-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·264 lines (215 loc) · 8.67 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#!/usr/bin/env python3
# Max-Heinrich Laves
# Institute of Mechatronic Systems
# Leibniz Universität Hannover, Germany
# 2019
import matplotlib
matplotlib.use('Agg') # headless plotting
import matplotlib.pyplot as plt
import torch
from models import BaselineResNet, BayesianResNet1, BayesianResNet2, ProbabilisticResNet, kld_loss
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
import argparse
import tqdm
import numpy as np
from data_generator import KermanyDataset
from utils import accuracy
from tensorboardX import SummaryWriter
import os
# enable cuda if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = argparse.ArgumentParser(description='Train solitary classifier on small OCT dataset for comparison.')
parser.add_argument('--model', metavar='M', type=str, help='Specify the model M',
choices=['baseline', 'bayesian1', 'bayesian2', 'probabilistic'])
parser.add_argument('--bs', metavar='N', type=int, help='Specify the batch size N', default=1,
choices=list(range(1, 129)))
parser.add_argument('--epochs', metavar='E', type=int, help='Specify the number of epochs E', default=100,
choices=list(range(1, 201)))
args = parser.parse_args()
print("Train model:", args.model)
print("Train with batch_size: " + str(args.bs))
print("Training epochs: " + str(args.epochs))
print('')
# setup tensorboardx
writer = SummaryWriter()
if not os.path.exists("./snapshots"):
os.makedirs("./snapshots")
# dimension properties
batch_size = args.bs
val_batch_size = batch_size
num_workers = 8 if batch_size > 8 else batch_size
num_classes = 4
bayesian_dropout_p = 0.5
lambda_prop = 0.01
color = True
resize_to = (224, 224)
dataset_train = KermanyDataset("/home/laves/Downloads/OCT2017_3/test",
crop_to=(384, 384), resize_to=resize_to, color=color)
dataloader_train = DataLoader(dataset_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
dataset_valid = KermanyDataset("/home/laves/Downloads/OCT2017_3/val",
crop_to=(384, 384), resize_to=resize_to, color=color)
dataloader_valid = DataLoader(dataset_valid, batch_size=val_batch_size, num_workers=num_workers)
assert len(dataset_train) > 0
assert len(dataset_valid) > 0
print("Train dataset length:", len(dataset_train))
print("Valid dataset length:", len(dataset_valid))
print('')
# create a model
model = torch.nn.Module()
if args.model == 'baseline':
model = BaselineResNet(num_classes=num_classes).to(device)
elif args.model == 'bayesian1':
model = BayesianResNet1(num_classes=num_classes).to(device)
elif args.model == 'bayesian2':
model = BayesianResNet2(num_classes=num_classes).to(device)
elif args.model == 'probabilistic':
model = ProbabilisticResNet(num_classes=num_classes).to(device)
else:
assert False
# calculate number of trainable parameters
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print("Total trainable parameters: {:,}".format(params))
# create your optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4,
betas=(0.9, 0.999),
weight_decay=1e-8)
lr_scheduler = ReduceLROnPlateau(optimizer, patience=5)
# create loss function
criterion = torch.nn.CrossEntropyLoss()
print('') # print empty line before training output
# save accuracies and losses during training
train_losses = []
train_accuracies = []
valid_losses = []
valid_accuracies = []
start_epoch = 0
epochs = args.epochs
e = 0
batch_counter = 0
batch_counter_valid = 0
for e in range(start_epoch, epochs):
# go through training set
model.train()
print("lr =", optimizer.param_groups[0]['lr'])
epoch_train_loss = []
epoch_train_acc = []
is_best = False
x, y, y_pred = None, None, None
batches = tqdm.tqdm(dataloader_train)
for x, y in batches:
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
if args.model == 'baseline':
y_pred = model(x)
train_loss = criterion(y_pred, y)
elif args.model in ['bayesian1', 'bayesian2']:
y_pred = model(x, dropout=True, p=bayesian_dropout_p)
train_loss = criterion(y_pred, y)
elif args.model == 'probabilistic':
y_pred, means, log_vars = model(x)
train_loss = criterion(y_pred, y) + lambda_prop * kld_loss(means, log_vars)
else:
assert False
train_loss.backward()
optimizer.step()
# print current loss
batches.set_description("loss: {:4f}".format(train_loss.item()))
# sum epoch loss
epoch_train_loss.append(train_loss.item())
# calculate batch train accuracy
batch_acc = accuracy(y_pred, y)
epoch_train_acc.append(batch_acc)
writer.add_scalar('data/train_loss', train_loss.item(), batch_counter)
writer.add_scalar('data/train_acc', batch_acc, batch_counter)
batch_counter += 1
epoch_train_loss = np.mean(epoch_train_loss)
epoch_train_acc = np.mean(epoch_train_acc)
lr_scheduler.step(epoch_train_loss)
# go through validation set
model.eval()
with torch.no_grad():
epoch_valid_loss = []
epoch_valid_acc = []
batches = tqdm.tqdm(dataloader_valid)
for x, y in batches:
x, y = x.to(device), y.to(device)
if args.model == 'baseline':
y_pred = model(x)
valid_loss = criterion(y_pred, y)
elif args.model in ['bayesian1', 'bayesian2']:
y_pred = model(x, dropout=True, p=bayesian_dropout_p)
valid_loss = criterion(y_pred, y)
elif args.model == 'probabilistic':
y_pred, means, log_vars = model(x)
valid_loss = criterion(y_pred, y) + lambda_prop * kld_loss(means, log_vars)
else:
assert False
# print current loss
batches.set_description("loss: {:4f}".format(valid_loss.item()))
# sum epoch loss
epoch_valid_loss.append(valid_loss.item())
# calculate batch train accuracy
batch_acc = accuracy(y_pred, y)
epoch_valid_acc.append(batch_acc)
writer.add_scalar('data/valid_classifier_loss', valid_loss.item(), batch_counter_valid)
writer.add_scalar('data/valid_acc', batch_acc, batch_counter_valid)
batch_counter_valid += 1
epoch_valid_loss = np.mean(epoch_valid_loss)
epoch_valid_acc = np.mean(epoch_valid_acc)
print("Epoch {:d}: loss: {:4f}, acc: {:4f}, val_loss: {:4f}, val_acc: {:4f}"
.format(e,
epoch_train_loss,
epoch_train_acc,
epoch_valid_loss,
epoch_valid_acc,
))
# save epoch losses
train_losses.append(epoch_train_loss)
train_accuracies.append(epoch_train_acc)
valid_losses.append(epoch_valid_loss)
valid_accuracies.append(epoch_valid_acc)
if valid_losses[-1] <= np.min(valid_losses):
is_best = True
if is_best:
filename = "./snapshots/" + args.model + "_best.pth.tar"
print("Saving best weights so far with val_loss: {:4f}".format(valid_losses[-1]))
torch.save({
'epoch': e,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'train_losses': train_losses,
'train_accs': train_accuracies,
'val_losses': valid_losses,
'val_accs': valid_accuracies,
}, filename)
if e == epochs-1:
filename = "./snapshots/" + args.model + "_" + str(e) + ".pth.tar"
print("Saving weights at epoch {:d}".format(e))
torch.save({
'epoch': e,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'train_losses': train_losses,
'train_accs': train_accuracies,
'val_losses': valid_losses,
'val_accs': valid_accuracies,
}, filename)
print('')
# plot losses
plt.figure()
plt.plot(range(len(train_losses)), train_losses, marker='x')
plt.plot(range(len(valid_losses)), valid_losses, marker='x')
plt.title(args.model+" loss")
plt.xlabel("epoch")
plt.ylabel("loss")
plt.savefig(args.model+"_loss.pdf", dpi=300)
plt.figure()
plt.plot(range(len(train_accuracies)), train_accuracies, marker='x')
plt.plot(range(len(valid_accuracies)), valid_accuracies, marker='x')
plt.title(args.model+" accuracy")
plt.xlabel("epoch")
plt.ylabel("acc")
plt.savefig(args.model+"_acc.pdf", dpi=300)
plt.close('all')