From b0d64085f0dbaf7d0d503b4903837c6240d8694e Mon Sep 17 00:00:00 2001 From: "Anthony D. Blaom" Date: Tue, 9 Apr 2024 12:39:27 +1200 Subject: [PATCH] Make corrections and expansions to model doc string --- src/PartitionedLS.jl | 131 +++++++++++++++++++++++++++++-------------- 1 file changed, 90 insertions(+), 41 deletions(-) diff --git a/src/PartitionedLS.jl b/src/PartitionedLS.jl index b925da4..beb56a6 100644 --- a/src/PartitionedLS.jl +++ b/src/PartitionedLS.jl @@ -19,7 +19,7 @@ const MMI = MLJModelInterface """ $(TYPEDEF) -The PartLSFitResult struct represents the solution of the partitioned least squares problem. +The PartLSFitResult struct represents the solution of the partitioned least squares problem. It contains the values of the α and β variables, the intercept t and the partition matrix P. ## Fields @@ -95,7 +95,7 @@ parameter η controls the strength of the regularization. ## Main idea K new rows are added to the data matrix X, row ``k \\in \\{1 \\dots K\\}`` is a vector of zeros except for -the components that corresponds to features belonging to the k-th partition, which is set to sqrt(η). +the components that corresponds to features belonging to the k-th partition, which is set to sqrt(η). The target vector y is extended with K zeros. The point of this change is that when the objective function is evaluated as ``math \\|Xw - y\\|^2``, the new part of @@ -106,7 +106,7 @@ function regularizeProblem(X, y, P, η) if η == 0 return X, y end - + Xn = X yn = y for k in 1:size(P, 2) @@ -140,9 +140,9 @@ Make predictions for the datataset `X` using the PartialLS model `model`. ## Arguments - `model`: a [PartLSFitResult](@ref) - `X`: the data containing the examples for which the predictions are sought - + ## Return - the predictions of the given model on examples in X. + the predictions of the given model on examples in X. """ function predict(model::PartLSFitResult, X::Array{Float64,2}) (; α, β, t, P) = model @@ -157,16 +157,21 @@ include("PartitionedLSBnB.jl") """ PartLS -A model type for fitting a partitioned least squares model to data. +A model type for fitting a partitioned least squares model to data. Both an MLJ and native +interfacew are provided. + +# MLJ Interface From MLJ, the type can be imported using PartLS = @load PartLS pkg=PartitionedLS -Construct an instance with default hyper-parameters using the syntax model = FooRegressor(). Provide keyword arguments to override hyper-parameter defaults, as in FooRegressor(P=...). +Construct an instance with default hyper-parameters using the syntax `model = +PartLS()`. Provide keyword arguments to override hyper-parameter defaults, as in +`model = PartLS(P=...)`. -# Training data +## Training data In MLJ or MLJBase, bind an instance `model` to data with @@ -174,29 +179,42 @@ In MLJ or MLJBase, bind an instance `model` to data with where -- `X`: any matrix with element scitype `Float64,2` +- `X`: any matrix with element type `Float64`, or any table with columns of type `Float64` Train the machine using `fit!(mach)`. -# Hyper-parameters +## Hyper-parameters + +- `Optimizer`: the optimization algorithm to use. It can be `Opt`, `Alt` or `BnB` (names + exported by `PartitionedLS.jl`). + +- `P`: the partition matrix. It is a binary matrix where each row corresponds to a + partition and each column corresponds to a feature. The element `P_{k, i} = 1` if + feature `i` belongs to partition `k`. -- `Optimizer`: the optimization algorithm to use. It can be `Opt`, `Alt` or `BnB`. -- `P`: the partition matrix. It is a binary matrix where each row corresponds to a partition and each column - corresponds to a feature. The element `P_{k, i} = 1` if feature `i` belongs to partition `k`. - `η`: the regularization parameter. It controls the strength of the regularization. -- `ϵ`: the tolerance parameter. It is used to determine when the Alt optimization algorithm has converged. Only used by the `Alt` algorithm. -- `T`: the maximum number of iterations. It is used to determine when to stop the Alt optimization algorithm has converged. Only used by the `Alt` algorithm. -- `rng`: the random number generator to use. + +- `ϵ`: the tolerance parameter. It is used to determine when the Alt optimization + algorithm has converged. Only used by the `Alt` algorithm. + +- `T`: the maximum number of iterations. It is used to determine when to stop the Alt + optimization algorithm has converged. Only used by the `Alt` algorithm. + +- `rng`: the random number generator to use. + - If `nothing`, the global random number generator `rand` is used. - - If an integer, the global number generator `rand` is used after seeding it with the given integer. + + - If an integer, the global number generator `rand` is used after seeding it with the + given integer. + - If an object of type `AbstractRNG`, the given random number generator is used. -# Operations +## Operations - `predict(mach, Xnew)`: return the predictions of the model on new data `Xnew` -# Fitted parameters +## Fitted parameters The fields of `fitted_params(mach)` are: @@ -207,31 +225,62 @@ The fields of `fitted_params(mach)` are: - `P`: the partition matrix. It is a binary matrix where each row corresponds to a partition and each column corresponds to a feature. The element `P_{k, i} = 1` if feature `i` belongs to partition `k`. -# Examples +## Examples ```julia -PartLS = @load FooRegressor pkg=PartLS +PartLS = @load PartLS pkg=PartitionedLS + +X = [[1. 2. 3.]; + [3. 3. 4.]; + [8. 1. 3.]; + [5. 3. 1.]] + +y = [1.; + 1.; + 2.; + 3.] + +P = [[1 0]; + [1 0]; + [0 1]] + + +model = PartLS(P=P) +mach = machine(model, X, y) |> fit! + +# predictions on the training set: +predict(mach, X) + +``` + +# Native Interface +``` +using PartitionedLS -X = [[1. 2. 3.]; - [3. 3. 4.]; - [8. 1. 3.]; +X = [[1. 2. 3.]; + [3. 3. 4.]; + [8. 1. 3.]; [5. 3. 1.]] -y = [1.; - 1.; - 2.; +y = [1.; + 1.; + 2.; 3.] -P = [[1 0]; - [1 0]; +P = [[1 0]; + [1 0]; [0 1]] -# fit using the optimal algorithm +# fit using the optimal algorithm result = fit(Opt, X, y, P, η = 0.0) y_hat = predict(result.model, X) ``` + +For other `fit` keyword options, refer to the "Hyper-parameters" section for the MLJ +interface. + """ MMI.@mlj_model mutable struct PartLS <: MMI.Deterministic Optimizer::Union{Type{Opt},Type{Alt},Type{BnB}} = Opt @@ -303,7 +352,7 @@ MMI.metadata_model(PartLS, input_scitype = Union{MMI.Table{AbstractVector{MMI.Continuous}}, AbstractMatrix{MMI.Continuous}}, # what input data is supported? target_scitype = AbstractVector{MMI.Continuous}, # for a supervised model, what target? supports_weights = false, # does the model support sample weights? - load_path = "PartitionedLS.PartLS" + load_path = "PartitionedLS.PartLS" ) end @@ -333,7 +382,7 @@ Train the machine using `fit!(mach)`. - `η`: the regularization parameter. It controls the strength of the regularization. - `ϵ`: the tolerance parameter. It is used to determine when the Alt optimization algorithm has converged. Only used by the `Alt` algorithm. - `T`: the maximum number of iterations. It is used to determine when to stop the Alt optimization algorithm has converged. Only used by the `Alt` algorithm. -- `rng`: the random number generator to use. +- `rng`: the random number generator to use. - If `nothing`, the global random number generator `rand` is used. - If an integer, the global number generator `rand` is used after seeding it with the given integer. - If an object of type `AbstractRNG`, the given random number generator is used. @@ -360,22 +409,22 @@ The fields of `fitted_params(mach)` are: PartLS = @load FooRegressor pkg=PartLS -X = [[1. 2. 3.]; - [3. 3. 4.]; - [8. 1. 3.]; +X = [[1. 2. 3.]; + [3. 3. 4.]; + [8. 1. 3.]; [5. 3. 1.]] -y = [1.; - 1.; - 2.; +y = [1.; + 1.; + 2.; 3.] -P = [[1 0]; - [1 0]; +P = [[1 0]; + [1 0]; [0 1]] -# fit using the optimal algorithm +# fit using the optimal algorithm result = fit(Opt, X, y, P, η = 0.0) y_hat = predict(result.model, X) ```