forked from Youmin-Kim/GLD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistill.py
316 lines (262 loc) · 12.4 KB
/
distill.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import argparse
import time
import os
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import numpy as np
from models import *
from gld import *
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=64, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=100, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--test', default='', type=str, metavar='PATH',
help='path to trained model (default: none)')
parser.add_argument('--teacher', default='', type=str, help='pre-trained teacher network type (resnet)')
parser.add_argument('--student', default='', type=str, help='to be trained student network type (resnet)')
# for teacher resnet
parser.add_argument('--depth', type=int, default=0, help='depth for resnet')
# for student resnet
parser.add_argument('--sdepth', type=int, default=0, help='depth for resnet')
# hyperparamters for GLD
parser.add_argument('--alpha', type=float, default=0.7, help='alpha for GLD')
parser.add_argument('--beta', type=float, default=500.0, help='beta for GLD')
parser.add_argument('--div', type=int, default=2, help='number of (width == height) division for GLD')
parser.add_argument('--seed', type=int, default=0, help='random seed (default: 0)')
best_prec1 = 0
def main():
global args, best_prec1
teacher_name = ''
student_name = '_distilled_by_'
args = parser.parse_args()
cudnn.benchmark = True
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
# data loader setting
transform_train = transforms.Compose([transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4814, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
transform_test = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.4814, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
trainset = datasets.CIFAR100(root='./dataset/', train=True, download=True, transform=transform_train)
testset = datasets.CIFAR100(root='./dataset/', train=False, download=True, transform=transform_test)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers)
val_loader = torch.utils.data.DataLoader(testset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers)
class_num = 100
# load the pre-trained teacher
if args.teacher == 'resnet':
print('ResNet CIFAR10, CIFAR100 : 20(0.27M) 32(0.46M), 44(0.66M), 56(0.85M), 110(1.7M)')
cifar_list = [20, 32, 44, 56, 110]
if args.depth in cifar_list:
assert (args.depth - 2) % 6 == 0
n = int((args.depth - 2) / 6)
teacher = ResNet_Cifar(BasicBlock, [n, n, n], num_classes=class_num)
else:
print("Inappropriate ResNet Teacher model")
return
teacher_name = args.teacher+str(args.depth)
else:
print("No Teacher model")
return
# create student
if args.student == 'resnet':
print('ResNet CIFAR10, CIFAR100 : 20(0.27M) 32(0.46M), 44(0.66M), 56(0.85M), 110(1.7M)')
cifar_list = [20, 32, 44, 56, 110]
if args.sdepth in cifar_list:
assert (args.sdepth - 2) % 6 == 0
n = int((args.sdepth - 2) / 6)
student = ResNet_Cifar(BasicBlock, [n, n, n], num_classes=class_num)
else:
print("Inappropriate ResNet Student model")
return
student_name = args.student + str(args.sdepth) + student_name + teacher_name
else:
print("No Student model")
return
# print pre-trained teacher and to-be-trained student information
t_num_parameters = round((sum(l.nelement() for l in teacher.parameters()) / 1e+6), 3)
s_num_parameters = round((sum(l.nelement() for l in student.parameters()) / 1e+6), 3)
print("teacher name : ", teacher_name)
print("teacher parameters : ", t_num_parameters, "M")
print("student name : ", student_name)
print("student parameters : ", s_num_parameters, "M")
teacher = torch.nn.DataParallel(teacher).cuda()
load_teacher_progress = './teacher/' + teacher_name
teacher.load_state_dict(torch.load(load_teacher_progress + '/best_weight.pth'))
student = torch.nn.DataParallel(student).cuda()
# define optimizer or loss function (criterion)
criterion = nn.CrossEntropyLoss().cuda()
distill_criterion = GLDLoss(alpha=args.alpha, beta=args.beta, spatial_size=8, div=args.div)
optimizer = torch.optim.SGD(student.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
# check the performance of the pre-trained teacher
print("check the performance of the pre-trained teacher")
t1, t5, _ = test(val_loader, teacher, criterion)
print("pre-trained teacher (top1, top5) : ", t1, t5)
# trained model test code
if args.test != '':
print("=> Testing trained weights ")
student.load_state_dict(torch.load(args.test))
t1, t5, _ = test(val_loader, student, criterion)
print("=> loaded test Top1 Accuracy: {}, Top5 Accuracy: {}".format(t1, t5))
return
else:
print("=> No Test ")
# make progress save directory
save_progress = './checkpoints/' + student_name
if not os.path.isdir(save_progress):
os.makedirs(save_progress)
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch)
tr_acc, tr_acc5, tr_fc_loss, tr_d_loss = distillation(train_loader, teacher, student, distill_criterion,
optimizer, epoch)
# evaluate on validation set
prec1, prec5, te_fc_loss = test(val_loader, student, criterion)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({'epoch': epoch + 1, 'train_fc_loss': tr_fc_loss, 'train_d_loss': tr_d_loss, 'test_fc_loss': te_fc_loss,
'train_acc1': tr_acc, 'train_acc5': tr_acc5, 'test_acc1': prec1, 'test_acc5': prec5}, is_best, save_progress)
torch.save(student.state_dict(), save_progress + '/weight.pth')
if is_best:
torch.save(student.state_dict(), save_progress + '/best_weight.pth')
print('Best accuracy (top-1):', best_prec1)
def distillation(train_loader, teacher, student, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
ce_losses = AverageMeter()
dis_losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
student.train()
teacher.eval()
end = time.time()
loss = 0
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
target = target.cuda()
s_fc = student.module.fc
t_fc = teacher.module.fc
s_fr, s_output = student(input, is_feat=True)
t_fr, t_output = teacher(input, is_feat=True)
# distilling
task_loss, distill_loss = criterion(t_fr, s_fr, t_fc, s_fc, target)
loss = task_loss + distill_loss
# measure accuracy and record loss
prec1, prec5 = accuracy(s_output.data, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
ce_losses.update(task_loss.item(), input.size(0))
dis_losses.update(distill_loss.item(), input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Task Loss {task_loss.val:.4f} ({task_loss.avg:.4f})\t'
'GLD Loss {gld_loss.val:.4f} ({gld_loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, task_loss=ce_losses, gld_loss=dis_losses, top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg, top5.avg, ce_losses, dis_losses
def test(val_loader, model, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
target = target.cuda()
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg, top5.avg, losses
def save_checkpoint(state, is_best, save_path):
save_dir = save_path
torch.save(state, save_path + '/' + str(state['epoch']) + 'epoch_result.pth')
if is_best:
torch.save(state, save_dir + '/best_result.pth')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
lr = args.lr * (0.1 ** (epoch // (args.epochs * 0.5))) * (0.1 ** (epoch // (args.epochs * 0.75)))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()