-
Notifications
You must be signed in to change notification settings - Fork 894
/
llama.py
383 lines (314 loc) · 12.5 KB
/
llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
# Copyright © 2023 Apple Inc.
import argparse
import glob
import json
import time
from dataclasses import dataclass
from pathlib import Path
from typing import Optional, Tuple
import mlx.core as mx
import mlx.nn as nn
from mlx.utils import tree_unflatten
from sentencepiece import SentencePieceProcessor
@dataclass
class ModelArgs:
dim: int
n_layers: int
head_dim: int
hidden_dim: int
n_heads: int
n_kv_heads: int
norm_eps: float
vocab_size: int
rope_theta: float
rope_traditional: bool = True
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.n_heads: int = args.n_heads
self.n_kv_heads: int = args.n_kv_heads
self.repeats = self.n_heads // self.n_kv_heads
self.scale = self.args.head_dim**-0.5
self.wq = nn.Linear(args.dim, args.n_heads * args.head_dim, bias=False)
self.wk = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
self.wv = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
self.wo = nn.Linear(args.n_heads * args.head_dim, args.dim, bias=False)
self.rope = nn.RoPE(
args.head_dim, traditional=args.rope_traditional, base=args.rope_theta
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> Tuple[mx.array, Tuple[mx.array, mx.array]]:
B, L, D = x.shape
queries, keys, values = self.wq(x), self.wk(x), self.wv(x)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
def repeat(a):
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
return a.reshape([B, self.n_heads, L, -1])
keys, values = map(repeat, (keys, values))
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
if mask is not None:
scores += mask
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.wo(output), (keys, values)
class FeedForward(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.w1 = nn.Linear(args.dim, args.hidden_dim, bias=False)
self.w2 = nn.Linear(args.hidden_dim, args.dim, bias=False)
self.w3 = nn.Linear(args.dim, args.hidden_dim, bias=False)
def __call__(self, x) -> mx.array:
return self.w2(nn.silu(self.w1(x)) * self.w3(x))
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.attention = Attention(args)
self.feed_forward = FeedForward(args=args)
self.attention_norm = nn.RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = nn.RMSNorm(args.dim, eps=args.norm_eps)
self.args = args
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
r, cache = self.attention(self.attention_norm(x), mask, cache)
h = x + r
r = self.feed_forward(self.ffn_norm(h))
out = h + r
return out, cache
class Llama(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim)
self.layers = [TransformerBlock(args=args) for _ in range(args.n_layers)]
self.norm = nn.RMSNorm(args.dim, eps=args.norm_eps)
self.output = nn.Linear(args.dim, args.vocab_size, bias=False)
def __call__(self, x):
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
mask = mask.astype(self.tok_embeddings.weight.dtype)
x = self.tok_embeddings(x)
for l in self.layers:
x, _ = l(x, mask)
x = self.norm(x)
return self.output(x)
def generate(self, x, temp=1.0):
def sample(logits):
if temp == 0:
return mx.argmax(logits, axis=-1)
else:
return mx.random.categorical(logits * (1 / temp))
cache = []
# Make an additive causal mask. We will need that to process the prompt.
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
mask = mask.astype(self.tok_embeddings.weight.dtype)
# First we process the prompt x the same was as in __call__ but
# save the caches in cache
x = self.tok_embeddings(x)
for l in self.layers:
x, c = l(x, mask=mask)
# We store the per layer cache in a simple python list
cache.append(c)
x = self.norm(x)
# We only care about the last logits that generate the next token
y = self.output(x[:, -1])
y = sample(y)
# y now has size [1]
# Since MLX is lazily evaluated nothing is computed yet.
# Calling y.item() would force the computation to happen at
# this point but we can also choose not to do that and let the
# user choose when to start the computation.
yield y
# Now we parsed the prompt and generated the first token we
# need to feed it back into the model and loop to generate the
# rest.
while True:
# Unsqueezing the last dimension to add a sequence length
# dimension of 1
x = y[:, None]
x = self.tok_embeddings(x)
for i in range(len(cache)):
# We are overwriting the arrays in the cache list. When
# the computation will happen, MLX will be discarding the
# old cache the moment it is not needed anymore.
x, cache[i] = self.layers[i](x, mask=None, cache=cache[i])
x = self.norm(x)
y = sample(self.output(x[:, -1]))
yield y
def tic():
return time.time()
def toc(msg, start):
end = time.time()
return f"[INFO] {msg}: {end - start:.3f} s"
def generate(args):
input("Press enter to start generation")
print("------")
print(args.prompt)
x = mx.array([[tokenizer.bos_id()] + tokenizer.encode(args.prompt)])
skip = 0
prompt_processing = None
tokens = []
start = tic()
for token in model.generate(x, args.temp):
tokens.append(token)
if len(tokens) == 1:
# Actually perform the computation to measure the prompt processing time
mx.eval(token)
prompt_processing = toc("Prompt processing", start)
if len(tokens) >= args.max_tokens:
break
elif (len(tokens) % args.write_every) == 0:
# It is perfectly ok to eval things we have already eval-ed.
mx.eval(tokens)
s = tokenizer.decode([t.item() for t in tokens])
print(s[skip:], end="", flush=True)
skip = len(s)
mx.eval(tokens)
full_gen = toc("Full generation", start)
s = tokenizer.decode([t.item() for t in tokens])
print(s[skip:], flush=True)
print("------")
print(prompt_processing)
print(full_gen)
def few_shot_generate(args):
def possible_end(s):
word = "[Instruction]"
for i in range(len(word) - 1, 0, -1):
if s[-i:] == word[:i]:
return 0
if s[-len(word) :] == word:
return 1
return -1
def generate(question):
x = mx.array([[tokenizer.bos_id()] + tokenizer.encode(question)])
skip = 0
prompt_processing = None
tokens = []
start = tic()
for token in model.generate(x, args.temp):
tokens.append(token)
if len(tokens) == 1:
# Actually perform the computation to measure the prompt processing time
mx.eval(token)
prompt_processing = toc("Prompt processing", start)
if len(tokens) >= args.max_tokens:
break
mx.eval(tokens)
token_list = [t.item() for t in tokens]
s = tokenizer.decode(token_list)
end = possible_end(s)
if end == 0:
continue
if end == 1:
skip = len(s)
break
print(s[skip:], end="", flush=True)
skip = len(s)
if token_list[-1] == tokenizer.eos_id():
break
mx.eval(tokens)
full_gen = toc("Full generation", start)
s = tokenizer.decode([t.item() for t in tokens])
print(s[skip:], end="", flush=True)
print("[INFO] Loading few-shot examples from: {}".format(args.few_shot))
prompt = open(args.few_shot).read().strip()
while True:
question = input("Ask a question: ")
generate(prompt.replace("{}", question))
print()
def sanitize_config(config, weights):
config.pop("model_type", None)
n_heads = config["n_heads"]
if "n_kv_heads" not in config:
config["n_kv_heads"] = n_heads
if "head_dim" not in config:
config["head_dim"] = config["dim"] // n_heads
if "hidden_dim" not in config:
config["hidden_dim"] = weights["layers.0.feed_forward.w1.weight"].shape[0]
if config.get("vocab_size", -1) < 0:
config["vocab_size"] = weights["output.weight"].shape[-1]
if "rope_theta" not in config:
config["rope_theta"] = 10000
unused = ["multiple_of", "ffn_dim_multiplier"]
for k in unused:
config.pop(k, None)
return config
def load_model(model_path):
model_path = Path(model_path)
unsharded_weights_path = Path(model_path / "weights.npz")
if unsharded_weights_path.is_file():
print("[INFO] Loading model from {}.".format(unsharded_weights_path))
weights = mx.load(str(unsharded_weights_path))
else:
sharded_weights_glob = str(model_path / "weights.*.npz")
weight_files = glob.glob(sharded_weights_glob)
print("[INFO] Loading model from {}.".format(sharded_weights_glob))
if len(weight_files) == 0:
raise FileNotFoundError("No weights found in {}".format(model_path))
weights = {}
for wf in weight_files:
weights.update(mx.load(wf).items())
with open(model_path / "config.json", "r") as f:
config = sanitize_config(json.loads(f.read()), weights)
quantization = config.pop("quantization", None)
model = Llama(ModelArgs(**config))
if quantization is not None:
nn.quantize(model, **quantization)
model.update(tree_unflatten(list(weights.items())))
tokenizer = SentencePieceProcessor(model_file=str(model_path / "tokenizer.model"))
return model, tokenizer
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Llama inference script")
parser.add_argument(
"--model-path",
help="Path to the model weights and tokenizer",
default="mlx_model",
)
parser.add_argument(
"--prompt",
help="The message to be processed by the model. Ignored when --few-shot is provided.",
default="In the beginning the Universe was created.",
)
parser.add_argument(
"--few-shot",
help="Read a few shot prompt from a file (as in `sample_prompt.txt`).",
)
parser.add_argument(
"--max-tokens", "-m", type=int, default=100, help="How many tokens to generate"
)
parser.add_argument(
"--write-every", type=int, default=1, help="After how many tokens to detokenize"
)
parser.add_argument(
"--temp", type=float, default=0.0, help="The sampling temperature"
)
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
args = parser.parse_args()
mx.random.seed(args.seed)
model, tokenizer = load_model(args.model_path)
if args.few_shot:
few_shot_generate(args)
else:
generate(args)