-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathstrategy_comparision.py
executable file
·47 lines (37 loc) · 1.42 KB
/
strategy_comparision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import argparse
import matplotlib.pyplot as plt
from pandas import read_csv, to_datetime
from util import io
def average_cost(log):
log['avr'] = 0
total = 0
volume = 0
for l in log.itertuples(index=True):
total += getattr(l, 'cost')
volume += getattr(l, 'volume')
if volume == 0:
log.loc[getattr(l, 'Index'), 'avr'] = 0
else:
log.loc[getattr(l, 'Index'), 'avr'] = total / volume
return log
parser = argparse.ArgumentParser(description='buying strategy parsing')
parser.add_argument('--from_day', type=str, help='start buying date', required=True)
parser.add_argument('--to_day', type=str, help='to buying date', required=True)
args = parser.parse_args()
fig, axes = plt.subplots()
strategy_name = ['old', 'new', 'baseline']
fancy_name = ['Current Buying Strategy', 'AI aided Strategy', 'Buy same volume every day']
fancy_name_dict = dict(zip(strategy_name, fancy_name))
gpl, ncg = io.read_future_market()
gpl = gpl.loc[args.from_day:args.to_day]
for i, strat in enumerate(strategy_name):
df = read_csv('%s.csv' % strat, index_col=0)
df.index = to_datetime(df.index)
df = df.loc[args.from_day:args.to_day]
df = average_cost(df)
axes.plot(df['avr'], label=fancy_name_dict[strat])
axes.plot(gpl[0], label='Future 1y price')
axes.set_ylim([15.5, 19])
plt.legend()
plt.ylabel('Average price')
plt.show()