-
Notifications
You must be signed in to change notification settings - Fork 66
/
README.qmd
476 lines (378 loc) · 14.2 KB
/
README.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
---
title: Bioconductor cheat sheet
author: Michael Love
format:
html: default
pdf:
documentclass: article
geometry: "margin=1in"
---
## Install
For details go to http://bioconductor.org/install/
```
if (!requireNamespace("BiocManager"))
install.packages("BiocManager")
BiocManager::install()
BiocManager::install(c("package1","package2")
BiocManager::valid() # are packages up to date?
# what Bioc version is release right now?
http://bioconductor.org/bioc-version
# what Bioc versions are release/devel?
http://bioconductor.org/js/versions.js
```
## help within R
Simple help:
```
?functionName
?"eSet-class" # classes need the '-class' on the end
help(package="foo",help_type="html") # launch web browser help
vignette("topic")
browseVignettes(package="package") # show vignettes for the package
```
Help for advanced users:
```
functionName # prints source code
getMethod(method,"class") # prints source code for method
selectMethod(method, "class") # will climb the inheritance to find method
showMethods(classes="class") # show all methods for class
methods(class="GRanges") # this will work in R >= 3.2
?"functionName,class-method" # method help for S4 objects, e.g.:
?"plotMA,data.frame-method" # from library(geneplotter)
?"method.class" # method help for S3 objects e.g.:
?"plot.lm"
sessionInfo() # necessary info for getting help
packageVersion("foo") # what version of package
```
Bioconductor support website: https://support.bioconductor.org
If you use RStudio, then you already get nicely rendered documentation using `?` or `help`. If you are a command line person, then you can use this alias to pop up a help page in your web browser with `rhelp functionName packageName`.
```
alias rhelp="Rscript -e 'args <- commandArgs(TRUE); help(args[2], package=args[3], help_type=\"html\"); Sys.sleep(5)' --args"
```
## debugging R
```
traceback() # what steps lead to an error
# debug a function
debug(myFunction) # step line-by-line through the code in a function
undebug(myFunction) # stop debugging
debugonce(myFunction) # same as above, but doesn't need undebug()
# also useful if you are writing code is to put
# the function browser() inside a function at a critical point
# this plus devtools::load_all() can be useful for programming
# to jump in function on error:
options(error=recover)
# turn that behavior off:
options(error=NULL)
# debug, e.g. estimateSizeFactors from DESeq2...
# debugging an S4 method is more difficult; this gives you a peek inside:
trace(estimateSizeFactors, browser, exit=browser, signature="DESeqDataSet")
```
## Show package-specific methods for a class
These two long strings of R code do approximately the same thing: obtain
the methods that operate on an object of a given class, which are defined
in a specific package.
```
intersect(sapply(strsplit(as.character(methods(class="DESeqDataSet")), ","), `[`, 1), ls("package:DESeq2"))
sub("Function: (.*) \\(package .*\\)","\\1",grep("Function",showMethods(classes="DESeqDataSet", where=getNamespace("DESeq2"), printTo=FALSE), value=TRUE))
```
## Annotations
For AnnotationHub examples, see:
https://www.bioconductor.org/help/workflows/annotation/Annotation_Resources
The following is how to work with the organism database packages, and biomart.
[AnnotationDbi](http://www.bioconductor.org/packages/release/bioc/html/AnnotationDbi.html)
```
# using one of the annotation packges
library(AnnotationDbi)
library(org.Hs.eg.db) # or, e.g. Homo.sapiens
columns(org.Hs.eg.db)
keytypes(org.Hs.eg.db)
head(keys(org.Hs.eg.db, keytype="ENTREZID"))
# returns a named character vector, see ?mapIds for multiVals options
res <- mapIds(org.Hs.eg.db, keys=k, column="ENSEMBL", keytype="ENTREZID")
# generates warning for 1:many mappings
res <- select(org.Hs.eg.db, keys=k,
columns=c("ENTREZID","ENSEMBL","SYMBOL"),
keytype="ENTREZID")
```
[biomaRt](http://www.bioconductor.org/packages/release/bioc/html/biomaRt.html)
```
# map from one annotation to another using biomart
library(biomaRt)
m <- useMart("ensembl", dataset = "hsapiens_gene_ensembl")
map <- getBM(mart = m,
attributes = c("ensembl_gene_id", "entrezgene"),
filters = "ensembl_gene_id",
values = some.ensembl.genes)
```
## Genomic ranges
[GenomicRanges](http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html)
```
library(GenomicRanges)
z <- GRanges("chr1",IRanges(1000001,1001000),strand="+")
start(z)
end(z)
width(z)
strand(z)
mcols(z) # the 'metadata columns', any information stored alongside each range
ranges(z) # gives the IRanges
seqnames(z) # the chromosomes for each ranges
seqlevels(z) # the possible chromosomes
seqlengths(z) # the lengths for each chromosome
```
### Intra-range methods
Affects ranges independently
function | description
--- | ---
shift | moves left/right
narrow | narrows by relative position within range
resize | resizes to width, fixing start for +, end for -
flank | returns flanking ranges to the left +, or right -
promoters | similar to flank
restrict | restricts ranges to a start and end position
trim | trims out of bound ranges
+/- | expands/contracts by adding/subtracting fixed amount
* | zooms in (positive) or out (negative) by multiples
### Inter-range methods
Affects ranges as a group
function | description
--- | ---
range | one range, leftmost start to rightmost end
reduce | cover all positions with only one range
gaps | uncovered positions within range
disjoin | breaks into discrete ranges based on original starts/ends
### Nearest methods
Given two sets of ranges, `x` and `subject`, for each range in `x`, returns...
function | description
--- | ---
nearest | index of the nearest neighbor range in subject
precede | index of the range in subject that is directly preceded by the range in x
follow |index of the range in subject that is directly followed by the range in x
distanceToNearest | distances to its nearest neighbor in subject (Hits object)
distance | distances to nearest neighbor (integer vector)
A Hits object can be accessed with `queryHits`, `subjectHits` and `mcols` if a distance is associated.
### set methods
If `y` is a GRangesList, then use `punion`, etc. All functions have default `ignore.strand=FALSE`, so are strand specific.
```
union(x,y)
intersect(x,y)
setdiff(x,y)
```
### Overlaps
```
x %over% y # logical vector of which x overlaps any in y
fo <- findOverlaps(x,y) # returns a Hits object
queryHits(fo) # which in x
subjectHits(fo) # which in y
```
### Seqnames and seqlevels
[GenomicRanges](http://www.bioconductor.org/packages/release/bioc/html/GenomicRanges.html) and [GenomeInfoDb](http://www.bioconductor.org/packages/release/bioc/html/GenomeInfoDb.html)
```
gr.sub <- gr[seqlevels(gr) == "chr1"]
seqlevelsStyle(x) <- "UCSC" # convert to 'chr1' style from "NCBI" style '1'
```
## Sequences
[Biostrings](http://www.bioconductor.org/packages/release/bioc/html/Biostrings.html)
see the [Biostrings Quick Overview PDF](http://www.bioconductor.org/packages/release/bioc/vignettes/Biostrings/inst/doc/BiostringsQuickOverview.pdf)
For naming, see [cheat sheet for annotation](http://genomicsclass.github.io/book/pages/annoCheat.html)
```
library(BSgenome.Hsapiens.UCSC.hg19)
dnastringset <- getSeq(Hsapiens, granges) # returns a DNAStringSet
# also Views() for Bioconductor >= 3.1
```
```
library(Biostrings)
dnastringset <- readDNAStringSet("transcripts.fa")
```
```
substr(dnastringset, 1, 10) # to character string
subseq(dnastringset, 1, 10) # returns DNAStringSet
Views(dnastringset, 1, 10) # lightweight views into object
complement(dnastringset)
reverseComplement(dnastringset)
matchPattern("ACGTT", dnastring) # also countPattern, also works on Hsapiens/genome
vmatchPattern("ACGTT", dnastringset) # also vcountPattern
letterFrequecy(dnastringset, "CG") # how many C's or G's
# also letterFrequencyInSlidingView
alphabetFrequency(dnastringset, as.prob=TRUE)
# also oligonucleotideFrequency, dinucleotideFrequency, trinucleotideFrequency
# transcribe/translate for imitating biological processes
```
## Sequencing data
[Rsamtools](http://www.bioconductor.org/packages/release/bioc/html/Rsamtools.html) `scanBam` returns lists of raw values from BAM files
```
library(Rsamtools)
which <- GRanges("chr1",IRanges(1000001,1001000))
what <- c("rname","strand","pos","qwidth","seq")
param <- ScanBamParam(which=which, what=what)
# for more BamFile functions/details see ?BamFile
# yieldSize for chunk-wise access
bamfile <- BamFile("/path/to/file.bam")
reads <- scanBam(bamfile, param=param)
res <- countBam(bamfile, param=param)
# for more sophisticated counting modes
# see summarizeOverlaps() below
# quickly check chromosome names
seqinfo(BamFile("/path/to/file.bam"))
# DNAStringSet is defined in the Biostrings package
# see the Biostrings Quick Overview PDF
dnastringset <- scanFa(fastaFile, param=granges)
```
[GenomicAlignments](http://www.bioconductor.org/packages/release/bioc/html/GenomicAlignments.html) returns Bioconductor objects (GRanges-based)
```
library(GenomicAlignments)
ga <- readGAlignments(bamfile) # single-end
ga <- readGAlignmentPairs(bamfile) # paired-end
```
## Transcript databases
[GenomicFeatures](http://www.bioconductor.org/packages/release/bioc/html/GenomicFeatures.html)
```
# get a transcript database, which stores exon, trancript, and gene information
library(GenomicFeatures)
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
# or build a txdb from GTF file (e.g. downloadable from Ensembl FTP site)
txdb <- makeTranscriptDbFromGFF("file.GTF", format="gtf")
# or build a txdb from Biomart (however, not as easy to reproduce later)
txdb <- makeTranscriptDbFromBiomart(biomart = "ensembl", dataset = "hsapiens_gene_ensembl")
# in Bioconductor >= 3.1, also makeTxDbFromGRanges
# saving and loading
saveDb(txdb, file="txdb.sqlite")
loadDb("txdb.sqlite")
# extracting information from txdb
g <- genes(txdb) # GRanges, just start to end, no exon/intron information
tx <- transcripts(txdb) # GRanges, similar to genes()
e <- exons(txdb) # GRanges for each exon
ebg <- exonsBy(txdb, by="gene") # exons grouped in a GRangesList by gene
ebt <- exonsBy(txdb, by="tx") # similar but by transcript
# then get the transcript sequence
txSeq <- extractTranscriptSeqs(Hsapiens, ebt)
```
## Summarizing information across ranges and experiments
The SummarizedExperiment is a storage class for high-dimensional information tied to the same GRanges or GRangesList across experiments (e.g., read counts in exons for each gene).
```
library(GenomicAlignments)
fls <- list.files(pattern="*.bam$")
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
ebg <- exonsBy(txdb, by="gene")
# see yieldSize argument for restricting memory
bf <- BamFileList(fls)
library(BiocParallel)
register(MulticoreParam(4))
# lots of options in the man page
# singleEnd, ignore.strand, inter.features, fragments, etc.
se <- summarizeOverlaps(ebg, bf)
# operations on SummarizedExperiment
assay(se) # the counts from summarizeOverlaps
colData(se)
rowRanges(se)
```
My preferred quantification method is [Salmon](https://combine-lab.github.io/salmon/),
with `--gcBias` option enabled unless you know there is no GC dependence in the data,
followed by [tximport](http://bioconductor.org/pacakges/tximport). Here is an example of usage:
```
coldata <- read.table("samples.txt")
rownames(coldata) <- coldata$id
files <- coldata$files; names(files) <- coldata$id
txi <- tximport(files, type="salmon", tx2gene=tx2gene)
dds <- DESeqDataSetFromTximport(txi, coldata, ~condition)
```
Another fast Bioconductor read counting method is featureCounts in
[Rsubread](http://www.bioconductor.org/packages/release/bioc/html/Rsubread.html).
```
library(Rsubread)
res <- featureCounts(files, annot.ext="annotation.gtf",
isGTFAnnotationFile=TRUE,
GTF.featureType="exon",
GTF.attrType="gene_id")
res$counts
```
## RNA-seq gene-wise analysis
[DESeq2](http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html)
My preferred pipeline for DESeq2 users is to start with a lightweight transcript
abundance quantifier such as [Salmon](https://combine-lab.github.io/salmon/)
and to use [tximport](http://bioconductor.org/packages/tximport), followed
by `DESeqDataSetFromTximport`.
Here, `coldata` is a *data.frame* with `group` as a column.
```
library(DESeq2)
# from tximport
dds <- DESeqDataSetFromTximport(txi, coldata, ~ group)
# from SummarizedExperiment
dds <- DESeqDataSet(se, ~ group)
# from count matrix
dds <- DESeqDataSetFromMatrix(counts, coldata, ~ group)
# minimal filtering helps keep things fast
# one can set 'n' to e.g. min(5, smallest group sample size)
keep <- rowSums(counts(dds) >= 10) >= n
dds <- dds[keep,]
dds <- DESeq(dds)
res <- results(dds) # no shrinkage of LFC, or:
res <- lfcShrink(dds, coef = 2, type="apeglm") # shrink LFCs
```
[edgeR](http://www.bioconductor.org/packages/release/bioc/html/edgeR.html)
```
# this chunk from the Quick start in the edgeR User Guide
library(edgeR)
y <- DGEList(counts=counts,group=group)
keep <- filterByExpr(y)
y <- y[keep,]
y <- calcNormFactors(y)
design <- model.matrix(~group)
y <- estimateDisp(y,design)
fit <- glmFit(y,design)
lrt <- glmLRT(fit)
topTags(lrt)
# or use the QL methods:
qlfit <- glmQLFit(y,design)
qlft <- glmQLFTest(qlfit)
topTags(qlft)
```
[limma-voom](http://www.bioconductor.org/packages/release/bioc/html/limma.html)
```
library(limma)
design <- model.matrix(~ group)
y <- DGEList(counts)
keep <- filterByExpr(y)
y <- y[keep,]
y <- calcNormFactors(y)
v <- voom(y,design)
fit <- lmFit(v,design)
fit <- eBayes(fit)
topTable(fit)
```
[Many more RNA-seq packages](http://www.bioconductor.org/packages/release/BiocViews.html#___RNASeq)
## Expression set
```
library(Biobase)
data(sample.ExpressionSet)
e <- sample.ExpressionSet
exprs(e)
pData(e)
fData(e)
```
## Get GEO dataset
```
library(GEOquery)
e <- getGEO("GSE9514")
```
## Microarray analysis
```
library(affy)
library(limma)
phenoData <- read.AnnotatedDataFrame("sample-description.csv")
eset <- justRMA("/celfile-directory", phenoData=phenoData)
design <- model.matrix(~ Disease, pData(eset))
fit <- lmFit(eset, design)
efit <- eBayes(fit)
topTable(efit, coef=2)
```
## iCOBRA performance metrics
```
library(iCOBRA)
cd <- COBRAData(pval=pval.df, padj=padj.df, score=score.df, truth=truth.df)
cp <- calculate_performance(cd, binary_truth = "status", cont_truth = "logFC")
cobraplot <- prepare_data_for_plot(cp)
plot_fdrtprcurve(cobraplot)
# interactive shiny app:
COBRAapp(cd)
```