-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonemkl_gemm_usm.cpp
225 lines (178 loc) · 7.94 KB
/
onemkl_gemm_usm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#include <iostream>
#include <cstdlib>
#include <cstddef>
#include <limits>
#include <list>
#include <map>
#include <type_traits>
#include <chrono>
#include <CL/sycl.hpp>
#include "oneapi/mkl.hpp"
//
// helper functions
//
template <typename fp>
fp set_fp_value(fp arg1) { return arg1;}
template <typename fp> fp rand_scalar() { return fp(std::rand()) / fp(RAND_MAX) - fp(0.5); }
template <typename fp> void rand_matrix(fp *M, oneapi::mkl::transpose trans, int m, int n, int ld)
{
if (trans == oneapi::mkl::transpose::nontrans) {
for (int j = 0; j < n; j++)
for (int i = 0; i < m; i++)
M[i + j * ld] = rand_scalar<fp>();
} else {
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
M[j + i * ld] = rand_scalar<fp>();
}
}
template <typename fp>
int LD(oneapi::mkl::transpose trans, int m, int n)
{
int new_ld, LD_OFFSET = 64 / sizeof(fp);
new_ld = (trans == oneapi::mkl::transpose::nontrans) ? m : n;
new_ld = (new_ld + LD_OFFSET - 1) / LD_OFFSET * LD_OFFSET;
new_ld = (new_ld * sizeof(fp)) % 512 ? new_ld : new_ld + LD_OFFSET;
return new_ld;
}
template <typename fp>
void run_gemm(const cl::sycl::device &dev, oneapi::mkl::transpose transA, oneapi::mkl::transpose transB,
int m, int n, int k, int ldA, int ldB, int ldC, int nb_it) {
ldA = (ldA < 0) ? LD<fp>(transA, m, k) : ldA;
ldB = (ldB < 0) ? LD<fp>(transB, k, n) : ldB;
ldC = (ldC < 0) ? LD<fp>(oneapi::mkl::transpose::N, m, n) : ldC;
int sizea, sizeb, sizec = ldC * n;
int i;
double diff, min, max, mean;
// set scalar fp value
fp alpha = set_fp_value(fp(1.0));
fp beta = set_fp_value(fp(0.0));
// prepare matrix data
fp *A, *B, *C;
// Catch asynchronous exceptions
auto exception_handler = [] (cl::sycl::exception_list exceptions) {
for (std::exception_ptr const& e : exceptions) {
try {
std::rethrow_exception(e);
} catch(cl::sycl::exception const& e) {
std::cout << "Caught asynchronous SYCL exception during GEMM:\n"
<< e.what() << std::endl;
}
}
};
cl::sycl::context cxt(dev);
cl::sycl::queue queue(cxt, dev, exception_handler);
cl::sycl::event gemm_done;
std::vector<cl::sycl::event> gemm_dependencies;
sizea = (transA == oneapi::mkl::transpose::nontrans) ? ldA * k : ldA * m;
sizeb = (transB == oneapi::mkl::transpose::nontrans) ? ldB * n : ldB * k;
A = (fp *)malloc_shared(sizea * sizeof(fp), queue);
B = (fp *)malloc_shared(sizeb * sizeof(fp), queue);
C = (fp *)malloc_shared(sizec * sizeof(fp), queue);
if (!A || !B || !C )
throw std::runtime_error("Failed to allocate USM memory.");
rand_matrix(A, transA, m, k, ldA);
rand_matrix(B, transB, k, n, ldB);
rand_matrix(C, oneapi::mkl::transpose::nontrans, m, n, ldC);
try {
auto start = std::chrono::high_resolution_clock::now();
#ifdef GEMM_CUBLAS
gemm_done = oneapi::mkl::blas::column_major::gemm(oneapi::mkl::backend_selector<oneapi::mkl::backend::cublas> {queue}, transA, transB, m, n, k, alpha, A, ldA, B, ldB, beta, C, ldC);
#elif defined GEMM_MKL
gemm_done = oneapi::mkl::blas::column_major::gemm(oneapi::mkl::backend_selector<oneapi::mkl::backend::mklcpu> {queue}, transA, transB, m, n, k, alpha, A, ldA, B, ldB, beta, C, ldC);
#elif defined GEMM_MKL_GPU
gemm_done = oneapi::mkl::blas::column_major::gemm(oneapi::mkl::backend_selector<oneapi::mkl::backend::mklgpu> {queue}, transA, transB, m, n, k, alpha, A, ldA, B, ldB, beta, C, ldC);
#else
gemm_done = oneapi::mkl::blas::column_major::gemm(queue, transA, transB, m, n, k, alpha, A, ldA, B, ldB, beta, C, ldC);
#endif
gemm_done.wait();
auto stop = std::chrono::high_resolution_clock::now();
long long totalTime = std::chrono::duration_cast<std::chrono::microseconds>(stop - start).count();
diff = double(totalTime) / 1000000.0;
}
catch(cl::sycl::exception const& e) {
std::cout << "\t\tCaught synchronous SYCL exception during GEMM:\n"
<< e.what() << std::endl << "OpenCL status: " << e.get_cl_code() << std::endl;
}
min = diff;
max = 0.0;
mean = 0.0;
double nops = 2.0 * double(m) * double(n) * double(k);
for (i = 0; i < nb_it; i++) {
try {
auto start = std::chrono::high_resolution_clock::now();
#ifdef GEMM_CUBLAS
gemm_done = oneapi::mkl::blas::column_major::gemm(oneapi::mkl::backend_selector<oneapi::mkl::backend::cublas> {queue}, transA, transB, m, n, k, alpha, A, ldA, B, ldB, beta, C, ldC);
#elif defined GEMM_MKL
gemm_done = oneapi::mkl::blas::column_major::gemm(oneapi::mkl::backend_selector<oneapi::mkl::backend::mklcpu> {queue}, transA, transB, m, n, k, alpha, A, ldA, B, ldB, beta, C, ldC);
#elif defined GEMM_MKL_GPU
gemm_done = oneapi::mkl::blas::column_major::gemm(oneapi::mkl::backend_selector<oneapi::mkl::backend::mklgpu> {queue}, transA, transB, m, n, k, alpha, A, ldA, B, ldB, beta, C, ldC);
#else
gemm_done = oneapi::mkl::blas::column_major::gemm(queue, transA, transB, m, n, k, alpha, A, ldA, B, ldB, beta, C, ldC);
#endif
gemm_done.wait();
auto stop = std::chrono::high_resolution_clock::now();
long long totalTime = std::chrono::duration_cast<std::chrono::microseconds>(stop - start).count();
diff = double(totalTime) / 1000000.0;
}
catch(cl::sycl::exception const& e) {
std::cout << "\t\tCaught synchronous SYCL exception during GEMM:\n"
<< e.what() << std::endl << "OpenCL status: " << e.get_cl_code() << std::endl;
}
mean += diff;
if (min > diff) min = diff;
if (max < diff) max = diff;
}
mean = mean / (double) nb_it;
double nmem = (double(m) * double(n) + double(m) * double(k) + double(n) * double(k)) * sizeof(fp);
if ((std::is_same<fp, std::complex<float>>::value) || (std::is_same<fp, std::complex<double>>::value))
nops *= 4.0;
printf("%lf (bw),%lf (gflopmax),%lf (gflopmean),%g (smin),%g (smean)\n", nmem / (1e9 * min), nops / (1e9 * min), nops / (1e9 * mean), min, mean);
free(A, queue);
free(B, queue);
free(C, queue);
}
int main (int argc, char ** argv) {
#ifdef RUN_ON_CPU
cl::sycl::device dev = cl::sycl::device(cl::sycl::cpu_selector());
if (dev.is_gpu()) printf("Running on CPU device\n");
#else
cl::sycl::device dev = cl::sycl::device(cl::sycl::gpu_selector());
if (dev.is_gpu()) printf("Running on GPU device\n");
#endif
bool is_level0 = dev.get_info<cl::sycl::info::device::opencl_c_version>().empty();
if (is_level0) printf("DPC++ running with Level0 backend\n");
else printf("DPC++ running with OpenCL backend\n");
int m = 10, n = 10, k = 10, lda = -1, ldb = -1, ldc = -1, nb_it = 500;
oneapi::mkl::transpose ta = oneapi::mkl::transpose::N, tb = oneapi::mkl::transpose::N;
char data_type = 'D';
if (argc > 1) {
data_type = argv[1][0];
}
if (argc > 3) {
ta = (argv[2][0] == 'N') ? oneapi::mkl::transpose::N : ((argv[2][0] == 'T') ? oneapi::mkl::transpose::T : oneapi::mkl::transpose::C);
tb = (argv[3][0] == 'N') ? oneapi::mkl::transpose::N : ((argv[3][0] == 'T') ? oneapi::mkl::transpose::T : oneapi::mkl::transpose::C);
}
if (argc > 6) {
m = atoi(argv[4]);
n = atoi(argv[5]);
k = atoi(argv[6]);
}
if (argc > 7) nb_it = atoi(argv[7]);
if (argc > 10) {
lda = atoi(argv[8]);
ldb = atoi(argv[9]);
ldc = atoi(argv[10]);
}
printf("%cGEMM,%d,%d,%d,%d,%d,%d,%d,%d,",
data_type, (int) ta, (int) tb, m, n, k, lda, ldb, ldc);
if (data_type == 'S')
run_gemm<float>(dev, ta, tb, m, n, k, lda, ldb, ldc, nb_it);
else if (data_type == 'D')
run_gemm<double>(dev, ta, tb, m, n, k, lda, ldb, ldc, nb_it);
else {
printf("Error wrong data type\n");
return 1;
}
return 0;
}