Skip to content

Latest commit

 

History

History
55 lines (43 loc) · 1.76 KB

README.md

File metadata and controls

55 lines (43 loc) · 1.76 KB

Decoupled Neural Interfaces using Synthetic Gradients

Keras as an interface to Tensorflow implementation of Decoupled Neural Interfaces using Synthetic Gradients.

Link to the paper: https://arxiv.org/abs/1608.05343

GIF demonstrating decoupled learning through synthetic gradients. Source: DeepMind blog post by Max Jaderberg.

Contents:

  • main.py - main function
  • model.py - synthetic grads implementation
  • demo_nb.ipynb - jupyter notebook for demonstrating contents and usage of model.py

Prerequisites:

  • Python 3.6
  • Keras 2.2.0
  • Tensorflow 1.8.0

Usage:

First option:

main.py [-h] [-I ITERATIONS] [-B BATCH] [-P UPDATE_PROB] [-L L_RATE]

optional arguments:
  -h, --help            show this help message and exit
  -I ITERATIONS, --iterations ITERATIONS
                        Number of Iterations: int
  -B BATCH, --batch BATCH
                        Batch Size: int
  -P UPDATE_PROB, --update_prob UPDATE_PROB
                        Synthetic Grad Update Probability: float [0,1]
  -L L_RATE, --l_rate L_RATE
                        Learning Rate: float

Second option:

Use Jupyter Lab or Notebooks to open `demo_nb.ipynb`

Tested on:

  • OS: ubuntu 16.04 LTS
  • GPU: single GeForce GTX 1070

Results

Accuracy Loss
MNIST 0.917 0.288

References