forked from microsoft/muzic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpdaugment.py
executable file
·505 lines (416 loc) · 16.8 KB
/
pdaugment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
#!/usr/bin/env python
# coding: utf-8
from ast import Index
import os
import math
import json
import sys
import numpy as np
import pickle
import pandas as pd
import librosa
import pyworld as pw
import soundfile as sf
import miditoolkit
import midiconvert as md
import random
import multiprocessing
import secrets
import string
# read metadata information of the libritts dataset
def read_meta_data(meta_data):
"""
@params
meta_data: using pd.read_csv to read csv file
@return
meta_datas: mapping list consists of wave_name, phone and new_phone.
"""
res = []
for index, row in meta_data.iterrows():
path = row["wav"]
wave_name = row["new_wav"]
phone = row["phone"]
new_phone = row["new_phone"]
res.append((path,wave_name,phone, new_phone))
return res
# convert pitch in frequency to midi number
def hz2midi(frequency):
"""
@params
frequency: pitch in frequency
@return
midi_number: pitch in midi number
"""
return (69 + 12 * math.log((frequency/440), 2))
def midi2hz(midi):
"""
@params
midi: midi data
@return
tar_fre: target frequency
"""
note, octave = md.number_to_note(midi)
tar_fre = fre['{}'.format(octave)]['{}'.format(note)]
return tar_fre
# determine the phone is vowel or not
def isVowel(phone):
"""
@params
phone: input phone
@return
boolean: the phone is vowel or not
"""
vowels = ['a', 'e', 'i', 'o', 'u', 'y']
for vowel in vowels:
if vowel in phone:
return True
return False
# convert midi to notes info
def midi2notes(midi_path):
"""
@params
midi_path: midi path of the item
@return
data: data is a tuple consists of the pitch, duration and interval information of the given midi file
"""
midi_obj = miditoolkit.midi.parser.MidiFile(midi_path)
data = []
notes = midi_obj.instruments[0].notes
mapping = midi_obj.get_tick_to_time_mapping()
for i in range(len(notes)):
note = notes[i]
st = mapping[note.start]
end = mapping[note.end]
if i != len(notes)-1:
note1 = notes[i+1]
next_st = mapping[note1.start]
else:
next_st = end
data.append((note.pitch, end-st, next_st-end))
return data
# extract syllables from wav
def get_syllables(wav_data, phone, new_phone):
"""
@params
wav_data: the mel attributes of the audio from pickle file
phone: original phone from meta_data.csv
new_phone: new phone from meta_data.csv
@return
syllables: syllable list consists of phoneme list and the start and end of the syllables
"""
syllables = []
result = []
word_phones = phone.split(" / ")
syllable_index = 0
for word in word_phones:
if "punc_" in word:
continue
temp_res = []
phones = word.split(" ")
for phone in phones:
if phone == "-":
result.append(temp_res)
temp_res = []
else:
temp_res.append(syllable_index)
syllable_index += 1
if temp_res != []:
result.append(temp_res)
new_phone_components = new_phone.split(" ")
phone_index = 0
for syllable in result:
if new_phone_components[phone_index] == "<BOS>":
phone_index += 1
elif new_phone_components[phone_index] == "sil":
wav_start = wav_data[phone_index]
wav_end = wav_data[phone_index + 1]
syllables.append(([new_phone_components[phone_index]], [(wav_start, wav_end)]))
phone_index += 1
single_syllable_phoneme_list = new_phone_components[phone_index : (phone_index + len(syllable))]
wav_mels = []
for delta in range(0, len(syllable)):
wav_start = wav_data[phone_index + delta]
wav_end = wav_data[phone_index + delta + 1]
wav_mels.append((wav_start, wav_end))
syllables.append((single_syllable_phoneme_list, wav_mels))
phone_index += len(syllable)
pass
return syllables
# Part 1: Determine the correspondence between notes and syllables (one-to-many or many-to-one) according to the duration of MIDI and speech.
def note_syllable_mapping(notes, syllables):
"""
Calculate the correspondence between notes and syllables
@params
notes: note list consists of pitch, duration and interval.
syllables: syllable list consists of phoneme list and the start and end of the syllables
@return
mappings: mapping list consists of note list, phoneme list, the start and end of the syllables and output rate of the wav.
"""
INTERVAL = 12.5
LOWWER_RATE = 0.5
UPPER_RATE = 2
mappings = []
syllable_index = 0
midi_note_index = 0
while syllable_index < len(syllables):
note = []
all_phonemes = []
all_wav_data = []
phoneme_list, wav_data = syllables[syllable_index]
all_phonemes += phoneme_list
all_wav_data += wav_data
wav_start = int(wav_data[0][0])
wav_end = int(wav_data[len(wav_data) - 1][1])
note.append(notes[midi_note_index])
output_rate = 1
curr_syllable_interval = wav_end*INTERVAL/1000 - wav_start*INTERVAL/1000
curr_note_interval = notes[midi_note_index][1]
syllable_flag = 0
midi_note_flag = 0
# mapping strategy
while True:
output_rate = curr_syllable_interval / curr_note_interval
if output_rate < LOWWER_RATE:
if midi_note_flag == 1:
output_rate = LOWWER_RATE
break
syllable_index += 1
syllable_flag = 1
if syllable_index >= len(syllables):
output_rate = LOWWER_RATE
break
phoneme_list, wav_data = syllables[syllable_index]
all_phonemes += phoneme_list
all_wav_data += wav_data
wav_end = int(wav_data[len(wav_data) - 1][1])
curr_syllable_interval = wav_end*INTERVAL/1000 - wav_start*INTERVAL/1000
elif output_rate > UPPER_RATE:
if syllable_flag == 1:
output_rate = UPPER_RATE
break
midi_note_index += 1
midi_note_flag = 1
note.append(notes[midi_note_index])
curr_note_interval += notes[midi_note_index][1]
else:
break
mappings.append((note, all_phonemes, all_wav_data, output_rate))
syllable_index += 1
midi_note_index += 1
pass
return mappings
pass
# Part 2: Adjust MIDI tonality according to the average pitch of speech.
def midi_key_shift(speech_mean_f0, mappings):
"""
MIDI as a whole is shifted based on the average F0 of Speech
@params
mappings: mapping list consists of note list, phoneme list, start and end.
speech_mean_pitch: the average pitch of speech. This average is the average of all the non-zero values.
@return
output_mappings: The list of mapping relations after overall toning consists of note list, phoneme list, start and end.
notes_mean_pitch: average pitch of notes in mapping
"""
# extract all pitches
tar_pitch_midi = []
for map in mappings:
for note in map[0]:
tar_pitch_midi.append(note[0])
speech_mean_f0_midi = hz2midi(speech_mean_f0)
notes_mean_pitch = round(sum(tar_pitch_midi)/len(tar_pitch_midi))
# transpose number
trans = notes_mean_pitch - speech_mean_f0_midi
output_mappings = []
# transpose the notes
for map in mappings:
# new empty tuple
n = []
for note in map[0]:
n.append((int(note[0]-trans), note[1], note[2]))
output_mappings.append((n, map[1], map[2], map[3]))
return output_mappings, notes_mean_pitch
# Part 3: Adjust pitch to get pitch-augmented wav.
def pitch_shift(mappings, ori_wav, fs, frame_period=12.5):
"""
Adjust the pitch according to the mapping
@params
mappings: mapping list from note_syllable_mapping
ori_wav: Raw wav data
fs: sampling rate
@return
output_wav: wav data after pitch shift
"""
# load files
x = ori_wav
x = x.astype(np.double)
_f0, t = pw.dio(x, fs, frame_period=frame_period) # raw pitch extractor
f0 = pw.stonemask(x, _f0, t, fs) # pitch refinement
sp = pw.cheaptrick(x, f0, t, fs) # extract smoothed spectrogram
ap = pw.d4c(x, f0, t, fs) # extract aperiodicity
y = f0 # for pitch adjusments
silent_mask = np.where(f0==0)[0]
i = 0
for map in mappings:
# editing pitch
# one-to-one
if len(map[0]) == 1:
for i in range(len(map[1])):
start_mel = map[2][i][0]
end_mel = map[2][i][1]
y[start_mel:end_mel] = midi2hz(map[0][0][0])
# many-to-one
# syllable structure:
# (consonant*)(vowel)(consonant*)
# syllable mapping rules:
# 1. all cosonants before vowel will be assigned to the first note
# 2. all the notes will having equal length based on the total mels vowel
# 3. all cosonants before vowel will be assigned to the last note
else:
vowel_mask = np.zeros(len(map[1]))
for i, phone in enumerate(map[1]):
if isVowel(phone):
vowel_mask[i] = 1
vowel_start = map[2][np.where(vowel_mask==1)[0][0]][0] # first vowel start mel
vowel_end = map[2][np.where(vowel_mask==1)[0][-1]][1] # last vowel end mel
# length of every note will be sum(vowel_mel_length)/len(vowel)
avg_len = (vowel_end - vowel_start) / len(map[0])
flag = 0 # phase of editing many-to-one
for i, mask in enumerate(vowel_mask):
if flag == 0 and mask == 1:
flag += 1
elif flag == 1 and mask == 0:
flag += 1
if flag == 0:
y[map[2][i][0]:map[2][i][1]] = midi2hz(map[0][0][0])
if flag == 1:
for k in range(len(map[0])):
y[int(vowel_start + k*avg_len):int(vowel_start + (k+1)*avg_len)] = midi2hz(map[0][k][0])
if flag == 2:
y[map[2][i][0]:map[2][i][1]] = midi2hz(map[0][-1][0])
# keeping silent mels silent
for sil in silent_mask:
y[sil] = 0
# finetune
female_like_sp = np.zeros_like(sp)
for f in range(female_like_sp.shape[1]):
female_like_sp[:, f] = sp[:, int(f/1.3)]
female_like = pw.synthesize(y, female_like_sp, ap, fs, frame_period=frame_period)
return female_like
# Part 4: Adjust duration to get duration-augmented wav.
def duration_change(mappings, ori_wav, sr):
"""
Adjust the pitch length according to the mapping
@params
mappings: mapping list from note_syllable_mapping
ori_wav: raw wav data
@return
output_wav: wav data after duration change
"""
INTERVAL = 12.5
relation_index = 0
secret_string = ''.join(secrets.choice(string.ascii_lowercase + string.ascii_uppercase + string.digits) for _ in range(12))
# adjust duration of each note
for mapping in mappings:
note, phoneme_list, wav_data, output_rate = mapping
wav_start = wav_data[0][0]
wav_end = wav_data[len(wav_data) - 1][1]
sf.write(secret_string + 'cut' + str(relation_index) + '.wav', ori_wav[int(wav_start*INTERVAL/1000*sr):int(wav_end*INTERVAL/1000*sr)], sr, 'PCM_24')
os.system("ffmpeg -loglevel quiet -n -i " + secret_string + 'cut' + str(relation_index) + '.wav' + " -filter:a " + "atempo=" + str(output_rate) + " " + secret_string + 'temp_cut' + str(relation_index) + '.wav')
relation_index += 1
pass
output_wav = []
for index in range(0, relation_index):
y, sr = librosa.load(secret_string + 'temp_cut' + str(index) + '.wav', sr)
output_wav = np.hstack((output_wav, y))
os.system("rm -rf " + secret_string + "*")
return output_wav
def main():
# metadata of libritts dataset
frame_period = 12.5
meta_data = pd.read_csv(metadata_dir)
meta_datas = read_meta_data(meta_data)
# process using multithreading
def worker(meta_data):
path, wave_name, phone, new_phone = meta_data
while True:
s_midi_path = random.choice(all_midi_path)
midi_path = midi_file_fir + s_midi_path
notes = midi2notes(midi_path)
if len(notes) > len(new_phone):
break
pass
s_midi_path = s_midi_path.split(".")[0]
try:
wav, sr = librosa.core.load(path, sr=None)
syllables = get_syllables(mel_data[wave_name], phone, new_phone)
# Part 1: Determine the correspondence between notes and syllables (one-to-many or many-to-one) according to the duration of MIDI and speech.
mappings = note_syllable_mapping(notes, syllables)
x = wav.astype(np.double)
_f0, t = pw.dio(x, sr, frame_period=frame_period) # raw pitch extractor
f0 = pw.stonemask(x, _f0, t, sr) # pitch refinement
nonz = np.nonzero(f0)
mean_f0 = 0
for index in nonz:
mean_f0 = mean_f0 + f0[index]
# Part 2: Adjust MIDI tonality according to the average pitch of speech.
speech_mean_pitch = sum(mean_f0)/len(mean_f0)
new_mappings, notes_mean_pitch = midi_key_shift(speech_mean_pitch, mappings)
# Part 3: Adjust pitch to get pitch-augmented wav.
pitch_wav = pitch_shift(new_mappings, wav, sr)
single_duration_wav = duration_change(new_mappings, wav, sr)
d_path = os.path.join(output_duration_dir, "/".join(path.split("/")[-4:]))
p_path = os.path.join(output_pitch_dir, "/".join(path.split("/")[-4:]))
pd_path = os.path.join(output_pdaugment_dir, "/".join(path.split("/")[-4:]))
if not os.path.exists(d_path):
os.makedirs(d_path)
if not os.path.exists(p_path):
os.makedirs(d_path)
if not os.path.exists(pd_path):
os.makedirs(d_path)
if not os.path.exists(os.path.join(output_duration_dir, "/".join(path.split("/")[-4:-1]), "-".join(path.split("/")[-3:-1]) + ".trans.txt")):
os.system("cp " + os.path.join("/".join(path.split("/")[:-1]), "-".join(path.split("/")[-3:-1]) + ".trans.txt") + " " + os.path.join(output_duration_dir, "/".join(path.split("/")[-4:-1]), "-".join(path.split("/")[-3:-1]) + ".trans.txt"))
sf.write(d_path, single_duration_wav, sr, 'PCM_24')
sf.write(p_path, pitch_wav, sr, 'PCM_24')
# Part 4: Adjust duration to get duration-augmented wav.
duration_wav = duration_change(new_mappings, pitch_wav, sr)
sf.write(pd_path, duration_wav, sr, 'PCM_24')
except Exception:
return
def muli_task(N, tasks):
pool = multiprocessing.Pool(N)
pool.map(worker, tasks)
pool.close()
pool.join()
muli_task(number_of_threads, meta_datas)
if __name__ == '__main__':
pickle_path = "data/pickle/mel_splits.pickle"
frequency_json_file = 'utils/frequency.json'
metadata_dir = 'data/speech/phone/dev-clean_metadata.csv'
dataset_dir = "data/speech/wav/dev-clean"
midi_file_fir = "data/midis/processed/midi_6tracks"
output_duration_dir = "data/duration"
output_pitch_dir = "data/pitch"
output_pdaugment_dir = "data/pdaugment"
number_of_threads = 16
all_midi_path = []
try:
pickle_path = sys.argv[1]
frequency_json_file = sys.argv[2]
dataset_dir = sys.argv[3]
midi_file_fir = sys.argv[4]
metadata_dir = sys.argv[5]
output_duration_dir = sys.argv[6]
output_pitch_dir = sys.argv[7]
output_pdaugment_dir = sys.argv[8]
number_of_threads = int(sys.argv[9])
except IndexError:
print("Need eight command line parameters.")
# load metadata
with open(frequency_json_file) as f:
fre = json.load(f)
with open(pickle_path, "rb") as f:
mel_data = pickle.load(f)
for file in os.listdir("freemidi"):
if os.path.splitext(file)[1] == '.mid':
all_midi_path.append(file)
main()