forked from Project-MONAI/tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_diffusion.py
323 lines (281 loc) · 12.8 KB
/
train_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import logging
import os
import sys
from pathlib import Path
import torch
import torch.nn.functional as F
from generative.inferers import LatentDiffusionInferer
from generative.networks.schedulers import DDPMScheduler
from monai.config import print_config
from monai.utils import first, set_determinism
from torch.cuda.amp import GradScaler, autocast
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from utils import define_instance, prepare_brats2d_dataloader, setup_ddp
from visualize_image import visualize_2d_image
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Training")
parser.add_argument(
"-e",
"--environment-file",
default="./config/environment.json",
help="environment json file that stores environment path",
)
parser.add_argument(
"-c",
"--config-file",
default="./config/config_train_32g.json",
help="config json file that stores hyper-parameters",
)
parser.add_argument("-g", "--gpus", default=1, type=int, help="number of gpus per node")
args = parser.parse_args()
# Step 0: configuration
ddp_bool = args.gpus > 1 # whether to use distributed data parallel
if ddp_bool:
rank = int(os.environ["LOCAL_RANK"])
world_size = int(os.environ["WORLD_SIZE"])
dist, device = setup_ddp(rank, world_size)
else:
rank = 0
world_size = 1
device = 0
torch.cuda.set_device(device)
print(f"Using {device}")
print_config()
torch.backends.cudnn.benchmark = True
torch.set_num_threads(4)
env_dict = json.load(open(args.environment_file, "r"))
config_dict = json.load(open(args.config_file, "r"))
for k, v in env_dict.items():
setattr(args, k, v)
for k, v in config_dict.items():
setattr(args, k, v)
set_determinism(42)
# Step 1: set data loader
size_divisible = 2 ** (len(args.autoencoder_def["num_channels"]) + len(args.diffusion_def["num_channels"]) - 2)
train_loader, val_loader = prepare_brats2d_dataloader(
args,
args.diffusion_train["batch_size"],
args.diffusion_train["patch_size"],
sample_axis=args.sample_axis,
randcrop=True,
rank=rank,
world_size=world_size,
cache=0.0,
download=False,
size_divisible=size_divisible,
amp=True,
)
# initialize tensorboard writer
if rank == 0:
Path(args.tfevent_path).mkdir(parents=True, exist_ok=True)
tensorboard_path = os.path.join(args.tfevent_path, "diffusion")
tensorboard_writer = SummaryWriter(tensorboard_path)
# Step 2: Define Autoencoder KL network and diffusion model
# Load Autoencoder KL network
autoencoder = define_instance(args, "autoencoder_def").to(device)
trained_g_path = os.path.join(args.model_dir, "autoencoder.pt")
map_location = {"cuda:%d" % 0: "cuda:%d" % rank}
autoencoder.load_state_dict(torch.load(trained_g_path, map_location=map_location))
print(f"Rank {rank}: Load trained autoencoder from {trained_g_path}")
# Compute Scaling factor
# As mentioned in Rombach et al. [1] Section 4.3.2 and D.1, the signal-to-noise ratio (induced by the scale of the latent space) can affect the results obtained with the LDM,
# if the standard deviation of the latent space distribution drifts too much from that of a Gaussian.
# For this reason, it is best practice to use a scaling factor to adapt this standard deviation.
# _Note: In case where the latent space is close to a Gaussian distribution, the scaling factor will be close to one,
# and the results will not differ from those obtained when it is not used._
with torch.no_grad():
with autocast(enabled=True):
check_data = first(train_loader)
z = autoencoder.encode_stage_2_inputs(check_data["image"].to(device))
if rank == 0:
print(f"Latent feature shape {z.shape}")
tensorboard_writer.add_image(
"train_img",
visualize_2d_image(check_data["image"][0, 0, ...]).transpose([2, 1, 0]),
1,
)
print(f"Scaling factor set to {1/torch.std(z)}")
scale_factor = 1 / torch.std(z)
print(f"Rank {rank}: local scale_factor: {scale_factor}")
if ddp_bool:
dist.barrier()
dist.all_reduce(scale_factor, op=torch.distributed.ReduceOp.AVG)
print(f"Rank {rank}: final scale_factor -> {scale_factor}")
# Define Diffusion Model
unet = define_instance(args, "diffusion_def").to(device)
trained_diffusion_path = os.path.join(args.model_dir, "diffusion_unet.pt")
trained_diffusion_path_last = os.path.join(args.model_dir, "diffusion_unet_last.pt")
start_epoch = 0
if args.resume_ckpt:
start_epoch = args.start_epoch
map_location = {"cuda:%d" % 0: "cuda:%d" % rank}
try:
unet.load_state_dict(torch.load(trained_diffusion_path, map_location=map_location))
print(
f"Rank {rank}: Load trained diffusion model from",
trained_diffusion_path,
)
except:
print(f"Rank {rank}: Train diffusion model from scratch.")
scheduler = DDPMScheduler(
num_train_timesteps=args.NoiseScheduler["num_train_timesteps"],
schedule="scaled_linear_beta",
beta_start=args.NoiseScheduler["beta_start"],
beta_end=args.NoiseScheduler["beta_end"],
)
if ddp_bool:
autoencoder = DDP(
autoencoder,
device_ids=[device],
output_device=rank,
find_unused_parameters=True,
)
unet = DDP(unet, device_ids=[device], output_device=rank, find_unused_parameters=True)
# We define the inferer using the scale factor:
inferer = LatentDiffusionInferer(scheduler, scale_factor=scale_factor)
# Step 3: training config
optimizer_diff = torch.optim.Adam(params=unet.parameters(), lr=args.diffusion_train["lr"] * world_size)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer_diff,
milestones=args.diffusion_train["lr_scheduler_milestones"],
gamma=0.1,
)
# Step 4: training
n_epochs = args.diffusion_train["n_epochs"]
val_interval = args.diffusion_train["val_interval"]
autoencoder.eval()
scaler = GradScaler()
total_step = 0
best_val_recon_epoch_loss = 100.0
for epoch in range(start_epoch, n_epochs):
unet.train()
lr_scheduler.step()
if ddp_bool:
train_loader.sampler.set_epoch(epoch)
val_loader.sampler.set_epoch(epoch)
for step, batch in enumerate(train_loader):
images = batch["image"].to(device)
optimizer_diff.zero_grad(set_to_none=True)
with autocast(enabled=True):
# Generate random noise
noise_shape = [images.shape[0]] + list(z.shape[1:])
noise = torch.randn(noise_shape, dtype=images.dtype).to(device)
# Create timesteps
timesteps = torch.randint(
0,
inferer.scheduler.num_train_timesteps,
(images.shape[0],),
device=images.device,
).long()
# Get model prediction
if ddp_bool:
inferer_autoencoder = autoencoder.module
else:
inferer_autoencoder = autoencoder
noise_pred = inferer(
inputs=images,
autoencoder_model=inferer_autoencoder,
diffusion_model=unet,
noise=noise,
timesteps=timesteps,
)
loss = F.mse_loss(noise_pred.float(), noise.float())
scaler.scale(loss).backward()
scaler.step(optimizer_diff)
scaler.update()
# write train loss for each batch into tensorboard
if rank == 0:
total_step += 1
tensorboard_writer.add_scalar("train_diffusion_loss_iter", loss, total_step)
# validation
if (epoch) % val_interval == 0:
autoencoder.eval()
unet.eval()
val_recon_epoch_loss = 0
with torch.no_grad():
with autocast(enabled=True):
# compute val loss
for step, batch in enumerate(val_loader):
images = batch["image"].to(device)
noise_shape = [images.shape[0]] + list(z.shape[1:])
noise = torch.randn(noise_shape, dtype=images.dtype).to(device)
timesteps = torch.randint(
0,
inferer.scheduler.num_train_timesteps,
(images.shape[0],),
device=images.device,
).long()
# Get model prediction
if ddp_bool:
inferer_autoencoder = autoencoder.module
else:
inferer_autoencoder = autoencoder
noise_pred = inferer(
inputs=images,
autoencoder_model=inferer_autoencoder,
diffusion_model=unet,
noise=noise,
timesteps=timesteps,
)
val_loss = F.mse_loss(noise_pred.float(), noise.float())
val_recon_epoch_loss += val_loss
val_recon_epoch_loss = val_recon_epoch_loss / (step + 1)
if ddp_bool:
dist.barrier()
dist.all_reduce(val_recon_epoch_loss, op=torch.distributed.ReduceOp.AVG)
val_recon_epoch_loss = val_recon_epoch_loss.item()
# write val loss and save best model
if rank == 0:
tensorboard_writer.add_scalar("val_diffusion_loss", val_recon_epoch_loss, epoch + 1)
print(f"Epoch {epoch} val_diffusion_loss: {val_recon_epoch_loss}")
# save last model
if ddp_bool:
torch.save(unet.module.state_dict(), trained_diffusion_path_last)
else:
torch.save(unet.state_dict(), trained_diffusion_path_last)
# save best model
if val_recon_epoch_loss < best_val_recon_epoch_loss and rank == 0:
best_val_recon_epoch_loss = val_recon_epoch_loss
if ddp_bool:
torch.save(unet.module.state_dict(), trained_diffusion_path)
else:
torch.save(unet.state_dict(), trained_diffusion_path)
print("Got best val noise pred loss.")
print(
"Save trained latent diffusion model to",
trained_diffusion_path,
)
# visualize synthesized image
if (epoch) % (val_interval) == 0: # time cost of synthesizing images is large
synthetic_images = inferer.sample(
input_noise=noise[0:1, ...],
autoencoder_model=inferer_autoencoder,
diffusion_model=unet,
scheduler=scheduler,
)
tensorboard_writer.add_image(
"val_diff_synimg",
visualize_2d_image(synthetic_images[0, 0, ...]).transpose([2, 1, 0]),
epoch,
)
if __name__ == "__main__":
logging.basicConfig(
stream=sys.stdout,
level=logging.INFO,
format="[%(asctime)s.%(msecs)03d][%(levelname)5s](%(name)s) - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
main()