkwsrgUAdMd2Gnfrxw6obuQYDRZTvXBM+Lc/dhawSV50w7b3Bn++WcFqIKFu9WDBapPLgADxutVowaSKAABrzElEQVTtW+UfI7PaQmVArCwxs1rbvXRAq5wpb0fO220jVEDWmDzur8fhjOfPgEgMVqeSsZ0/lNC8bfDtpc3BUEIdxDQHq4ONgBB44NMH8JMVV6C0agX6VG2cqgt+oQWh0p1Z7c4FauTF53ld7XDYHNjSuQX/O/t/8bdT/oZqaD1YrBQMS8ystqehR0ymKhqD/2vchV90RlHdLnuLpC2zGkCFUFAYi6EsFkUMAHrbUeh3we2QS+emjuRzovaecDybzoSmznqwektLDy6ddqlxv1CdKHBqgXXTyoBoa0u9djAQD1Y7vKb22LEs/XcW6sJYrYFsgacARapFalYD1s2sBmSQZO7lyfel+WJqbb5svr3R6TDm+3ePGWvs0ACAcWU58fdCyjKr5VyptPugQEFvtBctfS2o1oPVQzRZjO++l7GYQG6qgtVaZrXWxFBxtmNnVx/6IrFBnx6JRSCEgEs7B0lpQ1stsxq9rQCQUApq4Hmk/vsSsYTwKjOrvzIGqzOQHr9V9thg0Wc0FnK4mwEA9W2D11nzqjHtr6R461oiLevLJwRKtHqSFfbVaNu22tjylKvXjGRm9e4FKpOb9phcsxoAenLK8GB+Hv7SvQl/PvHPeN0/C2PDEVOD1YbcCkCxQVEj+Plhi3FN1Wk4pK8v7Sd/erC6PSS7zMczq+UWdD2z2thhkKaTwAK3zD7YqZUd8SmhAVuy/rb+b7jp3ZuwObIaAKA6UhjgHCxQGdyJw2tnonfHYnTvOAVdffLCnB7gF6o7noWY6v9XuzPecC8xQB2LDHyuqgIRE4PVu6tbbYUyIO6ceIBxzYuAltnBYPVeYmZ1snOfBBZcDZz+e6g2J3oUBYgOnlkdDAfR0N2AHcEdULQsqJQHXxMyJCvzPFAcndjR0WskJQDA29vfxuWvXo6lDYllQNL0HtV3NMTCQE8rxhbIoElZUavRxNCluGGPmpRZDQCjZd+EnM3v4OZ5N+OJk54w+lPELwxaKFid+L7s3G7eOKyuaLS83bU6ftGyoDa1PzPhHKsg3ItlW7fjyR1NsANAXzsURTEuKiX2AeoIdWB96w7YlHSdc2i9VRKOZXrd6k3N3Vg4ciHKfGWwwQ41VIZCl7aWMqvBov7/1hpvhm2UBLFSiR4rSSidMqZAZlavb1tvXhm5wVg5sxqQnw25lfHv03wxdVyB3O2zzuUyMqtz3A7cfsZUAECuxyFLcYRS3GhUS0BxRcMo88vP9O3B7agp0sqADBWs1hoZ6rX48/NSFCPS5kyZ1sRQsUWh2HtQ3zb4uL718rcw7U/T8KFHHv88qaqlDRiZ1WpvG17bshRfBF+Q5do6BiYV6DE1aMFqodh4QXoYMFidgfQlzJ5rVudgZFQGS1R7J2ALDewy3y9Y7ctJZ7B6kvFljbYA2uJ0oPXTF43syHy9nlmgcsBfpwQ2e3KdagvUrB5ZOh1OIdADFduD21Hc2yFP+E0OOvVEevBF+3rsCshs/ZOKqvCtyjkYH46kPUhXoG1Jaw+1ozzPgx5oJ3lakLp/0550jW9+5XwcXX003NoVYR/6sKVfsFq/goywnrGTwrHpNasTdTWiNr8c+bEFiPXWYnOzHF9izWqPSNPCUVEGz1gK7hx4X0JpF3Myq7UgTscgwWorlAEB4qVAVv5N3rrzzMsIyzTMrE6WWw4cewv+0fY5Dur7GN8vLR4ys1q/SO53+uM1q1OeWS2DY52hDlz8+qnwj/kZ+qK92JXQI2Br51a8tf0t7Oj9El7o2/nT9H5wuOMNbjvrjcV3c3gLKgrkWWi5Tx+LIt+r6TZKBqux+W2cVncSphRPgU3RljdGYMcCWYi6xMWrBc7VLCuv2mgMJr8fmfqyS4oSz4Trbk5+TNttoZcCSVxPPfDpA/j5qm/g0YI0NfQcJLN6lBas3tjcDbvNjudOfQ5fK7oXIlqAMo/JmdXF8riB5vXxWpYhCwVdrcjIrO40Mqs/bPoQXX1abyIrNFi0cmY1INfGk06Jf5/GmtUAMK5Qzvv1Lidi+m4tAEeMK8GSi2Zj/tx/4+TnTsIr+kUud4piMPp7LNSJnyz4CZ486UmMLxhvBKuHLAOiXYBwC4GwcMDvcaVmfNqccakRFHpkcFhxtGNb6+C7zPTyJDmqDFb7/Cn8f9UyqxWh4vq3r8fTm++HzdmGhva+pKSCxHE5hHb+kcY+WNmMweoMpGpvDtue5r/Th4AqUKi9aWyuXQOC1UWeIiyomIspYfkG86YzWJ1TChx7G3DMTThn6sU4rW8SpofCUDe+iQsmXYC8XbfiW21a1gAzq/cssRSIBcqAOItGYVRYXmxY37oe6N4lHzA5s/r/vf3/cPY/zsYreQm1e00qf5CnLezb+9pRmedFnxasVsPyfapnCXv1UvNpqn11w9wbcO/R92KGbejM6niwWmbs2NwpXJwNWgakEUB86+vGZrnw0S90KaoLbj1YnY5sosQT9JHz5G1PCxCLJj/PCFYr5mwPy99NZrWZGd+JamWjNNS/L2+ZVb338qqBsccBM79pTparRQVcAcQANNvt8Wz9fozyY+kMVmsZkgGhQFEUKIoKu3cbvtwVr+2qX7SMRB3xRmnpvKCkB1Q76jEqbxTsih2d4U4cOlGei44v0oIqnoBsnp1uZVMAX7E8ftV/kPyYVbM3/+ddef474zyzR2Jddke8AR8AnHZfehb++nmWfs6q00pY1PY75wAGZiCmPlg9SM3qEi2zelcQQgjkuHKwbac8xyhxaucdZvVYKKiTu8/CQaBL6zFivDfTWH4yk+hJWp07UOeP75btCmu7fsw+TwOsn1kNxEuBlExMe7mZmtwaLFCdWNwVREgrI6E7anwpwmhBfbAeqp6Rm6r3QpHMzEfj55hTMQeTiyfD4/AYDRa3tvYMCLwCyce1kOLa847+/ZVwPBubPxY+jACU2B5raQeEvPXlpvA8zeECXDlQAFR5ZVa64mxFbySGtp7k3bP6utihNcxUrHThJoMxWJ2J9rYMiPZBVxuSb3aHa+eAbQsLRizAAwvuwJVtcmGWm8o3/GAWXAkc9j0sqluEw2vPR3U0ivK2j+CAAw2tboxTtSvIrFm9Z3qTRYfXGk2/8kdilFYz/ao3rkKbRYLV+vbgzS754fhe44f4sG2t3B6e5i2SJ406CXcecSdOHXMqSnLdCEEGLrq75clooacQ1c7DMLtHC3imO7ipnQz70Ddgm5h+EmPTLkg4PCkMBgw2Z7SGXwUFO+HMfx8fNXwBQB7Txrm+DmewLv7cdCyGEjOWauYDig2AAHr6ZWclZvqZEdjZXc3qsPZ/bHZm9cg5yWWNeLFy79lswHlPA6f+1uyRWEqxV+7O2GW3JwV4EulBYZ/Dl/bMakT7MLNElr+x+7Zg467uAeOKRBzwKGnOrAaSgtUuu8v4DK3vkSWgCpxa9mu661XrbDZg1BHy641vJD9m1ezNssny/NdqgR2rmf4NeXvY94G6w9PzM/XzrOBO/DGQi5NHVOChvIBxTBhTIufSlzsHXlDyqgIiHReiB8msri3yw2lX0NkXNYI8X+yQ55L50MZq1trA4QIKtXOy5nXyNtV1ejNdYATgygXUKDyd23Hr/Ftx1UFXoTKmZa+YVdIlkdUzqwG5Nr52NXDRi2n/0XabHQ/YqvC/re3wDXLe0aldeMjV+oal7KLqiFnydvtHSXdXFchz/WAoitbugeXRVCHH5VYFwkoKP6sSjmcPLXoIpxTfDbVv5B6D1V7I8flTHbvSsqurtBKZ+Xnys2BLS3fS0/R1sVNo8TnuCB0WDFZnoL3OrB4xC5h/JY7s6cW5HV04Krp1QM1qAEbwpEe4ke837401buZh6BZu5Iou1K/5CAVqOwqUoDzx41bJPdMzq/OqrLHtxOmFM+GkJU/fUmlysLpW6868ySY/5K7b8RIu2vwUdjgcaf9gmVw0GcfXHo/R+aNhtylQtOBwT7d8T04onIBRuASXtukZwukbnxACDU4XIgD8CKGjN4KOhKvI+hVku5ZZ7UxXsFrf3q3VsGyxL4Wn4hl80rwcADC7fDZE20L4u7WsFJsjPQGBxBP0ssky0w8YWArEzOaKwO5rVhtlQEw+wXLnAifdDYw/EZh4MnDU/zN3PJTxSn0yO7/FbkM0MvgCSN/J4nP64o3AUh6s1rbVxsKYWaYFq72bsWGQzOrekD0hszqdwWrtmNEhL3DppUA+3fUpAMCnJ2SZmck/6kh5u/7fyfebfbylr+aEnwOXLAWOvjF9P1N/b3XvQkhRsNnlxCanwygDMqZ0YLBaPx/yCoGYw5f6C9EJxw2dx2nH9Kp8AMB/NrZiZ1cfmoMhKArgjWmBYa3+qimKx8vbXVqw2kq1l61IUYAS/Xe2BqePPR2XTL0knlRghWNaJmRWAzJ5z6y5r/cR0S+AJ9CD1YGYKtc2qUoU0YPVOz7Bjo1L8ac/HY2/vP9LeJx2lAfk2mWwwPCzpz6L+6pvx8xQCFFbKoPVema1PI7qjR/77+jV6cFqfSdLStefAOCTQeo6l7z1+2WW/IAkLm38zjT3mcp2DFZnIGOnxp4CkooCHHcbLpryLfy/1jYcG2kcvMu8djLfDTcKfOYUgo+oEbSIjfi/XNlQ5fYPf4LC0r+h2WaDUjKBV973ht60R68NZwEXOcrgFALnF86ETW+WaXKwWq8h9kWsEyqAoLbNNEdVTa8B5/TIn9/b3WXc194TSX+dUgAnPnMijlO2Y4PLiRKt3mHiyYweQPGLmDa0FJ4sePLjmbYVM+StFqweW6hl+QXrAQAxVWB1QxdylIRtdencOgzIWsF66QqrBav1MiA9zfFFDyA/WCIWWgTNuhA49wng7D/LTHWir6DAXQAbFAhFQWs4OOhzerWLNV6HN43B6oTM6lI9WL0VX+7qNJ6iL4BksFr7LEjnezQhsxqA0WTx2JpjsezsZfjvotnycbMyqwFgzLGyvvGOFcnZ1VZssEh7zxMAqg5ObwKGEaxuRo22O3Cz02kcE8aWybm0uaUH4ahMetDfox4h0vPeHCSzGgDmjJIBufc2tWB1gzyPrCv2w6aXIDBz12WxPG7EM6stWqLHSvS+EzvXxO8z+xwykX7M722Lz0W7BYPVZnIH0KUo+LJrYIJIV1i+RwOqmtq1SulEmYkf7kL9U+fiTrELf/7izwCAkXuqW93bCxuAWCqD1foxVzsHqy7cw5j0WtqqQC/csjZ5KmmZ1aPt8j2nuOT6s3+w+oeH/BBX1D6FqlbtfZum0p3ZjsHqDLTXmdU6rX7qNGUDdvQrCP+z93+GOf++EA/n5aJHeFDgT1Hx/D2IqlFc+NKF+ENJEDvtdryHzWgoWie7SFbPNmVMGWfc8cAZDwEn/sLskRjG5I/B8i3b8P2odlLlyYtnhJhkfMF4eB1edKkRrHE5EdHq6viEGm8klSad4U68uuVVvLTpJQCA1ycvynRrweq+aB9aeoJw69l0abxKW+6XpRfWulwY4RsYrNa3O+VowWpbKk+cbTYgR9YKQ51Wz7hL1qyeUSG3lvaqLWjs6MNbm1ciZKtHvlPP2knTha7ErImiMfGLMt39g9XauMzawunJjzdx6UgoBRLphVFjyuwyIETDzG6zo8guj5+7Il2DPsfj8KA2UIsKf0X8/ZzqbOF+tRr9jgAUewjr2lYaT0msWe0zuQwIABxedTh+eMgP8a0p30KhpxB5ekadmZnVgQrg4G/Jr1/9cTyrQwsGMFhNey0hs7o2IpMsNjmdEFpmdXnAgxy3AzFVGNvAu7Ugi0dVjR1yKWUEq5NLC8ypKwIgM6v1EiCTy3OMrHA96GIKo8kiM6v3WqkW9NqVGKy2UNNY/Zjf127tzGoTfWaLYX5tNS5reDnp/qgaNfpk5Kpq6porAjKYWzkDAFARlWu2RkQhhECNHhhuGTww3NcjxxhLZWmjhHIyHzZ+iLtWfhveqkdQ39a721rabiHQp6RhXeyTx9VRioxf9GAHAGBLa3IZEEVR0NGryHgCYE5foizEYHUGMhKrsZfR6sqZ6FUUdHmaoahNSV3mg+EgemIhCCjogQcFPnMCiV6H19im+47XA6EAHhUoiqlA1SGmjCnj2OzAtDOtVTKloAZuAdi3fyi/NzmrGgAcNgemFk8FALzhiwfl/KoA8kYM9ddSoqm7Cde8cQ1++p+fAgAK82UWX69WBuThlQ+jPu9q3F2sncynMYg4vlBuP1zrcqJM6/CY+MF8y7xbcPG4m1CqVwZJdVb6cT8B5n8XmHiq/F7LWK7Jk+U+FGc7PtrShjs/ug3+UfeioGy7fF66dmUkltVwuOPBdatlVitKQimQxGB1womq2WVAiFKg2CGPUc3R7kEfP6HuBLxw+gu4ce6NCTWr81M7KHs8WG232TG3QiYXtOEz9IblojKiN5kTLuTYzGiwqH0uasHqCYUTcN7E8zC5eLK8Xw+EmZlZDQCH/0AGvnZ8DKz5h7xPP94ye5P2ln7O0LkDNdEoFABddhvawh2AEFAUBaO1ZoZ6KZCukJxnXiFS22xa12/bvG5WTQHsNgXb23vx7y/kBf3pJVr/DMDcC0pGsHq9vA1pu0e4c3ZoJYMEq620A84IMnbEx8XSB0nq/LLnVlOsF+36ji3I+IsuV1VTf9FmxEEAgLKovADXpwBtoTajyeKWflnMQghc+dqVeKznOXQpCkQq/1/1Ei09rbDb7Nga3AibuwnBUHRAE0MhBA6vOhxTvOPhEypCShrWK9r46qLyONqndkKxdw/IrAaAlmAonmDGtdSwYLA6A4l9zazOLccVlSPwXyPKMCJ3+aBd5r1CRTc8yDepDAgQr4P41xztoBAJy3B8NYPVGaugVt7qmRRpzlweyvSS6QCA3xXI4PA41QY7AATSG+gv8MgtmZ3hTsTUGEoK5fehXvkebe2RWWE+vflGGrcUjS/Qg9UulLjkyUJi/bD5I+aj1jMfhXp5l1R/KE85QwasA1qz1e6dgKrKLEgANkc7Ptzcig5ta2mtfuHNrCBFjp5ZvSv5fivUGzSaLG6J35e40Ej1ljoiE8zz12BRsBt5+vF0d9LWYDE56HTa2K9B6VyAWHACNjXLANidR9yJhw5/DZG2QxBwpOl4m0i/uNXVCMQiAx/XF+BmBsIAecyd9V/y67Vyt1K8waIFAjuUGfTz1mgvPEKgQtv6vdkG4306plQGWNdrwerJ+YeitL0GldEolHRkCuuBo1g4oTYk4Hc7MHWEPGat2NoOAJhSKC96wek3N+u1eIy87dohmytatfmplejB6pYv48de/QKcFXbA6cd8ocYTM1j6IEmutwi1WiP6j3bGGxyG1TAmFU3CWG85nEDqL9podatdAIq17OqG7oZ4GZB+gdeIGsHr217HKmyEUAAllcFqvTxRbxvKfXJXr83ZCUAdULdaURT86qhf4fLcM5GnCoTtaXgfaDtSfGv+iXs8Y/HzaXdBxDwDgtW/+OAX+CD4O0TcWtklBquHBYPVGUg/L9mX0kaTvTJI6PduwIaELvP6VgqfKhBSvHDazZsSB5XKq36feeU/rCYSkQvForGmjYm+ov61Zv3F5oyjn2NqjsE1U75tfL+4S3tPpDmzOs8tFxWqUNEV7kJ5UT4AQER60R2KorFLZp749Dd9GrcUjcmXC4vNTgcKXTJA0v+DuTkYgk/Rmz+mKRjgLwGgAGoU6GlBmV9mMCv2MD7Yth29WpO0Wr9W4zrdWTuFo7Vx6jWrm5Ift8IWzvzkhmkA4kF0KyyAiFLgmoojcdeuFswQe7GDzMgWTlfNarnj7cjqIzHWcQFivbVJTRZbg1EAduTatIBFOhdBvmItA1wAnTsGPm6VzGoAqNXKRNW/L29Zs5r2lf4Zrqn1yPPWzbtpsjg9dzFmNE3G6Eg0PZ/t9oRjWL9SIHNHFRlfL5xYhoP1HBEzmysCMiClnxftWgu0bpRf55aZNyary6uSxy41Gv99GQkPFjimOb3x3UE7V8vb/FrThmNJ7gDm9Ml10ns73jPuLvWV4i9f+wueGaeVr0r1WmXkPGMNWaFlVzcGG1FTJI9X/etD6/EhAPCoAoorheccCcHqEl8JbIoNUGJQHMEh61ZHemUyVyQdwWr92NmyHgtXL8XRTe8AsKM5GEJ3KGo87bWtr6FZeQd2m9YzibsMhgWD1RlIr1mt7EO0ekrRJABAr6cFG3YOllktEHGYG6TQmwvpRkaiQNXs1HfVptQpHAXULIh/n2ONzOrJRZNxaO1xAGSNwa+1N8sHAukNVjttTuQ45Qlna6gVubmyZpkHYaxp7MKubi1YrQrZPMruSNvYRgZk9u1OhwNu7YNXD1ZHYhE8v+F5rGhZBje0E5p0Nae0O436YQg2wevwIuCUAaW1zdsQVuVYa33acSNdJ/TnPA6UT5O3wF40WDRxoWFkVieULolYKFuHKBWGaEqmu3fFvTjj+TPw3JfPpT+zWutuj+0f4TC/LLeRGKzeFZSP+80oA2KzDSgFksQqmdWAPGcE5G6unlbWxaV9V5QcrJ6UU43JkZhsnqjN9f7B6ob2vviF+3TWrAYGHM8umFeDxQdV4XfnHYQHL5gFRyhN9ff3RqW2ztv0JlCvlQesnmveeKxOUeLlU/RgsHFMs8i5mpFdrWXwFzPBLIkngHm9WrC64b2Bj4e0vgqpDlbnlgOXvgF84ykjWN3Q3WCUAWns7ENfJBYfln4RTABOAPZUzje9ln5vGxw2B4q98gKh4ujAtraB5UkAINYnf2/RdMSu+jWm9ax/EQVaJYLEYHqnVtooJ6b3/2Fm9XBgFDADxWtW772p1UcAAJrcYazf1Wbc32s0BRGImRysnlI8BQ5bPBhXG40AtYeaOCIaFjPOi3/ts0ZmNQCMK5qAf7SGcVtzKwKqkI34Uh2YGERFjixjUd9Vb3yweRHCFw2daNPKgfhUNe0fennuPORrDcnabPKkoKGjF32RGIKRIG54+wa81XE3fNAbfqUxUzhXbhNDUNZkvG3BrXDvuhyRvgIIrQFZtVs7QqYrs3rCScBlb8Ub4ujB6gFlQCzQyX3QmtVaJoBVFkBEw83hQgxAl3aRvr/6rnqsb1uPYKgrXk811dnCCQ0W0b4VeHgRLt5yNTy+NXhzh2zIdNvy2/DXrXdAce2CVzGpFmK/JotJrJRZ7S+SF8kBYPNbMM6YWQaE9la/zOqr6k7Fk102nNjdY5TLGqsFqzfsCqIvEsOmtkY4lW4529JxYcTuhLEK7JdZXZnvxS/Pmo4TplbIpKZebUt6v4CLKUbJtSg+eEheIPfkxUtd0ODKZLIZ3rxT7myxwjlkosTjfm4l4Elho8BM5M7F7L4+2ASwuXMzGoINyY8btdvTcNwonQCUTUZFLF4GpMDnRK5bxl4SS27omdUOYYMCwO5OZbBaOzaFOoFYBOV+vRRI+4AyIPVd9Zjxpxm4OSwTg9R0rD310lAAmpxu/DnSiDElf8fF9n+iaasscxpTY+jSmncHVH03NDOrhwOD1RkoXgZk78PVFXXHoDAWQ0xRsK31E+P+xJrVIp3BpkF4HB5MLppsfD9y3rXA3MtNHBENi0mnxr+Ohc0bxyBqvCU4vlv7IMwbsW+1dYZJbaAWALC5Y7ORLedBGKsbOtGp1fTzCWHKh97pBdNwYUcnCkQExTluqAJYtaMTfVomjyKcyNGDJ+kMcurNC7tkiY2ja47GLcedhsq8HCg2eRKWp2rjMqt5z5BlQPSFholB4cEyq1kGhLLcO8GtmFVbjW+jcdDH9fMhn2KTNTiB1F/ATGiwiPcfBNQINtsjcNY8gvWxRxGJRrGsfhk29b0LxRaCx4yLg0D8Aldi6SCdlTKrgXhT7g2vaXcoPK7R3iuoBZSE5bHLH784pH1Ojiz0oSLPg1BUxbJ1O7G053I8PfY/aLPZ0vPZrih73Cli6NUSlLwmlwEBgLrD5W2n1gC7ei53z+7J/Kvk+WTTSuAPi+K7cKyyWyTxuF8yzrRhWJY7DwFVYIqWtKxnV7+w4QWc8LcT8POd72jPS1OQ35OPszuDeHJ7Iy4d/w0oihKvW50QGNYzqx1Cvj9dnhQe1xLPs/o6jLrViqMD21qTkwv6Yn2IiRhUyHO0tMSuqmYDX18CXPkxGqpn4edFBWh1vYYfOR9D2Se/BQAEI/GdcAFV7xPA847hwE+IDKTua4NFAIq/CFNi8i84xCcIajV2JhVNwlg1gIKYCsUC3dK/M/M7ePi4h/GP0/+BiXOvMrcZCA0Pdw5w5P+TH0aJWdZWkJNQKy/NJUB0RrC6c3M8s1oJYXVDJ3q0LB4zMqsB4Nqak/D91nZUR6KYUS1PJj7d1o7emDx5UOCC1wiepPFDWW+ymFA/9aRpFXjhqtnG976wdoJjVrBaz6zuaQVi8ZpmltiWrmdJBpviTXtYBoSyXJG3GDFFQYMSG/TxHq3evVfPirG7U98sSj/H6W0FVvwRADAxHIY95gBsvfj3ho+NIDpUFzxmdZnXjxm71g58zEqZ1QBQrX0ObHhd3rr8DIjR3nO44hdnAHkO6/QiCkDVLjbbbAqOnyIDKs9/Gm9U7BEifRmvDq1utZ45PRQjWG2BzOrSyfEybgAwco55Y8kUJeOAS/4t//8SEwyscq6WeNwvHm/aMCxLyzT/ZlcPfjT3R5hfKXs57erdhfpgPTqj2rl3utYqLj+qVWByOIw8LZ5Uq9Wt3pjQ0yykXRRxqDJ25PSk8Lhmd8QD1j2tGJU/CiN8dYBwDahZbYxLyHHZ3Gk43ioKMOUMoHAURo8/BYoQ2OlwoNFuR2HrxwDiJUCE6kTApgermVk9HHj2lsH2NQl0irsEAODybsFGrRbi7Yfdjpt6RmNcJJKeN/wezK2Yi0MqDkFNoAauxAYilNmOuA743y3xbuBWkRisTnNzRd2i2kW484g7ceHkC42TTy/C+Ky+A6HgKASCVSiLxcypfaUvusJBTKvKBwB8Wt9uZFYL1RkPVqdzS2K/LL/6rno8s/4ZvL39TVwx4wpcPOViOCMmN6HxFWnZWQLoaY7fb4zLxOOtr1hr0CSALm1LYsgCjR+JUqgyUAMAaFWEcSEwkV4WzaemKasaiGdHNnxq1Ml2ABgVywcA/HP9m0awWhEuuLWa/Gn/PKjWspU/fwr44vnkx6yaWd2uBRF5TKN9lVi32pWLc9xBzK6txrbgduPuk6bKi+YvruofrE7TOYd+fHroWOCde4d+Xo+FyoDYbPEmqIBs+kZ7VlCb3P9HsVsnmYuZ1bunBaGP72jDWePONJrC68FNo2REuoLVihK/wKBdaB5bJo9Z65q6jKfpQWGnNjxPKoPVQFKTxStmXIFHjnsKkfZDsL29F9GYajxNX386tbuc3vSWncmddDpmhGTSwGs+LzpiMlbVGdaC1TEv8p1agpKDNauHA4PVGSieWb1v0eqjiqfjupY2HNPuSmrc4+yTNVWFheoJU5ZRFFNKbOxRUmZ1lSlDGF84HsfXHo+aQI0RgPApYcRUgfCuE3Bk8BhMCEdMKQMinD602GxYGwtienU+AOCz+g7jZEGNOeFVTMis7lc/9bNdn+Hmd2/Gs18+i8umX4arZ12dvqYlQ7HZ4zXaE5ssWqHeoM0G5GrZ6R3a4lur/43cssH/DlGGC+RWIFdb9OwI7hjwuJFZre82SEewurAu+ft8GVCfD7kA+rTlfURUOZ6JZUVQ9Nry6c6qG7MQmHOZ/PrZ/44fN3rb4xfg/CXpHdNQSicl/99ZZbs8ZY7EutUuP3oUIKooaOiJl/U6aGQBygJuQJHvT5dQ5KI6XZ/tJ98LjDgYUCPAv28Gtr0/+PP0zGqfBcqAAPG61XYXUHmQuWPJJCNmxb92+a2zpmJm9e7p5T1ETK4FtIvhXWG5RsnV6ken83Mq6s3Ho4Fc/GLlQwjHwhhfJtdJicHqmaUz8cwJb+PSrZUAALs7xYHXhGA1AJTmuuFy2BBTBRo64qWO9HIbbi3j2+1P8xovtxzHTDoHAPCa3wd3pAORmJoUrA44tGA1M6uHRUqC1du3b8f555+PoqIieL1eTJ06FR9++KHxuBACN910EyoqKuD1erFw4UKsX78+FUPJSnrN6n01oepQfLOzC0dGdmLDzvhWD1ePDKQESkcOx/CIMocFMquTaAEIN8KoyJXBiro8e9Jj6bS6bxeOrKnCpd4QplfJxf+m5m40d8sTGlV1xBssprMGc79gtd6ksrE7oRat2cFqIKHJYmKw2gJlQID471CvHdmpZVjnVpozHqJUc+diRFQuInYkZEjqjJrVerA6HZnCJeOB73wInPsk8I2ngGNuAgAs1MbSgS+Mpx5b45ULXiimNAPGcT8FyqfK4PTGN+R9LRvkbU65ucfaRHYHMO+78e+tkoFImSMxs9qdgwpFzqHGvvguKZtNwQlTKqDYZJadT69zna5g9eijgW8vBaZ/A4AA/n4FEBmkfrWVyoAAwISvyeSQaWcxmLMvquJl7iy1WyTxc7KYmdUDJPxfbbt3Ep7821l4r+E9I7gZ0MsEpvHz0+7Nx28K8vDo9qVo6m7CuHI9WB2EqmV6K4qCrj4VAaQpS1ivqa+VNbLZFFQVyJ+Z2GRRD/J7o3KcPn/6G3oePePbAIAPPW4otiDWNXVhXuU8/HDCs+jZeily7PrvjMe34TDsweq2tjYsWLAATqcT//rXv/DFF1/gl7/8JQoK4h+Sv/jFL/DrX/8aDzzwAP7zn//A7/dj0aJF6OvbQ5MIArD/mdV6R+HxyjZ8Xt+OnkgP5j0+D9+u7EOvoqBq5KjhHiqRtenBRMC0mtUA8J+G/+CPq/6I+r547cEl35yGYycVYuEYLahpwkn9yDx5TGi1KXA4wqjVmnCs3amNU3XBa9RQNakMiBBGM47twe1Y3bJaPmaFYLW+OOxpi99nhcxqID7f9WB1l55ZXW7OeIhSzR1ApRasrm/fOODhYm8xSr2l8EfTmFkNAMVjgfEnAOMWGYv9qZ3bIKLxY4QQCo7J0467haPMadBqdwC1WoO0hk/lbcuX8rbIYiW+5iU05975xdDPIxpMYma1049yh3y/Nfa1JT3tu0ePwSkz5Y4C4wwt3Reij79dXixqXgf854GBj/daqAwIIM+7r10FnHqf2SPJLJUz41+HuoZ+XrrpmdWevOQ1FUmKYuyYeiHHj5/2rMWza56KZ1ZH9Gbw6Qu6Kp4ClEdlRndDdwNqCn1wOWzojcRQ3xZvaNjU0Ze+PhkJmdVd4S6c/vfT0Vr0QwAxbGuLB6v1IL9fS0j3+dOf+FOdW43xeaMRUxSs8AMrt7YAADp6AcT88Nu0c0gzyndmoWEPVv/85z9HdXU1lixZgkMOOQR1dXU47rjjMHq0/OAXQuBXv/oVbrzxRpx66qmYNm0a/vSnP2HHjh147rnnhns4WUnPrN7nHUBFY7Hd6cYbuTZs3PkyguEeBCNBtDhscAuBshF1e34NomySGJjLM6cMCADc/8n9uOvDu/Bpe7x51egCgffEpTh9+2/RaVNMyazO8RejUNuitqVri1EKpKujHJdNvAmi+TDYFO2AlM7giR5ojfQAvW0o8cW3n5/1j7PkyYwVMpj1RkI9LfH7rBKs1ncS6Nv59drVenkQomzj9KJSLwPSuWXAw4+f9DiWnrUUdXDIO8zIXtYyOu29rZjmT6jtKlwYr2hjLp+a/nHpKqbJ28bP5K0RrB49+PPN4vIDR98ov55xvrljocxTopUz8BUDNhvKHfLzujHcnvS0ohw3zp8nPzM9+q7XdJ+reQuMHRlYfh8Q6U1+3MistkgZENo/7oRz2XBw6Oelm36eWzLBOqVJrObsPwOn/x4HO+V78MPEzGp9N4Q7jWsVbz4q9F1m3TvgsNswukT+/LVaKZD3G97H/635CZbnaRdG0his9jv92Ny5GTGlG4qjM6nJYom3BDOLD0F1WCsD4jEnIHxMzbFwCIHNTge+3CZ3+bYE9V02DFYPp2EPVj///PM4+OCDceaZZ6K0tBQzZ87Egw8+aDy+adMmNDY2YuHChcZ9eXl5mDNnDpYvXz7oa4ZCIXR2dib9OZDpwep9zqx2uLC0dCRuKCkCct/Bim2y9ppHVaHCDsUq9QaJ0iWpZrV5mdV1efJC0eaurYBdbjft0bJholDhVYU524lcftRE5Ifu1raNmFUjTybeXRdF+67J8HYnlA5K5wLN6QH8WgZHxzY4bA7jocOrDkfAFYg3DDQzs9qXvK0NQDxYnc5M9MEws5oONIqCGTE7jg92Y4JvN8d7rdGhKcFql994b/7ukJPw3+N+hgm99+PikX+Ac+cq+ZzyKekfl65iurxt/FzW3tSD1cVjzRvTUA7/AfCtl4FFPzV7JJRpCmqAxQ8DX/8DAKDcKbMeGyMDM1oLPAU4ZfQpOCqircnMuBA97Swgb6QsOfbxn5Mfs1oZENp/Vvw/HH88cNAFwFE3mD0S66qYBkw/B9PGnw6nENgZ6UIoFkJVThUKQlogNp1rFU8+KmLxzGoAGN+vyeKmjk34sudNbPRqmdWpXoPq66WeVtgUG8p8cn1uc3ZgW2v8Atxxtcfhysl34uQ2ue5TTCq18c3JF+Kt7e24uq0D9du34+9f/h3/3vUrOHJWwadnVrPB4rAY9mD1xo0b8bvf/Q5jx47Fyy+/jP/5n//BlVdeiT/+8Y8AgMZGuSAuK0tu4lRWVmY81t8dd9yBvLw84091dfVwDzujCGj1hPbj707Nk1s1Q95deG+z/H17hUC3S2YPEB1QCmqBusOBqWeZs61aUxuoBQBs7thsXInt7WsHALgUG5yAObX9nH7UROTV983t6/G1aZVwOWxYub0Tf35vK3x6c0WHRzYUTCc9E759GwDge7O+h9nls3Hr/Fvl/UYZECtkVg8SrDY7s1oPVnfUA2oMCGqNo5hZTVlsEXy4c1cLvlY8fegnmRmsBows5bzOBnxn3kl4+rLDcM0x04CmlfLx8mnmjAsAisbK4304CLRutG4ZEN3IuempPU7ZZ+rXjWaAZS55LGiKdg942uj80fjpoT/FtUEtQGHGbi67E1hwpfz6nV/Hs5rUmGyCClinwSLtP73JrZUaGXrygFN+E2+cSUPyTD0TU0Ny3bSw8lD8a/G/MKNbS8BMZ7Dam49yLbNa7/Wj161e2yjXTn0xmfHt1Y8lacysBoByv0ycUZztSZnVANAcDMGjpKk8yRByXDnwaLtVWpsb8d72j9BmWw6bp5ENFofZsEcnVVXFQQcdhNtvvx0zZ87EpZdeim9/+9t44IFB6mjtpeuvvx4dHR3Gn23btg3jiDOPapQB2fdw9YTyg2EXAr2OCP5TL2u7eoSA6mc2HR2AbHbgwheAxQ/u+bkpNCpf1oZe1bLKyFDu0Woj+hQta9iEMiBwuDAqKrfNb2zfiEK/CydNrYDN3YiI51MUBHaaN7Z8vW613H71X1P+C39Y9AcUeYvkAi2iLSrTWAduAH3brZXLgHRuB7qbZeM2xcaag5Td9ONBKHmHXnNvM77+/Ndx0UsXxYM7pgWrtcCvHggGZOO0XVqZKDPLgNgdQJmW2d3wSbzBolWD1UTDoMpThCmhECbZdnOuY5QeM+mzfeb5gGIHOrbGd0r1dQBagpNRW5gy12Hfl4Hh8/9q9khof5RNwrmQ5yCPrP4zmoNNgNZMOa1rFU8+KvWa1UE9s1pvsiiD1aGYDKp7hVYcOtUZzP2C1VVaLyKbqxn1CTWrhRDY1RWCG3r2snkNlO05MiEpR+3ER/Vyl2qRNw9uoSdyMbN6OAx7sLqiogKTJk1Kum/ixInYunUrAKC8XE6+pqampOc0NTUZj/XndrsRCASS/hzIhNA7te773/VWH4KxYW1bf/RFAMCocATuQvNKIBAd6GaVzYLD5sC2rm3Y7JYnBD1aMMUHLWPZpK1Oo4QMlm/s3AwAOG/OSDgCn8Fb9WcEqtbIJ5mxOEtssthfYj0/U2tW9ysD0tsOaCeApmc5BbTM9O5dQLtWCzenLP0Z8kTp5AkgBqCxcxsiasS4OxgOYm3bWqxtXRsPZJt1oWuwYPWuNfKCkrfQ/N0PeimQdS/Li4KK3WggRZSNRvor8MSOJvzUNXCeh2Ih9EZ7oZp9IdrpleVLgPixQy8B4soBHC5zxkXDx+6QJTfyR+75uWRJxxXNwJRQCD1qGA988tv4A+lcqyTUrNbLgIzTgtUbdgXRG46hvVcGiL2qTFhKfWZ18npp9Ob3AACV7jVoDobR0SvP1y5+5WL8av3Z+MynZS+btDYGgBc9DpxVWY7m4hXY1iHHPb2yUiYXAMysHibDHqxesGAB1q5dm3TfunXrUFMjP0Dr6upQXl6OpUuXGo93dnbiP//5D+bNmzfcw8lK6v7WrAaAypmYEpZbJ2xeGeQ5uqcXXgariUzjd/oxu2w2AGCZWwaHe7TmGz5FO0ybtNVpguLGeR1dOL/6WADArJoClAbkmMYWaIsyMzKr9TIgWmZ1Er1etc1p6lX3AQ0W9aCwr9j8zGpfYfwkb/tH8pb1qinbuQNYWD0Cx35+NzZ1bDLu7olqCzOnN6GEkEnB6gKt2XVbfHxo/Fzelk81v4mV3mTx86fkbUENA2GU3fTzr/7NCwE8ueZJHPLYIbi+UNvGb+Zne/8LXWyuSGQpttxyfLdNlhr7rFn7XLe70/sZ6snHpFAYT0QK8MjxjwAAqgq8GJHvRSQmsHxjM3YG5XmQH1pmdTrLgAiB0Q1y97/bI3eJ6Bnf7aF2hEUPfDC/LnTY5cNqtwvdvhYoNvnZMKd2RDxbnpnVw2LYg9XXXHMN3nvvPdx+++348ssv8fjjj+P//u//cMUVVwCQpSuuvvpq/OQnP8Hzzz+Pzz//HBdccAEqKytx2mmnDfdwspLecHq/livuXEx1FRnfVkRcOKqnB0qgcjiGRkT76fCqwwEAKxzyHW4Eq2FusLrM4ccPW9twesksAPIYftTEfPmY1ymfZEa9byNYPUhmdWK9ajMDO0YZEG3B2KYFqwsskIWoKIB+3K//UN6anbFJlGruXJRojYV2BHcYd/dqiwufw5dw/DCpOWtBrbxt2xy/r0lvrmhiCRBd9Zzk71kChLKddkFehIOIqtGkh/qiWm1XPZPISsHqTu0Yx/JeRNbgL8H83j782jsB140/X96X7nMNbz78QmBKb7csnQi5tjtifAkA4I21u9DSI3eK5OjB6lQHXo1gdTvQtgljIhHUhSMoFvkAhFFLuyssbwv147CJCUnT/XId2u7tguKQSVIzkjKrGaweDsMerJ49ezaeffZZPPHEE5gyZQpuu+02/OpXv8J5551nPOe6667Dd7/7XVx66aWYPXs2gsEgXnrpJXg8TJffG1+lDAgATCmRWTF+xYGXnCNQElMZpCAy2fF1x+OxEx/DPTaZ3ZoPB46sPhIzFS0QbNYVWj1rOhyvGaZC7s7w6FfOnGaUAdlNZrVeBsSsYJPO169mdbssh2WZLfN6k8XterCamdWU5TwBVEdkRs7mjs3G3T0RLbPa4U04fphUQkgPVvd1xJuz6hfl9MfMVDoROOam+PdWOZ4RpYrThx8XFeJgsRnPfvls0kPxRmQqYHMAdhN3GWjNWY1gdbuFLpATkSy3B+CovggO9mvlDNO9VtHr1+v9OTRHjosHq9u0YLVPTVOzQH29FOoENr2FymgMz29vwHfEZACKEazu1Mq0Fca0BosmlgGpzalGbkxFCCpsTpktn+cOxDOrGaweFsMerAaAr33ta/j888/R19eH1atX49vf/nbS44qi4NZbb0VjYyP6+vrw6quvYty4cakYSlYSX6UMCIDRIw/Hbxp34R9qOWx6E44Ag9VEZir2FmNayTTYtMDvDHcRfnP0b/B9pVg+wazaV64cBBUFn7Suxrq2dQDiWYge/WBkSma1VrMv2BQv+6HTa866LBKsjvbK7cNWWzjqAX89gzOXO2woy7lzMU4LVq9pW2PcrR/TvA6v+ZnVLh+Qo1040kuBdO+St1bJkDzse8CiO2Tt1Klnmj0aotRyeuGAQFgBGrsbkx7SM6s9QsisajN3cxWNlbd6sFrfzcUax0TWoH+GB3cm7wJNJy2L+SVbH37+/s/x2a7PAAALxhTDaVewtbUHvQ2noXvtjTivUwZhU54wldjQeu2LxpelHhksX9vYhagaNUq2FatasNrEutA2fxHm9vUl3RdQHPFvzCiRmYVSEqym1BJ6IZD9PB+yV8/Bkb29KN7+aTwrkZnVRNbQvzaicYXWpA89lw+P5uXim2sfwqNfPAogYXFmNN4wYWz+oniTxfoPkh8LWSSz2h2QmVaAzJC02sJx1FHJ3zOzmrKdO4CJIbnIWdMSD1brCyCf0wJlQACgUKtb3dovWO23SLAaAOZdDlz9OTByzp6fS5TJnD6UR+V2+P7B6qSL92Y2dAbiZUDaNgOxSPwCOXc/EFmDHqzu3mleM2dvPgDg3143/rz6z0aw2u924JA6mWSztrEPHtUBn56UlOqgsM0eD1hveN24u9ARBpQw1jR2GlnVAFAkzM+shrcAi7vketNtd+PFM15EoaKVx4Rifm+iLMFgdQbS40P7m1mN4nEy4zDSLf8ADFYTWUBHqAM/jmzH4spyfNy5CZFYJB60NusD2ZOPuoi8sr2xYyOAhG2vqlbLzKwP5Jr58nbLu8n3m5Wt0J+iJNStbrHewnHKGcmBc34OULZz52JCWGZWb+rcZASa7Iodxd5iFLjzE8qAmNRgERhYtzqoB6tLzBgN0YHN5UNZVJ4HDRWs9qrC/OBEboVMHlCjsuyYlfpkEJFRBgTdzUBfu/w63RfGnT7A5kSF3r+jO96/42vT4jssJxQlZAmnoxTlpNPkbSwEAHg+x48Toh/BW/k3dPZFsalVllQUMReMkZlYsxq+Qszt7UOFqiAUC+HTXZ/CppWUg8vknklZhMHqDPSVGiwC8urV9HOS7zM7A5GI4HP68Eq0GevcLlyw459Y+NeFaNYvKJlV+ypQgVFacGdj+0YIIfCtKd/CzfNuxmS7Fgw2K+t75Dx5u3V58v1WqVkNJNet1mtWW6HuLADYncCCq+Lf55aZNxaidPDkoSQWQyFsUIWK9W3rAQAnjz4Zr5/1Om6f/cP4c808fhRomdVtm+QFS62pEHIYrCZKO6cPI7TM6u3B7UkPDSgDYiabDSjU6lY3r7NenwyiA52vCFBsAET8YnS6zzUUBfAWoGKQC3DnzK7G899ZgO+csQnTZ7+NtS4nYHfLY0uqnfRLYOLJxrd5sRi6ocLjawYAbGruxoziOVB6Eo5nZvVzAgBvIewAzu2J4JTRp2BM/hjrJEtlEQarM5DeYHG/M6sB4ISfAzO1LrSVM3n1h8gCnDYnFrjjAcMKfwWKIyHtQZM+kHMrUROVwepgJIjOcCcOHXEovj7u66hWtY8QM2pWA/HM6voPgGg4fr9Rs9oCJws+2WkbzeuASA8AJV4r2gpmnC8DY/4SoHCU2aMhSi13AAqAs6JufHvqt1HgLkh+XF9o2F3mZuwYZUA2x0uA2F3mZnsTHaicPozUzoMauhsQjsXPN6aXTsfC/IkYGYmY02y6P73J4tblWhk5JV4yjYjMZbMDPq0X0c7V8taMz3V/CSq0C3D1XfFG9YqiYFpVPj7Y+Rb+uuUlNNnt6asLbXcCX18CnPJb4KgbMVrrLxJzNAGIoqU9F+fV/ATe+jO0wdoBu2Po10s1LRnpotZm/HTBTzChcEI8WcoK688sYeL/MO0vvXzQV4ov2+zyYDDtHOtk+RERDvdX46U+mbnz9XFfB9b+SD5gVvZyoAJuARQIBW2KQGN3I/LcWl0xI+vbpAVa8TgZDO5pAXZ8HK+dGrLANn6d1sgEOz6Rt7kV5gbB+nN6gMvekh8sZmeFEaWalsF0RU8MOOjKgY9boV41kFAGZFNCCZBSJhYQmcHpRVFMhVdV0WuT2dV1efKC0remfAsIO4CPX7bGZ2ix1mRx3cvyNjACcLjMGw8RJcsplTWrN78jvy+ZkP4x+ItR07YWALClcwuEEFASzi9CUZko5RYivdnLdidw0DeBL1/FiGgMhUJBqxKF3VuPdzdUYOWOTrgVC9SrBuJlHmNhINwts6mN9SeD1cOFmdUZSNWi1V95zaIoQN1hQD6vuBNZxaG5o+BXVRQqTpxYdyLQ2yof0MtJpJtWx7g8Jovl13fV4x8b/4EVTSughrRgtVmZ1YqSUAokoW61lbZh6ZnVO1bIWyvWjnTnAh4LBPaJUk2f532dSXf//tPf48J/XYh/bvm3vMPsrBi9DEjnDqBjm/zaX2zeeIgOZE4fFABH9vTiuOqjBj4e1s+FLBCs1nec7dIayFqloTMRSXqTRT3hp3xK+sfgL0F1JAo7FPREe7Crd1fSw3pvIrcQ6cusTuTKgQLgYJlcDbt/A5at24WXVzXCA+1OM8aVyOWXO94AoLdN3jKzetgxWJ2B4jWrmWFDlG0K3AV4ensjnnRPgE8A0OohGldw000LVpeF5VX2T3Z9guvfuh7//e//hqI3kjAr6xuIB6u3fRC/Tz9p0DtLm0m/yGAsHC0YrCY6UOgZ06EuNPc24636txBVo9jQsQErdq5AS89O7XkmX7zxF2uLHQFs/1Depy9wiSi9HG5AseEXu1rwy9n/z8iqBoBILAKhXyC3QrC69vDk80UrXiAnOpD5+32Wl01O/xhySuECMMIu129bOrckPRyMyKBrrqqaUxdaO5YeEpJZ1CUl2+AsXAbXqJugVGkZ6WZnVitK/FirJ5ZZZXdeFmGwOgOpRs1qkwdCRMPP6UV1NIqKmBr/8LM5zPvgyy0HoOC0ri5cP/27KPeXAwAqciriwWozF2gV0+Vt0+fx+4JN8ja3PP3j6U/PrNYV1g3+PCJKPS0IrUZ78bVnv4bLl16OTR2b0BvtBQB5gRAwf6GhKPEa8vpW4f4LXCJKD0WJX5TXz3s0Jz57ImZsfhSrXE5rZNPZHcCkU+Lf8wI5kbUkXnjOrzEnsUbbqfVr73i8efabmF0+23hICIFgWA9WC3POh/RgdY/MPu9RNsDm7IRi70NVvpbNbIWSinpCUo+2Xjcyqy1w4TJLMFidiYya1YxWE2WdxAWR/uHnLTSvVqndCfhLcExPL75RNgc+hxxfhb8ivmgzM7Na3z7XvhXobZdfdzXI2xwLBKsTM5wUOzDl6+aNhehApwWrbQDG58lGZGta16A3ogWr1Zj2PAtkxZRpx7YdH8tblgEhMo/W5FoNBdER6jDu7ov2QQXgsVLfh8mnx79mZjWRtSQGq8unmjMGfwkAYHRfDwo8yY2me6O9iAl5LpSjquaUVNQu/NX2dGHhyGPw7WmXoDhPZllPKNJ2vpmR8d3fgMxqlgEZbgxWZyBmVhNlMW1BhEiv+fWqdQFZCgSdDdjRvQOAFqwOWyBY7S2Id7pvWiVvu6yUWZ3wf3fQN4HiMeaNhehAZ3cYx6uJuTKIs7p1tZFZ7Y1F5fMsEazWtwZrGQosA0JkHqcPn7ldOOTV/8J5L55n3G0cO4Qwr39HfzWHxndiFI8zdyxElCynLP51+TRzxqAfH7p3DXioKyxLWThg045rJgRetfM0BQL3LPgpLp9xOQ6pk0H1ER7tOGuFzGpvvrztn1lthZ5JWYLB6gxk1KxmsJoo+yQGqxMzq82UW4GQAnzS9CGeWvsUAKAypzLeHMTsBZqemdD4uawXpo8r8YTQLIljOOKH5o2DiCQtu3qCT16EW9O6Bj1ReeHNF7VQsLp/0yUtE4qITOD0oTQaQ0iNYHtwO6JqFKpQEYrJfh4e1aSgzmDsDuDcJ4CT7wVGzDJ7NESUKPGz3IzmigljaO5pxi8++AV+9M6PjIdKfCV4+5y38Y/q02V3NDN6eCQmQWmJUT1RGQgO2BzyfrNrVgPxhKQBDRYtcA6ZJRiszkB6ZjXYYJEo++gf0FELZVbnVmCn3YFvbvoLWvvkmCyTWQ3Et8s3fQ50NcqvXbnWuLJdORM49jbgvL/FM9SJyDxaIHqiRy7WPmj8ABs7NgIAKlWR9BxTlTFYTWQZTi9KYzG4FAeiahSN3Y3o0xtgw2JlQACg6mBg1n8xs4nIapIyq80qA6KVFetuxqNfPIq/f/l348KbTbEhz52HEap27DBjLWWzAU7teBoOQhUq3t3xLgAgRw9fOi0QrPb2q1kdYmb1cGOwOgPpsWqWASHKQkmZ1dqVWm/B0M9Ph0AlSvXt8RqZWW2BBotAcma1HqzOtUBWNSAXiguuBMYuNHskRAQAHpklNMrmh9PmBAD4nX4cVHoQqmOqfI4VgtX+4uS6+wxWE5nH5YcNQJU7HwCwtWsr+mIWDlYTkTUVaE0VC0fFyximm3Y+URTpRa4zBwICWzu3Jj/HKGlh0vmQfjwNd6Oxu9G4u0TRGyxaIFjt61ezOsya1cONweoMJNhgkSh7JTZYtFBmtVsABbADAM4cdyZGB0YBYa3chtmZ1fo2up1rgM7t8msrNFckIuvRtrQ6Iz0Yky9ryN86/1b89pjfyjJCgDWC1UDyFmHWrCYyj5ZIMNKZDwDY1LHJqFftEdqCmgEKItoTlx/4zkfApW+Yt/PB5QNcOVAA1Prlrs9NHZsAAB/v/Bi3Lb8Nf+tarz3XpONaQrC6MqcSDx33EK6ddS0ma8dga9SsZmZ1qjFYnYEEGywSZS99W5OValZr5SvKY/LYc2T1kch3+gCtW7TpNavza2XZj1gI2PSmvM8KzRWJyHr0DOW2zbhoykW4bcFtmFo8FbmuXOsFq41SIArgKzJ1KEQHNC1YPcktz8dWNa+CQ3Hg6OqjcVhUW5CZfeGeiDJDTonMrjaTVgqkziNvN3duBgCsa12Hp9Y9hbfCWvNFswKvepBcy1aeUzEHF025CIpefsnhNWdciQZkVmvnkKxZPWwYrM5A8YrVjFYTZR09SBLti2cJWyCzGgDKIrKeWWN3YzyrGojXFTOLzQZUaB21170sbxmsJqLBjJwrbze9iRPqTsBpY05DmV8rG2S1YLVe4shXBNjs5o6F6ECmnedMdsgA06qWVSjzl+Heo+/F3S3accPs4BMR0d7SLtzXOuT5zuaOzQCArog8nuWqelk0ExosAkmZ1Umici3KzOoDA4PVGUhvsMgqIERZyFsQr1G942PtPpOD1XnVgM2Bbi2T+q2Vf47Xq7Y5AIfLxMFp9I73Pc3yNsciNauJyFpGHSlv69+PN4nVmV2jsb/aQ+VCsfZQs0dCdGDTM6vtfhxRdQSOrzte7nSNReNZdSzVQ0SZwi+PV7VaDWg9s7pLyw7Oiem7Z80vA5LEyKxmzeoDgcPsAdC+i9esNnccRJQiRWO1QIr2oWd2ZrUnAJzzOCrevhFAH77s3i7LlADmZ1XrqmYnf69lgxMRJSkcBQRGyJ0r294DRh8dfyzUKW/NyiTqL7cc+P46ayzKiA5kWrmzYlXgt8f9FoBWllG/QK7YWKqHiDKHVgakVotJ7+qVZT/0YHUgGpEPmN5gMZh8v55Z7bTAeZGeTNbXIS9cMrN62DGzOgOpWrDaxmg1UXYqHpv8vdmZ1QAwbhGum345vtvajgdFefxKt9n1qnVVByd/n8vMaiIahKIAdUfIrzcuS37MamVAAJnRyfM9InMZza97jbte3foqZj57PC4rK2GpHiLKLFoZkLpwGK+d+RpeWfwKACCoBYdztNKP5tWs1oLVkX474LTGtpa4iK/vhAZkdnVEXxtb6BwywzFYnZFYBoQoqxWNSf7e7MxqTV5OBS7t6ERVqCcerLZKQ6FApcyW1OWwZjURDaHucHmrN2QF5LY1PVjNLZxElEgrA6KXDtrZsxMrmlYgqjea9rMECBFlEC1Y7ehuRomvBIoWWOqMyB1muXqw2qzAaybUrLY7ALfWq6BjW/x+ZlYPG5YByUDMrCbKcv2D1YlXbs2kNw/qawd62+TXVhkbIOtW600pmVlNREMZpWVWN3wit2968mQdRDUq77dSZjURmc8Zz/L7T8N/cMkrlxgPeYQAckpMGhgR0X7Qj1nBpqS79czqXL2nh+llQIaqWe1N73iG4isAQh1A+1b5vWK3RtZ3lmBmdQYSeoNFk8dBRCmSWAbEHQDsTvPGksibL297260ZrNbrVjt91qk5S0TWE6gECmoBoQLb3pf36VnVADOriSiZnlkd6cXEoonwJ/TrcAnBzGoiyiwlE+Vtw6dYtvlVXPnalViycgnuO+Y+vPi1v2Jur1Zuw7QyINrP7V+zOqIHqy2QWQ3ES3XqwWp3DssfDCMGqzOQajRY5BuBKCsVjpLNegBrBYM9+fK2ryPe+dgiJUoAADUL5G1BHU8UiGj39OPFlnflrVECJBew8fSYiBIYweoeBFwB/G7h7+BzyDJo5dEYkMNgNRFlkNKJshRIpAdNDR/i9W2v44PGD5DnzkO1Kw9+IeRa1Kxyj3vMrLZI9rKvX7Ca9aqHFc/GM5CRWc1YDFF2criB/JHyaysFg/UyICIGtGu1uazQ/FFXNQv4+h+AxQ+aPRIisrqR8+StEayWdRpZAoSIBsitkLfb3gd2rsbM0pl4/azXca9nAv67vcOo/0pElBEUxejfUdfeCADY1LFJPpZ48d6sgFMm1KwGEjKrtXUx61UPKwarM5DQM6vNHQYRpVKRVgrESsFgpxewu+TXbdoJjZUyvwFgymKgbLLZoyAiq6uZL293rJDbSnta5Pf6RTkiIl3NfGDMsUAsBDzzbSAahs/pw9HhqMxAZLCaiDKNHqxu+AIAUB+sxw1v34B7Vj6MMGBu4HWoMiBRrTyJ0yo1q/tnVvuHfi7tMwarM5AWq2aDRaJsptettlJmtaLEAzmtWrDaSuMjItpbhaOAnDIgFga2fxQ/phXUmjosIrIgRQFOvQ/wFQGNnwMr/yrvD+6StywDQkSZpk42my6uX4FSr7zg9vyG5/GHLf+UQUIzd5plXGa1HqxmZvVwYrA6A6ksA0KU/SacJD8Axx5n9kiS6XWr27fIW6tlVhMR7Q1FSS4Fogeri0abNyYisq7cMmDWf8mvN78jb7u1YDUzq4ko0xTUAnkjATWCKd5y426fzQUHYG7g1QhW9yTfb9Wa1REtqM5ScsOKweoMpJcBYWY1URarPRS4biMw7SyzR5LMmy9v1aj2PYPVRJShRs6Vt9s/Alo3yK8L68wbDxFZm36Ba+tyQFXjwWpmVhNRplEUoHo2AGCKEg/+5tq1rGUzA6/OITKrIxYLVvdfBzOzelg5zB4A7Ts9s5qIspwVL0j1r+fKMiBElKkqpsvbxs8Bl9bxvpCZ1UQ0hKrZABR5cat5nWw4DTCzmogyU141AGBKLL7mzLVp/YlMrVmtB6v716y2eLCaDRaHFTOrM5BRs9pmwUAWEWU3vQyIzkoNIImI9kXZFHnbWQ+06JnVo8wbDxFZmzcfKJ0kv179gnZfAWB3mjYkIqL9li+D1bO7e3Dn4XcCAHIUu3zMxZrVe1Q5E3AH4t9bpfFjlmCwOhNp0WqGqoko7fQyIMb3LANCRBnKEwAKtLIfIgbYXUBelbljIiJr08sHrf67vPWzBAgRZSgts9rRuQ290V4AQC60YLWZZUA8WgA4FkoOWGtjtExQ2FcInPN4/PvEwDV9ZQxWZyC9DAhrVhNR2iWWAbE52EiCiDJbxbT41wW1gM1u2lCIKAPowerGz+Ut61UTUabSgtXoqEdnuBMAkKNv4zezpIUnL76bt22zvI1F4z2TrFIGBADqDgPO/xsw/iRg6plmjyarMFidgfTjB2PVRJR2iWVAvIU8EBFRZiufGv+aJUCIaE/0Jos6f7E54yAi+qr03WS9bTiz9kS8eMaLuNalBbDNTkgq0nqI6GXaYqH4Y1YpA6IbsxA493E26R5mDFZnID2zmjEiIkq7xDIgLAFCRJmufHr8azZXJKI9ya8GTvmNrFWq2IExx5o9IiKi/eMJGLtmfd3NqM6tRnkkLB9zmdwsUE8gaN0obyN98ceslFlNKeMwewC074RRs5rRaiJKs8QyID42VySiDJeUWc2MGCLaCwddIP+oKmBj7hcRZbC8kUDf50BHPVA6EQh1yfvNrr/cP1gd1YLVNidLth0g+OmaYYQeqQZgY6yaiNKtfxkQIqJMllseb5BWxMxqItoHDFQTUabL18p+tG+Vt+GgvDWzZjUQ3+3WuhHYtRZY+Tf5PbOqDxjMrM4wCbFqKKwDQkTplphZzTIgRJTpFAVYdDuw+S2g9jCzR0NERESUPkaTxW3yVs+stkoZkJYNwONnA22b5PdOBqsPFAxWZxg1IVrNUDURpV1izWofg9VElAWmnSn/EBERER1I9CaLHfXytqdF3iau+cyg73br2pF8f/eu9I+FTMG9SxkmIbEaNmZWE1G6sQwIERERERFR5jPKgGyTWdV6MLig1rQhAZA7eBN39OrMrqVNacPM6gyjJtUBMW8cRHSAcgcgDz6CZUCIiIiIiIgyVd5IeduxDWjbLL/2Fg4eKE4nRZGlQHZ8LL8/8S6gaRUw6ghzx0Vpw2B1hkmMVbPBIhGlnc0GeAJAXwfgY2Y1ERERERFRRtIzq7sagJ1r5NdmZ1XrCkfLYLViB6YsBg75ttkjojRiGZAMwwaLRGQ6vfyHr9jccRAREREREdH+8ZfINZ1QgbUvyvsK68wdk06vW127gElSByBmVmcYkVC1mpnVRGSKo24ANi0Dqg8xeyRERERERES0PxQFKJ8CbHwDWP+KvK/AIsHqg78FtG4E5n/X7JGQCRiszjBqUslqRquJyATTzpR/iIiIiIiIKHOVT5XB6nBQfm+VMiC55cDih8weBZmEZUAyjEioA8IqIEREREREREREtF/KpiZ/b5UyIHRAY7A6wyQkVjNYTURERERERERE+6d8SvL3VikDQgc0BqszjFDjX9sYrSYiIiIiIiIiov1RPA6wu+TXdjeQW2HueIjAYHXGSWywyFA1ERERERERERHtF7sTKJkgvy6oAWwME5L5OAszTGKDRWZWExERERERERHRfiufJm9ZAoQsgsHqDMMGi0RERERERERENCzGHCNvaxeYOw4ijcPsAdC+ScysVhitJiIiIiIiIiKi/TXlDKD2UMBfYvZIiAAwWJ1x9JrVjFMTEREREREREdFXllNq9giIDCwDkmH0KiCMVRMREREREREREVE2YbA6w+jBajZXJCIiIiIiIiIiomzCYHWGUQXLgBAREREREREREVH2YbA6w+j9FdlckYiIiIiIiIiIiLIJg9UZRlW1zGqTx0FEREREREREREQ0nBiszlCsWU1ERERERERERETZhMHqDKM3WGSsmoiIiIiIiIiIiLIJg9UZRm+wyMxqIiIiIiIiIiIiyibDHqz+8Y9/DEVRkv5MmDDBeLyvrw9XXHEFioqKkJOTg8WLF6OpqWm4h5G1jAaLpo6CiIiIiIiIiIiIaHilJLN68uTJaGhoMP68/fbbxmPXXHMNXnjhBTz99NNYtmwZduzYgTPOOCMVw8hKemY1E6uJiIiIiIiIiIgomzhS8qIOB8rLywfc39HRgYcffhiPP/44jj76aADAkiVLMHHiRLz33nuYO3duKoaTVeI1qxmtJiIiIiIiIiIiouyRkszq9evXo7KyEqNGjcJ5552HrVu3AgA++ugjRCIRLFy40HjuhAkTMHLkSCxfvnzI1wuFQujs7Ez6c6ASRs1qkwdCRERERERERERENIyGPVg9Z84cPPLII3jppZfwu9/9Dps2bcJhhx2Grq4uNDY2wuVyIT8/P+nvlJWVobGxccjXvOOOO5CXl2f8qa6uHu5hZwyjZjUzq4mIiIiIiIiIiCiLDHsZkBNOOMH4etq0aZgzZw5qamrw1FNPwev17tdrXn/99bj22muN7zs7Ow/YgLVRs9rkcRARERERERERERENp5SUAUmUn5+PcePG4csvv0R5eTnC4TDa29uTntPU1DRojWud2+1GIBBI+nOgYs1qIiIiIiIiIiIiykYpD1YHg0Fs2LABFRUVmDVrFpxOJ5YuXWo8vnbtWmzduhXz5s1L9VCygpFZzVg1ERERERERERERZZFhLwPy/e9/HyeffDJqamqwY8cO3HzzzbDb7Tj33HORl5eHiy++GNdeey0KCwsRCATw3e9+F/PmzcPcuXOHeyhZSc+sZoNFIiIiIiIiIiIiyibDHqyur6/Hueeei5aWFpSUlODQQw/Fe++9h5KSEgDAPffcA5vNhsWLFyMUCmHRokW4//77h3sYWcsoA8Kq1URERERERERERJRFhj1Y/eSTT+72cY/Hg/vuuw/33XffcP/oA4KAjFYzs5qIiIiIiIiIiIiyScprVtPwUtlgkYiIiIiIiIiIiLIQg9UZRrDBIhEREREREREREWUhBqszjJZYzWA1ERERERERERERZRUGqzOMnlltY7SaiIiIiIiIiIiIsgiD1RlG6DWrzR0GERERERERERER0bBisDrD6A0WmVlNRERERERERERE2YTB6gwjmFpNREREREREREREWYjB6gyjMlZNREREREREREREWYjB6gwjwAaLRERERERERERElH0YrM4wRhUQxqqJiIiIiIiIiIgoizBYnWEEGywSERERERERERFRFmKwOsOoerSaiIiIiIiIiIiIKIswWJ1h9FA1M6uJiIiIiIiIiIgomzBYnWH0zGrGqomIiIiIiIiIiCibMFidaVizmoiIiIiIiIiIiLIQg9UZhpnVRERERERERERElI0YrM4wen9FhdFqIiIiIiIiIiIiyiIMVmcYvcEiQ9VERERERERERESUTRiszjB6GRAbo9VERERERERERESURRiszjAsA0JERERERERERETZiMHqDCP0Bosmj4OIiIiIiIiIiIhoODFYnWH0mtU2ZlYTERERERERERFRFmGwOsOoRh0Qc8dBRERERERERERENJwYrM4weqyaDRaJiIiIiIiIiIgomzBYnWFUo2Y1o9VERERERERERESUPRiszlA2/s8RERERERERERFRFmHIM8Mws5qIiIiIiIiIiIiyEYPVGcbor8hYNREREREREREREWURBqszjGoEqxmtJiIiIiIiIiIiouzBYHWGEVpqtY2xaiIiIiIiIiIiIsoiDFZnGKMMiLnDICIiIiIiIiIiIhpWDFZnGAE9s5rhaiIiIiIiIiIiIsoeDFZnGDZYJCIiIiIiIiIiomzEYHWG0RssshAIERERERERERERZRMGqzNMvAyIyQMhIiIiIiIiIiIiGkYMVmcYlWVAiIiIiIiIiIiIKAsxWJ1pBBssEhERERERERERUfZhsDrDMLOaiIiIiIiIiIiIshGD1RlGaJnVCqPVRERERERERERElEUYrM4wRma1ucMgIiIiIiIiIiIiGlYMVmcYLVbNmtVERERERERERESUVRiszjDxMiAmD4SIiIiIiIiIiIhoGDFYnWG0WDUzq4mIiIiIiIiIiCirMFidYVQ9s9rkcRARERERERERERENJwarM4xes1phZjURERERERERERFlEQarM4zKmtVERERERERERESUhRiszjB6zWrGqomIiIiIiIiIiCibMFidodhgkYiIiIiIiIiIiLIJg9UZRlVZBoSIiIiIiIiIiIiyD4PVGYYNFomIiIiIiIiIiCgbMVidYdhgkYiIiIiIiIiIiLIRg9UZRm+waGOwmoiIiIiIiIiIiLIIg9UZRuiZ1WC0moiIiIiIiIiIiLIHg9UZRq9ZzcxqIiIiIiIiIiIiyiYMVmeYeM1qRquJiIiIiIiIiIgoezBYnWH0mtWMVRMREREREREREVE2YbA6w6h6sJo1q4mIiIiIiIiIiCiLMFidYYRWtZo1q4mIiIiIiIiIiCibMFidYVgGhIiIiIiIiIiIiLJRyoPVP/vZz6AoCq6++mrjvr6+PlxxxRUoKipCTk4OFi9ejKamplQPJSssPqgKD5w/C4tnVZk9FCIiIiIiIiIiIqJhk9Jg9QcffIDf//73mDZtWtL911xzDV544QU8/fTTWLZsGXbs2IEzzjgjlUPJGuPLc3H8lHJMKA+YPRQiIiIiIiIiIiKiYZOyYHUwGMR5552HBx98EAUFBcb9HR0dePjhh3H33Xfj6KOPxqxZs7BkyRK8++67eO+991I1HCIiIiIiIiIiIiKysJQFq6+44gqcdNJJWLhwYdL9H330ESKRSNL9EyZMwMiRI7F8+fJUDYeIiIiIiIiIiIiILMyRihd98sknsWLFCnzwwQcDHmtsbITL5UJ+fn7S/WVlZWhsbBz09UKhEEKhkPF9Z2fnsI6XiIiIiIiIiIiIiMw17JnV27Ztw1VXXYXHHnsMHo9nWF7zjjvuQF5envGnurp6WF6XiIiIiIiIiIiIiKxh2IPVH330EXbu3ImDDjoIDocDDocDy5Ytw69//Ws4HA6UlZUhHA6jvb096e81NTWhvLx80Ne8/vrr0dHRYfzZtm3bcA+biIiIiIiIiIiIiEw07GVAjjnmGHz++edJ91100UWYMGEC/vd//xfV1dVwOp1YunQpFi9eDABYu3Yttm7dinnz5g36mm63G263e7iHSkREREREREREREQWMezB6tzcXEyZMiXpPr/fj6KiIuP+iy++GNdeey0KCwsRCATw3e9+F/PmzcPcuXOHezhERERERERERERElAFS0mBxT+655x7YbDYsXrwYoVAIixYtwv3332/GUIiIiIiIiIiIiIjIAhQhhDB7EPuqs7MTeXl56OjoQCAQMHs4RERERERERERERDSIfYnlDnuDRSIiIiIiIiIiIiKifcVgNRERERERERERERGZjsFqIiIiIiIiIiIiIjIdg9VEREREREREREREZDoGq4mIiIiIiIiIiIjIdAxWExEREREREREREZHpGKwmIiIiIiIiIiIiItMxWE1EREREREREREREpnOYPYD9IYQAAHR2dpo8EiIiIiIiIiIiIiIaih7D1WO6u5ORwequri4AQHV1tckjISIiIiIiIiIiIqI96erqQl5e3m6fo4i9CWlbjKqq2LFjB3Jzc6EoitnDMXR2dqK6uhrbtm1DIBAweziUpTjP9g9/b5QOnGeULpxrlA6cZ5QunGuUDpxnlC6ca5QOmTbPhBDo6upCZWUlbLbdV6XOyMxqm82Gqqoqs4cxpEAgkBEThTIb59n+4e+N0oHzjNKFc43SgfOM0oVzjdKB84zShXON0iGT5tmeMqp1bLBIRERERERERERERKZjsJqIiIiIiIiIiIiITMdg9TByu924+eab4Xa7zR4KZTHOs/3D3xulA+cZpQvnGqUD5xmlC+capQPnGaUL5xqlQzbPs4xssEhERERERERERERE2YWZ1URERERERERERERkOgariYiIiIiIiIiIiMh0DFYTERERERERERERkekYrCYiIiIiIiIiIiIi02VksPqOO+7A7NmzkZubi9LSUpx22mlYu3Zt0nP6+vpwxRVXoKioCDk5OVi8eDGampqMxz/99FOce+65qK6uhtfrxcSJE3Hvvfcmvcbbb7+NBQsWoKioCF6vFxMmTMA999yzx/EJIXDTTTehoqICXq8XCxcuxPr16wc875///CfmzJkDr9eLgoICnHbaabt93TfeeAOnnnoqKioq4Pf7MWPGDDz22GNJz3nkkUegKErSH4/Hs8cx00CcZ0PPs0gkgltvvRWjR4+Gx+PB9OnT8dJLL2XF7+2NN94Y8B7S/3zwwQd7/N0ddNBBcLvdGDNmDB555JGkx998802cfPLJqKyshKIoeO655/Y4Xhoc59nQ8+zHP/7xgNecMGHCHsdMg+NcG3qudXV14eqrr0ZNTQ28Xi/mz5+/x9ekwR2o86yhoQHf+MY3MG7cONhsNlx99dUDnvPMM8/g4IMPRn5+vnFe8uijj+5xzDQ4zrWh59qRRx456OuedNJJexw3JTtQ59kzzzyDY489FiUlJQgEApg3bx5efvnlpOdwPTC8ONeGnmtcEwwfzrOh51nK1gMiAy1atEgsWbJErFy5UnzyySfixBNPFCNHjhTBYNB4zmWXXSaqq6vF0qVLxYcffijmzp0r5s+fbzz+8MMPiyuvvFK88cYbYsOGDeLRRx8VXq9X/OY3vzGes2LFCvH444+LlStXik2bNolHH31U+Hw+8fvf/3634/vZz34m8vLyxHPPPSc+/fRTccopp4i6ujrR29trPOevf/2rKCgoEL/73e/E2rVrxapVq8Rf/vKX3b7uT3/6U3HjjTeKd955R3z55ZfiV7/6lbDZbOKFF14wnrNkyRIRCAREQ0OD8aexsXGvf7cUx3k29Dy77rrrRGVlpfjnP/8pNmzYIO6//37h8XjEihUrMv73FgqFkt4/DQ0N4pJLLhF1dXVCVdUhX3fjxo3C5/OJa6+9VnzxxRfiN7/5jbDb7eKll14ynvPiiy+KG264QTzzzDMCgHj22Wd3O1YaGufZ0PPs5ptvFpMnT0567V27du3z75gkzrWh59pZZ50lJk2aJJYtWybWr18vbr75ZhEIBER9ff0+/54PdAfqPNu0aZO48sorxR//+EcxY8YMcdVVVw14zuuvvy6eeeYZ8cUXXxjnJf3nIu09zrWh51pLS0vS665cuVLY7XaxZMmSvfztku5AnWdXXXWV+PnPfy7ef/99sW7dOnH99dcLp9MpVqxYYTyH64Hhxbk29FzjmmD4cJ4NPc9StR7IyGB1fzt37hQAxLJly4QQQrS3twun0ymefvpp4zmrV68WAMTy5cuHfJ3LL79cHHXUUbv9Waeffro4//zzh3xcVVVRXl4u7rzzTuO+9vZ24Xa7xRNPPCGEECISiYgRI0aIhx56aK/+fbtz4okniosuusj4fsmSJSIvL+8rvy4NxHkWn2cVFRXit7/9bdJzzjjjDHHeeecN+LuZ9nvrLxwOi5KSEnHrrbfu9mdfd911YvLkyUn3nX322WLRokWDPp8np8OL8yw+z26++WYxffr03b4O7T/ONTnXenp6hN1uF//4xz+SnnPQQQeJG264YbevTXt2oMyzREccccSgAcTBzJw5U9x44417/do0NM61od1zzz0iNzc3KRhB++dAnGe6SZMmiVtuuWXQx7geGH6ca/G5xjVB6nCeyXmWyvVARpYB6a+jowMAUFhYCAD46KOPEIlEsHDhQuM5EyZMwMiRI7F8+fLdvo7+GoP5+OOP8e677+KII44Y8jmbNm1CY2Nj0s/Oy8vDnDlzjJ+9YsUKbN++HTabDTNnzkRFRQVOOOEErFy5cu/+wXsYczAYRE1NDaqrq3Hqqadi1apV+/y6NBDnWXzMoVBoQHkZr9eLt99+e9C/C2TO762/559/Hi0tLbjooouGfF0AWL58edLrAsCiRYt2+2+i4cN5lvy669evR2VlJUaNGoXzzjsPW7du3e3r0t7jXJOvG41GEYvF9vqzgPbNgTLP9pUQAkuXLsXatWtx+OGHD+trH6g414b28MMP45xzzoHf7x/21z7QHKjzTFVVdHV17XbMNLw415LHzDVBanCeyTGncj3g+Ep/2wJUVcXVV1+NBQsWYMqUKQCAxsZGuFwu5OfnJz23rKwMjY2Ng77Ou+++i7/85S/45z//OeCxqqoq7Nq1C9FoFD/+8Y9xySWXDDke/fXLysqG/NkbN24EIGsI3X333aitrcUvf/lLHHnkkVi3bt1ef5g99dRT+OCDD/D73//euG/8+PH4wx/+gGnTpqGjowN33XUX5s+fj1WrVqGqqmqvXpcG4jxLnmeLFi3C3XffjcMPPxyjR4/G0qVL8cwzzyAWiyX93Uz8vfX38MMPY9GiRXt8/zQ2Ng76up2dnejt7YXX693t36f9x3mWPM/mzJmDRx55BOPHj0dDQwNuueUWHHbYYVi5ciVyc3N3+/q0e5xr8bmWm5uLefPm4bbbbsPEiRNRVlaGJ554AsuXL8eYMWN2+9q0ewfSPNtbHR0dGDFiBEKhEOx2O+6//34ce+yxw/LaBzLOtaG9//77WLlyJR5++OFhfd0D0YE8z+666y4Eg0GcddZZ+/T3aP9wriXPNa4JUoPzLD7PUrkeyPjM6iuuuAIrV67Ek08+ud+vsXLlSpx66qm4+eabcdxxxw14/K233sKHH36IBx54AL/61a/wxBNPAAAee+wx5OTkGH/eeuutvfp5qqoCAG644QYsXrwYs2bNwpIlS6AoCp5++mkAwOTJk43XPeGEEwa8xuuvv46LLroIDz74ICZPnmzcP2/ePFxwwQWYMWMGjjjiCDzzzDMoKSlJCjTSvuM8S55n9957L8aOHYsJEybA5XLhO9/5Di666CLYbMmHlEz8vSWqr6/Hyy+/jIsvvjjp/sTXveyyy/bvH0bDhvMs2QknnIAzzzwT06ZNw6JFi/Diiy+ivb0dTz311D6PjZJxriV79NFHIYTAiBEj4Ha78etf/xrnnnvugM8C2jecZwPl5ubik08+wQcffICf/vSnuPbaa/HGG2/s89goGefa0B5++GFMnToVhxxyyH79fYo7UOfZ448/jltuuQVPPfUUSktL9/nn0r7jXEuea1wTpAbnWfI8S9V6IKMzq7/zne/gH//4B958882kKwLl5eUIh8Nob29PurLR1NSE8vLypNf44osvcMwxx+DSSy/FjTfeOOjPqaurAwBMnToVTU1N+PGPf4xzzz0Xp5xyCubMmWM8b8SIEWhoaDB+VkVFRdLPnjFjBgAY90+aNMl43O12Y9SoUca2jBdffBGRSAQABmRkLlu2DCeffDLuueceXHDBBbv9HTmdTsycORNffvnlbp9HQ+M8GzjPSkpK8Nxzz6Gvrw8tLS2orKzED3/4Q4waNSrjf2+JlixZgqKiIpxyyilJ93/yySfG14FAwPh3JXb71V83EAgwqzqFOM/2PM/y8/Mxbtw4fg58RZxrA+fa6NGjsWzZMnR3d6OzsxMVFRU4++yzkz4LaN8caPNsb9lsNiNDZ8aMGVi9ejXuuOMOHHnkkfv0OhTHuTa07u5uPPnkk7j11lv3+e9SsgN1nj355JO45JJL8PTTTw8oqUWpwbm257nGNcFXx3k2cJ6lbD3wlSpem0RVVXHFFVeIyspKsW7dugGP68XN//rXvxr3rVmzZkBx85UrV4rS0lLxgx/8YK9/9i233CJqamp2O7by8nJx1113Gfd1dHQkFTfXv09sfBcOh0Vpaekeu3y+/vrrwu/3D2huN5RoNCrGjx8vrrnmmr16PsVxnu39PAuHw2L06NHi+uuvz/jfW+Jz6+rqxPe+9729+tnXXXedmDJlStJ95557LhsspgjnWdzu5pkQQnR1dYmCggJx77337tXPoGSca3F7mmutra0iLy9vj58xNNCBOs8S7UuDxYsuukgcccQR+/wziHNNiD3PtSVLlgi32y2am5v3+bVJOpDn2eOPPy48Ho947rnn9vhcrge+Os61vZtrQnBN8FVwnu39PBuu9UBGBqv/53/+R+Tl5Yk33nhDNDQ0GH96enqM51x22WVi5MiR4rXXXhMffvihmDdvnpg3b57x+Oeffy5KSkrE+eefn/QaO3fuNJ7z29/+Vjz//PNi3bp1Yt26deKhhx4Subm5e+xq+bOf/Uzk5+eLv//97+Kzzz4Tp556qqirqxO9vb3Gc6666ioxYsQI8fLLL4s1a9aIiy++WJSWlorW1tYhX/e1114TPp9PXH/99UljbmlpMZ5zyy23iJdfflls2LBBfPTRR+Kcc84RHo9HrFq1ap9+x8R5trt59t5774m//e1vYsOGDeLNN98URx99tKirqxNtbW1Z8XsTQohXX31VABCrV6/e7evpNm7cKHw+n/jBD34gVq9eLe677z5ht9vFSy+9ZDynq6tLfPzxx+Ljjz8WAMTdd98tPv74Y7Fly5a9+hkUx3k29Dz73ve+J9544w2xadMm8c4774iFCxeK4uLipH8X7T3OtaHn2ksvvST+9a9/iY0bN4pXXnlFTJ8+XcyZM0eEw+G9+hkUd6DOMyGE8bk4a9Ys8Y1vfEN8/PHHSeett99+u3jllVfEhg0bxBdffCHuuusu4XA4xIMPPrjXP4PiONeGnmu6Qw89VJx99tl7/bo00IE6zx577DHhcDjEfffdlzTm9vZ24zlcDwwvzrWh5xrXBMOH82zoeZaq9UBGBqsBDPpnyZIlxnN6e3vF5ZdfLgoKCoTP5xOnn366aGhoMB6/+eabB32NxCsWv/71r8XkyZOFz+cTgUBAzJw5U9x///0iFovtdnyqqoof/ehHoqysTLjdbnHMMceItWvXJj0nHA6L733ve6K0tFTk5uaKhQsXipUrV+72dS+88MJBx5yYWXL11VeLkSNHCpfLJcrKysSJJ54oVqxYsedfKg3AeTb0PHvjjTfExIkThdvtFkVFReKb3/ym2L59e9b83oSQGYTz58/f7Wv19/rrr4sZM2YIl8slRo0alfRv1h8f7N914YUX7tPPIc6z3c2zs88+W1RUVAiXyyVGjBghzj77bPHll1/u08+gOM61oefaX/7yFzFq1CjhcrlEeXm5uOKKK5JOXmnvHcjzbE9jvuGGG8SYMWOEx+MRBQUFYt68eeLJJ5/cp59BcZxrQ49ZiHgm3CuvvLJPr03JDtR5dsQRR+zxXJ/rgeHFuTb0POKaYPhwng09z1K1HlCEEAJERERERERERERERCZiu3YiIiIiIiIiIiIiMh2D1URERERERERERERkOgariYiIiIiIiIiIiMh0DFYTERERERERERERkekYrCYiIiIiIiIiIiIi0zFYTURERERERERERESmY7CaiIiIiIiIiIiIiEzHYDURERERERERERERmY7BaiIiIiIiIiIiIiIyHYPVRERERERERERERGQ6BquJiIiIiIiIiIiIyHQMVhMRERERERERERGR6f4/mn7wz1xafk4AAAAASUVORK5CYII=",
+ "text/plain": [
+ "