-
Notifications
You must be signed in to change notification settings - Fork 3
/
run_eval.py
executable file
·283 lines (243 loc) · 8.46 KB
/
run_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#!/usr/bin/env python
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from utils import (
calculate_bleu,
calculate_rouge,
chunks,
parse_numeric_n_bool_cl_kwargs,
use_task_specific_params,
)
from evaluate_gpt import gpt_eval
logger = getLogger(__name__)
DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def generate_summaries_or_translations(
examples: List[str],
out_file: str,
model_name: str,
batch_size: int = 8,
device: str = DEFAULT_DEVICE,
fp16=False,
task="summarization",
prefix=None,
**generate_kwargs,
) -> Dict:
"""Save model.generate results to <out_file>, and return how long it took."""
fout = Path(out_file).open("w", encoding="utf-8")
model_name = str(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
if fp16:
model = model.half()
tokenizer = AutoTokenizer.from_pretrained(model_name)
logger.info(
f"Inferred tokenizer type: {tokenizer.__class__}"
) # if this is wrong, check config.model_type.
start_time = time.time()
# update config with task specific params
use_task_specific_params(model, task)
if prefix is None:
prefix = prefix or getattr(model.config, "prefix", "") or ""
for examples_chunk in tqdm(list(chunks(examples, batch_size))):
examples_chunk = [prefix + text for text in examples_chunk]
batch = tokenizer(
examples_chunk, return_tensors="pt", truncation=True, padding="longest"
).to(device)
summaries = model.generate(
input_ids=batch.input_ids,
attention_mask=batch.attention_mask,
**generate_kwargs,
)
dec = tokenizer.batch_decode(
summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
for hypothesis in dec:
fout.write(hypothesis + "\n")
fout.flush()
fout.close()
runtime = int(time.time() - start_time) # seconds
n_obs = len(examples)
return dict(
n_obs=n_obs, runtime=runtime, seconds_per_sample=round(runtime / n_obs, 4)
)
def datetime_now():
return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
def run_generate(
verbose=True,
model_name_path=None,
src_txt=None,
tar_txt=None,
gen_path=None,
scor_path=None,
batch_size=None,
):
"""
Takes input text, generates output, and then using reference calculates the BLEU scores.
The results are saved to a file and returned to the caller, and printed out unless ``verbose=False`` is passed.
Args:
verbose (:obj:`bool`, `optional`, defaults to :obj:`True`): print results to stdout
Returns:
a tuple: ``(scores, params}``
- ``scores``: a dict of scores data ``{'bleu': 39.6501, 'n_obs': 2000, 'runtime': 186, 'seconds_per_sample': 0.093}``
- ``params``: a dict of custom params, e.g. ``{'num_beams': 5, 'length_penalty': 0.8}``
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
type=str,
required=False,
help="like facebook/bart-large-cnn,t5-base, etc.",
)
parser.add_argument(
"--input_path", type=str, required=False, help="like cnn_dm/test.source"
)
parser.add_argument(
"--save_path", type=str, required=False, help="where to save summaries"
)
parser.add_argument(
"--reference_path", type=str, required=False, help="like cnn_dm/test.target"
)
parser.add_argument(
"--score_path",
type=str,
required=False,
default="metrics.json",
help="where to save metrics",
)
parser.add_argument(
"--device",
type=str,
required=False,
default=DEFAULT_DEVICE,
help="cuda, cuda:1, cpu etc.",
)
parser.add_argument(
"--prefix",
type=str,
required=False,
default=None,
help="will be added to the begininng of src examples",
)
parser.add_argument(
"--task",
type=str,
default="summarization",
help="used for task_specific_params + metrics",
)
parser.add_argument("--bs", type=int, default=8, required=False, help="batch size")
parser.add_argument(
"--n_obs",
type=int,
default=-1,
required=False,
help="How many observations. Defaults to all.",
)
parser.add_argument("--fp16", action="store_true")
parser.add_argument(
"--dump-args",
action="store_true",
help="print the custom hparams with the results",
)
parser.add_argument(
"--info",
nargs="?",
type=str,
const=datetime_now(),
help="use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g. lang=en-ru. If no value is passed, the current datetime string will be used.",
)
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
args, rest = parser.parse_known_args()
parsed_args = parse_numeric_n_bool_cl_kwargs(rest)
if model_name_path != None:
args.model_name = model_name_path
if src_txt != None:
args.input_path = src_txt
if tar_txt != None:
args.reference_path = tar_txt
if batch_size != None:
args.bs = batch_size
if gen_path != None:
args.save_path = gen_path
if scor_path != None:
args.score_path = scor_path
if args.model_name[-3:] == 'gpt':
gpt_eval(
model_name_path=args.model_name,
src_txt=args.input_path,
tar_txt=args.reference_path,
gen_path=args.save_path,
scor_path=args.score_path,
batch_size=args.bs
)
return None
if parsed_args and verbose:
print(f"parsed the following generate kwargs: {parsed_args}")
examples = [
" " + x.rstrip() if "t5" in args.model_name else x.rstrip()
for x in open(args.input_path).readlines()
]
if args.n_obs > 0:
examples = examples[: args.n_obs]
Path(args.save_path).parent.mkdir(exist_ok=True)
if args.reference_path is None and Path(args.score_path).exists():
warnings.warn(
f"score_path {args.score_path} will be overwritten unless you type ctrl-c."
)
if args.device == "cpu" and args.fp16:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError("Can't mix --fp16 and --device cpu")
runtime_metrics = generate_summaries_or_translations(
examples,
args.save_path,
args.model_name,
batch_size=args.bs,
device=args.device,
fp16=args.fp16,
task=args.task,
prefix=args.prefix,
**parsed_args,
)
if args.reference_path is None:
return {}
# Compute scores
score_fn = calculate_bleu if "translation" in args.task else calculate_rouge
output_lns = [x.rstrip() for x in open(args.save_path).readlines()]
reference_lns = [x.rstrip() for x in open(args.reference_path).readlines()][
: len(output_lns)
]
scores: dict = score_fn(output_lns, reference_lns)
scores.update(runtime_metrics)
if args.dump_args:
scores.update(parsed_args)
if args.info:
scores["info"] = args.info
if verbose:
print(scores)
if args.score_path is not None:
json.dump(scores, open(args.score_path, "w"))
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)