-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path5_Customed_Stacked_Estimator.py
46 lines (35 loc) · 1.61 KB
/
5_Customed_Stacked_Estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from sklearn.base import BaseEstimator, ClassifierMixin
import numpy as np
class StackedRegressor(BaseEstimator, ClassifierMixin):
def __init__(self, classifier, regressor):
self.classifier = classifier
self.regressor = regressor
def fit(self, X, y):
class_labels = pd.Series(np.where(y>0,1,0))
self.classifier.fit(X,class_labels)
pred_class_labels = self.classifier.predict(X)
pred_class_labels_df = pd.DataFrame(
pred_class_labels, columns = ['pred_class_label'])
X = X.reset_index(drop=True)
pred_class_labels_df = pred_class_labels_df.reset_index(drop=True)
X = X.join(pred_class_labels_df)
self.regressor.fit(X,y)
print(self.classifier.__class__.__name__, ",",
self.regressor.__class__.__name__)
def predict(self, X):
class_predict = self.classifier.predict(X)
class_predict_df = pd.DataFrame(
class_predict, columns = ['pred_class_label'])
X = X.reset_index(drop=True)
class_predict_df = class_predict_df.reset_index(drop=True)
X = X.join(class_predict_df)
regressor_predict = self.regressor.predict(X)
regressor_predict = np.where(regressor_predict<0,0,regressor_predict)
return regressor_predict
def score(self, X, y):
return np.sqrt(np.mean((y - self.predict(X))**2))
def clf_score(self, X, y):
y_true = pd.Series(np.where(y>0,1,0))
y_pred = self.classifier.predict(X)
return precision_recall_fscore_support(y_true, y_pred,
average='macro')