-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
86 lines (71 loc) · 2.34 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torchvision.datasets import MNIST
import torchvision.transforms as transforms
transform = transforms.Compose([
transforms.ToTensor(),
])
trainset = MNIST("data", train=True, transform=transform)
testset = MNIST("data", train=False, transform=transform)
trainloader = torch.utils.data.DataLoader(
trainset,
batch_size=128,
shuffle=True,
num_workers=2,
)
testloader = torch.utils.data.DataLoader(
testset,
batch_size=128,
shuffle=False,
num_workers=2,
)
class Net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(28 * 28, 64)
self.fc2 = nn.Linear(64, 10)
def forward(self, x):
x = x.view(-1, 28 * 28)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 200 == 199: # print every 2000 mini-batches
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
running_loss = 0.0
torch.save(net, "output_model.pt")
print('Finished Training')
correct = 0
total = 0
# since we're not training, we don't need to calculate the gradients for our outputs
with torch.no_grad():
for data in testloader:
images, labels = data
# calculate outputs by running images through the network
outputs = net(images)
# the class with the highest energy is what we choose as prediction
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
res = f'Accuracy of the network on the 10000 test images: {100 * correct // total} %'
with open("output_res.txt", "w") as f:
f.write(res)
print(res)