diff --git a/docs/source/using_doctr/using_models.rst b/docs/source/using_doctr/using_models.rst index aa4d093bb2..10ce23a9f8 100644 --- a/docs/source/using_doctr/using_models.rst +++ b/docs/source/using_doctr/using_models.rst @@ -133,7 +133,7 @@ For a comprehensive comparison, we have compiled a detailed benchmark on publicl +-----------------------------------------------------------------------------------+----------------------------+----------------------------+--------------------+ | | FUNSD | CORD | | +================+=================================+=================+==============+============+===============+============+===============+====================+ -| **Backend** | **Architecture** | **Input shape** | **# params** | **Exact** | **Partial** | **Exact** | **Partial** | **sec/it (B: 1)** | +| **Backend** | **Architecture** | **Input shape** | **# params** | **Exact** | **Partial** | **Exact** | **Partial** | **sec/it (B: 64)** | +----------------+---------------------------------+-----------------+--------------+------------+---------------+------------+---------------+--------------------+ | TensorFlow | crnn_vgg16_bn | (32, 128, 3) | 15.8 M | 88.12 | 88.85 | 94.68 | 95.10 | 0.9 | +----------------+---------------------------------+-----------------+--------------+------------+---------------+------------+---------------+--------------------+ @@ -141,7 +141,7 @@ For a comprehensive comparison, we have compiled a detailed benchmark on publicl +----------------+---------------------------------+-----------------+--------------+------------+---------------+------------+---------------+--------------------+ | TensorFlow | crnn_mobilenet_v3_large | (32, 128, 3) | 4.5 M | | | | | 0.34 | +----------------+---------------------------------+-----------------+--------------+------------+---------------+------------+---------------+--------------------+ -| Tensorflow | master | (32, 128, 3) | 58.8 M | | | | | 22.3 | +| Tensorflow | master | (32, 128, 3) | 58.8 M | 87.44 | 88.21 | 93.83 | 94.25 | 22.3 | +----------------+---------------------------------+-----------------+--------------+------------+---------------+------------+---------------+--------------------+ | TensorFlow | sar_resnet31 | (32, 128, 3) | 57.2 M | | | | | 7.1 | +----------------+---------------------------------+-----------------+--------------+------------+---------------+------------+---------------+--------------------+ @@ -183,7 +183,7 @@ While most of our recognition models were trained on our french vocab (cf. :ref: *Disclaimer: both FUNSD subsets combine have 30595 word-level crops which might not be representative enough of the model capabilities* -Seconds per iteration (with a batch size of 1) is computed after a warmup phase of 100 tensors, by measuring the average number of processed tensors per second over 1000 samples. Those results were obtained on a `11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz`. +Seconds per iteration (with a batch size of 64) is computed after a warmup phase of 100 tensors, by measuring the average number of processed tensors per second over 1000 samples. Those results were obtained on a `11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz`. Recognition predictors