-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathpredict.py
43 lines (31 loc) · 1.3 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from model import VietOcr
from dataset import DataSet
from generate_dataset import DataGenerator
import tensorflow as tf
import numpy as np
def predict(character_image):
sess = tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
saver = tf.train.import_meta_graph('viet_ocr_brain.ckpt.meta')
saver.restore(sess, tf.train.latest_checkpoint('./'))
graph = tf.get_default_graph()
X = graph.get_tensor_by_name("X:0")
Y = graph.get_tensor_by_name("Y:0")
keep_prob = graph.get_tensor_by_name("keep_prob:0")
logits = graph.get_tensor_by_name("fc2/logits:0")
softmax = graph.get_tensor_by_name("softmax:0")
probs, chars = sess.run([logits, softmax], feed_dict={X: character_image.reshape((1, 28, 28, 1)), keep_prob: 1})
probs = (np.exp(probs) / np.sum(np.exp(probs))) * 100
idx = np.argmax(chars)
return (probs[0, idx], idx)
ds = DataSet(test_prob=1, one_hot=False)
characters = DataGenerator().get_list_characters()
x, y = ds.next_batch_test(1)
print('x.shape', x.shape)
print('y.shape', y.shape)
prob, idx = predict(x)
print('Input character: ', characters[int(y[0])])
print('Predicted: ', characters[idx], ' with probability = ', prob, '%')
print('Result: ', characters[int(y[0])] == characters[idx])
print('-' * 10)