-
Notifications
You must be signed in to change notification settings - Fork 2
/
concaveHull.py
468 lines (411 loc) · 16.5 KB
/
concaveHull.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
# Written by Hugo Brandao ([email protected])
# (c) copyright Harvard University, 2017
import os
import matplotlib.pyplot as plt
from scipy.spatial import Delaunay, ConvexHull
import numpy as np
from itertools import product
from scipy.spatial import cKDTree
import mpl_toolkits.mplot3d as a3
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
from mpl_toolkits.mplot3d import Axes3D
""" Algorithm to create an alpha shape triangulation of a set of points
Delaunay triangulate my points:
Store a set of edges, list of edge points
Loop over Delaunay triangles
For all vertices of each triangle, get spatial coordinate + compute:
1) Length of sides
2) Perimiter of triangle/2
3) Area of triangle
4) Circumradius of the triangle
Apply radius length cutoff: if R < 1/alpha
If criterion met, then add the edge, store the volume (Area)
To calculate if it's a boundary point, get the two circle (sphere) centers of radius 1/alpha for each edge
From circle centers, calculate the nearest neighbour distance. If it exceeds 1/alpha, then this is a boundary edge
If not, then store it as a boundary
"""
#####################################################################################
## Codes in 2D ##
#####################################################################################
# Draws the simplices provided a Delaunay triangulation in 2D
def drawSimplices(simplices,colour='k'):
for s in simplices:
for (p1,p2) in [x for x in product(s, s) if x[0]!=x[1] and x[0]> x[1]]:
X = [points[p1][0], points[p2][0]]
Y = [points[p1][1], points[p2][1]]
plt.plot(X,Y,colour)
# Given a radius r, get the location of the circles that pass through
# The two points p1 and p2 (in 2D)
def getCircleCenter(p1,p2,r=1):
p1 = np.asarray(p1)
p2 = np.asarray(p2)
pc = (p1+p2)/2 # midpoint of p1, p2
q = np.sqrt(np.sum((p2-pc)**2)) # half-distance
A = r**2-(q)**2 # determinant
if A>0:
d1 = (p2-p1)*[1,-1]
d1 = d1[::-1]
d1 = d1/np.sqrt(np.sum(d1**2))
d2 = -d1
c1 = pc + np.sqrt(A)*d1 # first solution
c2 = pc + np.sqrt(A)*d2 # second solution
return [c1,c2]
else:
return []
# Given 3 points p1, p2, p3, find the radius of the circle that passes through them
def circumCircle_radius(p1,p2,p3):
# Lengths of sides of triangle given by points:
# p1 = (x1,y1), p2=(x2,y2), p3=(x3,y3)
a = np.sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)
b = np.sqrt((p2[0]-p3[0])**2 + (p2[1]-p3[1])**2)
c = np.sqrt((p3[0]-p1[0])**2 + (p3[1]-p1[1])**2)
# 1/2 the perimiter of triangle
s = (a + b + c)/2.0
# area of triangle (using Heron's formula)
area = np.sqrt(s*(s-a)*(s-b)*(s-c))
circum_radius = a*b*c/(4.0*area)
return circum_radius
## http://mathworld.wolfram.com/Circumsphere.html
# Add an edge to the edges set, and append provided coordinates to
# edge_coordinates if points i, j are not already in edges set
def addEdge(edges,edge_coords,coords,i,j):
if (i,j) in edges or (j,i) in edges:
return False
edges.add((i,j))
edge_coords.append(coords)
return True
# Determines whether an edge of the belongs to the boundary is an interior point
def getBoundaryCode(tree,edge_points,r,tol = 0.00001):
# boundary code returns:
# 1 if the p1,p2 are boundary edges of the shape
# 0 if in the interior
# 2 if the circle does not exist
p1 = edge_points[0]
p2 = edge_points[1]
circles = getCircleCenter(p1,p2,r)
if len(circles) != 2:
return 2
bq = tree.query(circles[0])
bq2 = tree.query(circles[1])
if (bq[0] > r-tol) or (bq2[0] > r-tol):
return 1
else:
return 0
# Compues the alpha shape in 2D
def alphaShape2D(points, alpha=1):
shp = Delaunay(points)
tree = cKDTree(points)
edges = set()
edge_coords = []
boundary_code = []
area = 0
perimiter = 0
for si,s in enumerate(shp.simplices):
pa,pb,pc =[points[x] for x in s]
R = circumCircle_radius(pa,pb,pc)
if R<1/alpha:
area += getArea3pt(pa,pb,pc)
e1 = addEdge(edges,edge_coords,(pa,pb), s[0],s[1])
e2 = addEdge(edges,edge_coords,(pb,pc), s[1],s[2])
e3 = addEdge(edges,edge_coords,(pc,pa), s[2],s[0])
if e1 == True:
bc = getBoundaryCode(tree,(pa,pb),1/alpha)
boundary_code.append(bc)
if bc == 1:
perimiter += v_length(pa,pb)
if e2 == True:
bc = getBoundaryCode(tree,(pb,pc),1/alpha)
boundary_code.append(bc)
if bc == 1:
perimiter += v_length(pb,pc)
if e3 == True:
bc = getBoundaryCode(tree,(pc,pa),1/alpha)
boundary_code.append(bc)
if bc == 1:
perimiter += v_length(pa,pc)
return edges, edge_coords, boundary_code, area, perimiter
def v_length(p1,p2):
return np.sqrt(np.sum((np.asarray(p1)-np.asarray(p2) )**2))
#####################################################################################
## Codes in 3D ##
#####################################################################################
def mydet2(A):
return A[0][0]*A[1][1]-A[0][1]*A[1][0]
def mydet3(A):
return A[0][0]* (A[1][1]*A[2][2]-A[1][2]*A[2][1]) - \
A[0][1]*(A[1][0]*A[2][2]-A[1][2]*A[2][0]) + \
A[0][2]*(A[1][0]*A[2][1]-A[1][1]*A[2][0])
#def mydet4(A):
# A = np.asarray(A)
# return A[0][0]*mydet3(A[1:,1:]) \
# - A[0][1]*mydet3(A[1:,[0,2,3]]) \
# + A[0][2]*mydet3(A[1:,[0,1,3]]) \
# - A[0][3]*mydet3(A[1:,[0,1,2]])
def mydet4(A):
d1 = A[1][1]* (A[2][2]*A[3][3]-A[2][3]*A[3][2]) - \
A[1][2]*(A[2][1]*A[3][3]-A[2][3]*A[3][1]) + \
A[1][3]*(A[2][1]*A[3][2]-A[2][2]*A[3][1]) # all values get +1
d2 = A[1][0]* (A[2][2]*A[3][3]-A[2][3]*A[3][2]) - \
A[1][2]*(A[2][0]*A[3][3]-A[2][3]*A[3][0]) + \
A[1][3]*(A[2][0]*A[3][2]-A[2][2]*A[3][0])# all y values +1, all x >0 get +1
d3 = A[1][0]* (A[2][1]*A[3][3]-A[2][3]*A[3][1]) - \
A[1][1]*(A[2][0]*A[3][3]-A[2][3]*A[3][0]) + \
A[1][3]*(A[2][0]*A[3][1]-A[2][1]*A[3][0]) # all y values +1,all x >1 get +1
d4 = A[1][0]* (A[2][1]*A[3][2]-A[2][2]*A[3][1]) - \
A[1][1]*(A[2][0]*A[3][2]-A[2][2]*A[3][0]) + \
A[1][2]*(A[2][0]*A[3][1]-A[2][1]*A[3][0]) # all y values +1, all x>2 get +1
return A[0][0]*(d1) \
- A[0][1]*(d2) \
+ A[0][2]*(d3) \
- A[0][3]*(d4)
# Get the radius of the sphere which passes through the 4 points p1, p2, p3, p4
def circumSphere_radius(p1,p2,p3,p4):
p1 = np.asarray(p1)
p1sq = p1[0]*p1[0] + p1[1]*p1[1] + p1[2]*p1[2]
p2 = np.asarray(p2)
p2sq = p2[0]*p2[0] + p2[1]*p2[1] + p2[2]*p2[2]
p3 = np.asarray(p3)
p3sq = p3[0]*p3[0] + p3[1]*p3[1] + p3[2]*p3[2]
p4 = np.asarray(p4)
p4sq = p4[0]*p4[0] + p4[1]*p4[1] + p4[2]*p4[2]
A = [[p1[0],p1[1],p1[2],1] ,\
[p2[0],p2[1],p2[2],1] ,\
[p3[0],p3[1],p3[2],1] ,\
[p4[0],p4[1],p4[2],1] ]
Dx = [[p1sq,p1[1],p1[2],1] ,\
[p2sq,p2[1],p2[2],1] ,\
[p3sq,p3[1],p3[2],1] ,\
[p4sq,p4[1],p4[2],1] ]
Dy = [[p1sq,p1[0],p1[2],1] ,\
[p2sq,p2[0],p2[2],1] ,\
[p3sq,p3[0],p3[2],1] ,\
[p4sq,p4[0],p4[2],1] ]
Dz = [[p1sq,p1[0],p1[1],1] ,\
[p2sq,p2[0],p2[1],1] ,\
[p3sq,p3[0],p3[1],1] ,\
[p4sq,p4[0],p4[1],1] ]
Dc = [[p1sq,p1[0],p1[1],p1[2]] ,\
[p2sq,p2[0],p2[1],p2[2]] ,\
[p3sq,p3[0],p3[1],p3[2]] ,\
[p4sq,p4[0],p4[1],p4[2]] ]
a = mydet4(A)
Dx = mydet4(Dx)
Dy = -mydet4(Dy)
Dz = mydet4(Dz)
c = mydet4(Dc)
delta = Dx*Dx+Dy*Dy+Dz*Dz- 4*a*c
if delta< 0:
return np.nan
circumSphere_r = np.sqrt(delta)/2/np.abs(a)
return circumSphere_r
""" Slow version
def circumSphere_radius(p1,p2,p3,p4):
p1 = np.asarray(p1)
p2 = np.asarray(p2)
p3 = np.asarray(p3)
p4 = np.asarray(p4)
A = [[p1[0],p1[1],p1[2],1] ,\
[p2[0],p2[1],p2[2],1] ,\
[p3[0],p3[1],p3[2],1] ,\
[p4[0],p4[1],p4[2],1] ]
Dx = [[np.sum(p1**2),p1[1],p1[2],1] ,\
[np.sum(p2**2),p2[1],p2[2],1] ,\
[np.sum(p3**2),p3[1],p3[2],1] ,\
[np.sum(p4**2),p4[1],p4[2],1] ]
Dy = [[np.sum(p1**2),p1[0],p1[2],1] ,\
[np.sum(p2**2),p2[0],p2[2],1] ,\
[np.sum(p3**2),p3[0],p3[2],1] ,\
[np.sum(p4**2),p4[0],p4[2],1] ]
Dz = [[np.sum(p1**2),p1[0],p1[1],1] ,\
[np.sum(p2**2),p2[0],p2[1],1] ,\
[np.sum(p3**2),p3[0],p3[1],1] ,\
[np.sum(p4**2),p4[0],p4[1],1] ]
Dc = [[np.sum(p1**2),p1[0],p1[1],p1[2]] ,\
[np.sum(p2**2),p2[0],p2[1],p2[2]] ,\
[np.sum(p3**2),p3[0],p3[1],p3[2]] ,\
[np.sum(p4**2),p4[0],p4[1],p4[2]] ]
a = np.linalg.det(A)
Dx = np.linalg.det(Dx)
Dy = -np.linalg.det(Dy)
Dz = np.linalg.det(Dz)
c = np.linalg.det(Dc)
delta = Dx**2+Dy**2+Dz**2 - 4*a*c
if delta< 0:
return np.nan
circumSphere_r = np.sqrt(delta)/2/np.abs(a)
return circumSphere_r
"""
def mycross(b,c):
return np.asarray([b[1]*c[2]-b[2]*c[1] , b[2]*c[0]-b[0]*c[2], b[0]*c[1]-b[1]*c[0]])
# Find a coordinate which is equidistant from all three points p1, p2, p3
def getCircumCenter3D(p1,p2,p3):
# p1 = np.asarray(p1)
# p2 = np.asarray(p2)
# p3 = np.asarray(p3)
ac = p3-p1
ab = p2-p1
#abXac = mycross(ac,ab)
abXac = [ac[1]*ab[2]-ac[2]*ab[1] , ac[2]*ab[0]-ac[0]*ab[2], ac[0]*ab[1]-ac[1]*ab[0]]
lac = ac[0]*ac[0] + ac[1]*ac[1] + ac[2]*ac[2]
lab = ab[0]*ab[0] + ab[1]*ab[1] + ab[2]*ab[2]
labXac = abXac[0]*abXac[0] + abXac[1]*abXac[1] + abXac[2]*abXac[2] #(np.sum(abXac**2))
if labXac == 0:
print("Warning: labXac = 0")
#center = p1 + (np.cross(ab,abXac)*lac + np.cross(abXac,ac)*lab)/(2*labXac)
# center = p1 + (mycross(ab,abXac)*lac + mycross(abXac,ac)*lab)/(2*labXac)
v1 = lac/(2*labXac)
v2 = lab/(2*labXac)
# return p1 + (np.asarray([ab[1]*abXac[2]-ab[2]*abXac[1] , ab[2]*abXac[0]-ab[0]*abXac[2], ab[0]*abXac[1]-ab[1]*abXac[0]])*lac \
# + np.asarray([abXac[1]*ac[2]-abXac[2]*ac[1] , abXac[2]*ac[0]-abXac[0]*ac[2], abXac[0]*ac[1]-abXac[1]*ac[0]])*lab) \
# /(2*labXac) #center
# return p1 + (np.asarray([ab[1]*abXac[2]-ab[2]*abXac[1] , ab[2]*abXac[0]-ab[0]*abXac[2], ab[0]*abXac[1]-ab[1]*abXac[0]])*lac \
# + np.asarray([abXac[1]*ac[2]-abXac[2]*ac[1] , abXac[2]*ac[0]-abXac[0]*ac[2], abXac[0]*ac[1]-abXac[1]*ac[0]])*lab) \
# /(2*labXac) #center
return p1 + np.asarray([v1*(ab[1]*abXac[2]-ab[2]*abXac[1])+v2*(abXac[1]*ac[2]-abXac[2]*ac[1]),\
v1*( ab[2]*abXac[0]-ab[0]*abXac[2])+v2*(abXac[2]*ac[0]-abXac[0]*ac[2]),\
v1*(ab[0]*abXac[1]-ab[1]*abXac[0])+v2*(abXac[0]*ac[1]-abXac[1]*ac[0])])
# Given a radius r, get the coordinates of the centers of the two spheres that
# pass through points p1, p2, p3
def getSphereCenter(p1,p2,p3,r=1,tol=1e-10):
p1 = np.asarray(p1)
p2 = np.asarray(p2)
p3 = np.asarray(p3)
r = r+tol
pc = getCircumCenter3D(p1,p2,p3)# circumcenter of triangle formed by p1, p2, p3
#q = np.sqrt(np.sum((p2-pc)**2)) # distance of centroid to one corner
p2pc = p2-pc
qsq = p2pc[0]*p2pc[0] + p2pc[1]*p2pc[1] + p2pc[2]*p2pc[2] # distance sq of centroid to one corner
A = r*r-qsq # determinant
if A>0:
#d1 = np.cross(p1-p3,p2-p3)
d1 = mycross(p1-p3,p2-p3)
d1msq = d1[0]*d1[0] + d1[1]*d1[1] + d1[2]*d1[2] #np.sum(d1**2)
if d1msq ==0:
print("getSphereCenter division by zero")
d1 = np.sqrt(A/d1msq)*d1
return [pc + d1,pc - d1]
else:
return []
# adds the edge to set, and appends coordinates
def addEdge3(edges,edge_coords,coords,edge_indices):
edge_indices = tuple(sorted(edge_indices))
if edge_indices in edges:
return False
edges.add(edge_indices)
edge_coords.append(coords)
return True
# Test whether the edges in question are at the boundary of the alpha shape
def getBoundaryCode3(tree,edge_points,r,tol = 0.001):
# boundary code returns:
# 1 if the p1,p2 are boundary edges of the shape
# 0 if in the interior
# 2 if the circle does not exist
p1 = edge_points[0]
p2 = edge_points[1]
p3 = edge_points[2]
spheres = getSphereCenter(p1,p2,p3,r)
if len(spheres) != 2:
return 2
bq = tree.query(spheres[0])
if (bq[0] > r-tol):
return 1
bq2 = tree.query(spheres[1])
if (bq2[0] > r-tol):
return 1
return 0
def getArea3pt(p1,p2,p3):
p1 = np.asarray(p1)
p2 = np.asarray(p2)
p3 = np.asarray(p3)
ab = p2-p1
bc = p2-p3
v = mycross(ab,bc)
return np.sqrt(v[0]*v[0] +v[1]*v[1]+v[2]*v[2])/2
def getVolume4pt(p1,p2,p3,p4):
p1 = np.asarray(p1)
p2 = np.asarray(p2)
p3 = np.asarray(p3)
p4 = np.asarray(p4)
ab = p2-p1
bc = p2-p3
cd = p4-p3
A = np.asarray([ab,bc,cd])
#return np.abs(np.linalg.det(A)/6)
return np.abs(mydet3(A)/6)
# Compute the alphaShape for a set of points in 3D
def alphaShape3D(points, alpha=1):
shp = Delaunay(points)
tree = cKDTree(points)
edges = set()
edge_coords = []
boundary_code = []
volume = 0
sa = 0
for si,s in enumerate(shp.simplices):
pa,pb,pc,pd =[points[x] for x in s]
# for each triangulation tetrahedron, get the circumsphere
R = circumSphere_radius(pa,pb,pc,pd)
# check if the circumpshere is within the acceptable range
if R<1/alpha:
volume += getVolume4pt(pa,pb,pc,pd)
e1 = addEdge3(edges,edge_coords,(pa,pb,pc), (s[0],s[1],s[2]) )
e2 = addEdge3(edges,edge_coords,(pb,pc,pd), (s[1],s[2],s[3]) )
e3 = addEdge3(edges,edge_coords,(pc,pd,pa), (s[2],s[3],s[0]) )
e4 = addEdge3(edges,edge_coords,(pd,pa,pb), (s[3],s[0],s[1]) )
if e1 == True:
bc = getBoundaryCode3(tree,(pa,pb,pc),1/alpha)
boundary_code.append(bc)
if bc == 1:
sa += getArea3pt(pa,pb,pc)
if e2 == True:
bc = getBoundaryCode3(tree,(pb,pc,pd),1/alpha)
boundary_code.append(bc)
if bc == 1:
sa += getArea3pt(pb,pc,pd)
if e3 == True:
bc = getBoundaryCode3(tree,(pc,pd,pa),1/alpha)
boundary_code.append(bc)
if bc == 1:
sa += getArea3pt(pc,pd,pa)
if e4 == True:
bc = getBoundaryCode3(tree,(pd,pa,pb),1/alpha)
boundary_code.append(bc)
if bc == 1:
sa += getArea3pt(pd,pa,pb)
return edges, edge_coords, boundary_code, volume, sa
def createSphere(r,center, N=10):
lst = []
thetas = [(2*np.pi*i)/N for i in range(N)]
phis = [(np.pi*i)/N for i in range(N)]
for theta in thetas:
for phi in phis:
x = r * np.sin(phi) * np.cos(theta) + center[0]
y = r * np.sin(phi) * np.sin(theta) + center[1]
z = r * np.cos(phi) + center[2]
lst.append((x, y, z))
return np.asarray(lst)
def drawWireFrame3D(edge_coords,boundaryCode,drawBoundary=True,drawInner=False,boundaryStyle='k-',innerStyle='m-'):
fig= plt.figure()
ax = fig.gca(projection='3d')
for c in range(len(edge_coords)):
for perm in [[0,1],[0,2],[1,2]]:
X = []; Y = []; Z = []
for p1,p2,p3 in [edge_coords[c][x] for x in perm]:
X.append(p1); Y.append(p2); Z.append(p3)
if boundaryCode[c] == 1 and drawBoundary:
ax.plot(X,Y,Z,boundaryStyle)
if boundaryCode[c] == 0 and drawInner:
ax.plot(X,Y,Z,innerStyle)
plt.show()
def drawFaces3D(edge_coords,boundaryCode,alpha=0.5,colour='skyblue'):
fig= plt.figure()
ax = fig.gca(projection='3d')
patches = []
X, Y, Z = [], [], []
tri_list = []
for c in range(len(edge_coords)):
if boundaryCode[c] == 1:
tri = a3.art3d.Poly3DCollection([np.asarray(edge_coords[c])])
tri.set_color('skyblue')
tri.set_edgecolor('k')
ax.add_collection3d(tri)