From 954fe9acc25c60ef55ab909051ac03b8b3db3aa2 Mon Sep 17 00:00:00 2001
From: jonpvandermause
Date: Fri, 20 Sep 2024 03:35:44 +0000
Subject: [PATCH] deploy: 6eaf9dcc77a9290e1f47e8106aac4381a908f90a
---
flare/bffs/bffs.html | 1 -
flare/bffs/gp/calculator.html | 1 -
flare/bffs/gp/gp.html | 12 ++----------
flare/bffs/gp/gp_algebra.html | 17 ++++++++---------
flare/bffs/gp/predict.html | 3 +--
flare/flare.html | 2 --
flare/io/output.html | 2 +-
flare/learners/utils.html | 2 +-
flare/utils/env_getarray.html | 2 +-
flare/utils/mask_helper.html | 10 +---------
genindex.html | 10 ++--------
index.html | 2 --
objects.inv | Bin 23207 -> 23162 bytes
searchindex.js | 2 +-
14 files changed, 18 insertions(+), 48 deletions(-)
diff --git a/flare/bffs/bffs.html b/flare/bffs/bffs.html
index e7a7cc15a..86c583ac6 100644
--- a/flare/bffs/bffs.html
+++ b/flare/bffs/bffs.html
@@ -105,7 +105,6 @@ FLARE ASE Calculator
GaussianProcess
-random()
Mapped Gaussian Process
Mapped Gaussian Process
diff --git a/flare/bffs/gp/gp.html b/flare/bffs/gp/gp.html
index 0db9ec2d7..21e7fc1bb 100644
--- a/flare/bffs/gp/gp.html
+++ b/flare/bffs/gp/gp.html
@@ -56,7 +56,6 @@
Helper functions for GP
FLARE ASE Calculator
GaussianProcess
-random()
Mapped Gaussian Process
@@ -200,7 +199,7 @@ Gaussian Process Force Fields
Add a single local environment to the training set of the GP.
- Parameters
@@ -219,7 +218,7 @@ Gaussian Process Force Fields
Loop through atomic environment objects stored in the training data,
and re-compute cutoffs for each. Useful if you want to gauge the
impact of cutoffs given a certain training set! Unless you know
@@ -516,13 +515,6 @@
Gaussian Process Force Fields
-
diff --git a/flare/bffs/gp/gp_algebra.html b/flare/bffs/gp/gp_algebra.html
index afb29345c..08723a3ef 100644
--- a/flare/bffs/gp/gp_algebra.html
+++ b/flare/bffs/gp/gp_algebra.html
@@ -56,7 +56,6 @@
Helper functions for GP
FLARE ASE Calculator
GaussianProcess
-random()
Mapped Gaussian Process
@@ -177,7 +176,7 @@
-
-flare.bffs.gp.gp_algebra.get_distance_mat_pack(hyps: ndarray, name: str, s1: int, e1: int, s2: int, e2: int, same: bool, kernel, cutoffs, hyps_mask)
+flare.bffs.gp.gp_algebra.get_distance_mat_pack(hyps: numpy.ndarray, name: str, s1: int, e1: int, s2: int, e2: int, same: bool, kernel, cutoffs, hyps_mask)
Compute covariance matrix element between set1 and set2
:param hyps: list of hyper-parameters
:param name: name of the gp instance.
@@ -191,7 +190,7 @@
-
-flare.bffs.gp.gp_algebra.get_force_block(hyps: ndarray, name: str, kernel, cutoffs=None, hyps_mask=None, n_cpus=1, n_sample=100)
+flare.bffs.gp.gp_algebra.get_force_block(hyps: numpy.ndarray, name: str, kernel, cutoffs=None, hyps_mask=None, n_cpus=1, n_sample=100)
parallel version of get_ky_mat
:param hyps: list of hyper-parameters
:param name: name of the gp instance.
@@ -208,7 +207,7 @@
-
-flare.bffs.gp.gp_algebra.get_force_block_pack(hyps: ndarray, name: str, s1: int, e1: int, s2: int, e2: int, same: bool, kernel, cutoffs, hyps_mask)
+flare.bffs.gp.gp_algebra.get_force_block_pack(hyps: numpy.ndarray, name: str, s1: int, e1: int, s2: int, e2: int, same: bool, kernel, cutoffs, hyps_mask)
Compute covariance matrix element between set1 and set2
:param hyps: list of hyper-parameters
:param name: name of the gp instance.
@@ -226,7 +225,7 @@
-
-flare.bffs.gp.gp_algebra.get_ky_and_hyp(hyps: ndarray, name, kernel_grad, cutoffs=None, hyps_mask=None, n_cpus=1, n_sample=100)
+flare.bffs.gp.gp_algebra.get_ky_and_hyp(hyps: numpy.ndarray, name, kernel_grad, cutoffs=None, hyps_mask=None, n_cpus=1, n_sample=100)
parallel version of get_ky_and_hyp
- Parameters
@@ -248,7 +247,7 @@
-
-flare.bffs.gp.gp_algebra.get_ky_and_hyp_pack(name, s1, e1, s2, e2, same: bool, hyps: ndarray, kernel_grad, cutoffs=None, hyps_mask=None)
+flare.bffs.gp.gp_algebra.get_ky_and_hyp_pack(name, s1, e1, s2, e2, same: bool, hyps: numpy.ndarray, kernel_grad, cutoffs=None, hyps_mask=None)
computes a block of ky matrix and its derivative to hyper-parameter
If the cpu set up is None, it uses as much as posible cpus
@@ -302,7 +301,7 @@
-
-flare.bffs.gp.gp_algebra.get_neg_like(hyps: ndarray, name: str, force_kernel, logger_name=None, cutoffs=None, hyps_mask=None, n_cpus=1, n_sample=100)
+flare.bffs.gp.gp_algebra.get_neg_like(hyps: numpy.ndarray, name: str, force_kernel, logger_name=None, cutoffs=None, hyps_mask=None, n_cpus=1, n_sample=100)
compute the log likelihood and its gradients
:param hyps: list of hyper-parameters
:type hyps: np.ndarray
@@ -329,7 +328,7 @@
-
-flare.bffs.gp.gp_algebra.get_neg_like_grad(hyps: ndarray, name: str, kernel_grad, logger_name: Optional[str] = None, cutoffs=None, hyps_mask=None, n_cpus=1, n_sample=100)
+flare.bffs.gp.gp_algebra.get_neg_like_grad(hyps: numpy.ndarray, name: str, kernel_grad, logger_name: Optional[str] = None, cutoffs=None, hyps_mask=None, n_cpus=1, n_sample=100)
compute the log likelihood and its gradients
- Parameters
@@ -353,7 +352,7 @@
-
-flare.bffs.gp.gp_algebra.kernel_distance_mat(hyps: ndarray, name: str, kernel, cutoffs=None, hyps_mask=None, n_cpus=1, n_sample=100)
+flare.bffs.gp.gp_algebra.kernel_distance_mat(hyps: numpy.ndarray, name: str, kernel, cutoffs=None, hyps_mask=None, n_cpus=1, n_sample=100)
parallel version of get_ky_mat
:param hyps: list of hyper-parameters
:param name: name of the gp instance.
diff --git a/flare/bffs/gp/predict.html b/flare/bffs/gp/predict.html
index 6734d0fee..c64c46331 100644
--- a/flare/bffs/gp/predict.html
+++ b/flare/bffs/gp/predict.html
@@ -56,7 +56,6 @@
- Helper functions for GP
- FLARE ASE Calculator
GaussianProcess
-random()
- Mapped Gaussian Process
@@ -221,7 +220,7 @@
-
-flare.bffs.gp.predict.predict_on_structure_mgp(structure: FLARE_Atoms, mgp: MappedGaussianProcess, output=None, output_name=None, n_cpus: Optional[int] = None, write_to_structure: bool = True, selective_atoms: Optional[List[int]] = None, skipped_atom_value: Union[float, int] = 0, energy: bool = False) → Union[Tuple[ndarray, ndarray, float], Tuple[ndarray, ndarray]]
+flare.bffs.gp.predict.predict_on_structure_mgp(structure: FLARE_Atoms, mgp: MappedGaussianProcess, output=None, output_name=None, n_cpus: Optional[int] = None, write_to_structure: bool = True, selective_atoms: Optional[List[int]] = None, skipped_atom_value: Union[float, int] = 0, energy: bool = False) → Union[Tuple[numpy.ndarray, numpy.ndarray, float], Tuple[numpy.ndarray, numpy.ndarray]]
Assign forces to structure based on an mgp
diff --git a/flare/flare.html b/flare/flare.html
index bafd0a614..1094c647b 100644
--- a/flare/flare.html
+++ b/flare/flare.html
@@ -100,7 +100,6 @@ - FLARE ASE Calculator
GaussianProcess
-random()
- Mapped Gaussian Process
- Construct Atomic Environment
diff --git a/flare/io/output.html b/flare/io/output.html
index 537e708cd..349176913 100644
--- a/flare/io/output.html
+++ b/flare/io/output.html
@@ -255,7 +255,7 @@
-
-write_xyz_config(curr_step, structure, forces: Optional[array] = None, stds: Optional[array] = None, dft_forces: Optional[array] = None, dft_energy=0, predict_energy=nan, target_atoms=None)
+write_xyz_config(curr_step, structure, forces: Optional[numpy.array] = None, stds: Optional[numpy.array] = None, dft_forces: Optional[numpy.array] = None, dft_energy=0, predict_energy=nan, target_atoms=None)
write atomic configuration in xyz file
- Parameters
diff --git a/flare/learners/utils.html b/flare/learners/utils.html
index a8a219669..918c17b6a 100644
--- a/flare/learners/utils.html
+++ b/flare/learners/utils.html
@@ -110,7 +110,7 @@
Utility functions for various tasks.
-
-flare.learners.utils.get_max_cutoff(cell: ndarray) → float
+flare.learners.utils.get_max_cutoff(cell: numpy.ndarray) → float
- Compute the maximum cutoff compatible with a 3x3x3 supercell of a
structure. Called in the Structure constructor when
setting the max_cutoff attribute, which is used to create local
diff --git a/flare/utils/env_getarray.html b/flare/utils/env_getarray.html
index ba6b16c2c..8c7b06292 100644
--- a/flare/utils/env_getarray.html
+++ b/flare/utils/env_getarray.html
@@ -211,7 +211,7 @@
-
-flare.utils.env_getarray.get_m2_body_arrays(positions, atom: int, cell, r_cut, manybody_cutoff_list, species, sweep: ndarray, nspec, spec_mask, manybody_mask, cutoff_func=numba.njit)
+flare.utils.env_getarray.get_m2_body_arrays(positions, atom: int, cell, r_cut, manybody_cutoff_list, species, sweep: numpy.ndarray, nspec, spec_mask, manybody_mask, cutoff_func=numba.njit)
- Parameters
diff --git a/flare/utils/mask_helper.html b/flare/utils/mask_helper.html
index f7912d00a..256cb6abd 100644
--- a/flare/utils/mask_helper.html
+++ b/flare/utils/mask_helper.html
@@ -60,7 +60,6 @@
- Advanced Hyperparameters Set Up
- Construct Atomic Environment
@@ -512,14 +511,7 @@
random_sample to ease forward-porting to the new random API.
-
--
-flare.utils.parameters.random(size=None)
-Return random floats in the half-open interval [0.0, 1.0). Alias for
-random_sample to ease forward-porting to the new random API.
-
-
-
+
diff --git a/genindex.html b/genindex.html
index af8b56ddd..017d20fb1 100644
--- a/genindex.html
+++ b/genindex.html
@@ -1030,18 +1030,12 @@ Q
R