forked from quantylab/rltrader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_manager_custom.py
79 lines (68 loc) · 3.82 KB
/
data_manager_custom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import pandas as pd
import numpy as np
def load_chart_data(fpath):
chart_data = pd.read_csv(fpath, thousands=',', header=None)
chart_data.columns = ['date', 'open', 'high', 'low', 'close', 'volume', 'inst', 'frgn']
chart_data['inst'] = pd.to_numeric(chart_data['inst'].str.replace(',', ''), errors='coerce')
chart_data['frgn'] = pd.to_numeric(chart_data['frgn'].str.replace(',', ''), errors='coerce')
return chart_data
def preprocess(chart_data):
prep_data = chart_data
windows = [5, 10, 20, 60, 120]
for window in windows:
prep_data['close_ma{}'.format(window)] = prep_data['close'].rolling(window).mean()
prep_data['volume_ma{}'.format(window)] = (
prep_data['volume'].rolling(window).mean())
prep_data['inst_ma{}'.format(window)] = prep_data['inst'].rolling(window).mean()
prep_data['frgn_ma{}'.format(window)] = prep_data['frgn'].rolling(window).mean()
return prep_data
def build_training_data(prep_data):
training_data = prep_data
training_data['open_lastclose_ratio'] = np.zeros(len(training_data))
training_data.loc[1:, 'open_lastclose_ratio'] = \
(training_data['open'][1:].values - training_data['close'][:-1].values) / \
training_data['close'][:-1].values
training_data['high_close_ratio'] = \
(training_data['high'].values - training_data['close'].values) / \
training_data['close'].values
training_data['low_close_ratio'] = \
(training_data['low'].values - training_data['close'].values) / \
training_data['close'].values
training_data['close_lastclose_ratio'] = np.zeros(len(training_data))
training_data.loc[1:, 'close_lastclose_ratio'] = \
(training_data['close'][1:].values - training_data['close'][:-1].values) / \
training_data['close'][:-1].values
training_data['volume_lastvolume_ratio'] = np.zeros(len(training_data))
training_data.loc[1:, 'volume_lastvolume_ratio'] = \
(training_data['volume'][1:].values - training_data['volume'][:-1].values) / \
training_data['volume'][:-1]\
.replace(to_replace=0, method='ffill') \
.replace(to_replace=0, method='bfill').values
training_data['inst_lastinst_ratio'] = np.zeros(len(training_data))
training_data.loc[1:, 'inst_lastinst_ratio'] = \
(training_data['inst'][1:].values - training_data['inst'][:-1].values) / \
training_data['inst'][:-1]\
.replace(to_replace=0, method='ffill') \
.replace(to_replace=0, method='bfill').values
training_data['frgn_lastfrgn_ratio'] = np.zeros(len(training_data))
training_data.loc[1:, 'frgn_lastfrgn_ratio'] = \
(training_data['frgn'][1:].values - training_data['frgn'][:-1].values) / \
training_data['frgn'][:-1]\
.replace(to_replace=0, method='ffill') \
.replace(to_replace=0, method='bfill').values
windows = [5, 10, 20, 60, 120]
for window in windows:
training_data['close_ma%d_ratio' % window] = \
(training_data['close'] - training_data['close_ma%d' % window]) / \
training_data['close_ma%d' % window]
training_data['volume_ma%d_ratio' % window] = \
(training_data['volume'] - training_data['volume_ma%d' % window]) / \
training_data['volume_ma%d' % window]
training_data['inst_ma%d_ratio' % window] = \
(training_data['inst'] - training_data['inst_ma%d' % window]) / \
training_data['inst_ma%d' % window]
training_data['frgn_ma%d_ratio' % window] = \
(training_data['frgn'] - training_data['frgn_ma%d' % window]) / \
training_data['frgn_ma%d' % window]
return training_data
# chart_data = pd.read_csv(fpath, encoding='CP949', thousands=',', engine='python')