forked from miemie2013/Pytorch-PPYOLO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
1_txt2json.py
163 lines (155 loc) · 4.92 KB
/
1_txt2json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#! /usr/bin/env python
# coding=utf-8
# ================================================================
#
# Author : miemie2013
# Created date: 2020-05-20 15:35:27
# Description : Convert annotation files (txt format) into coco json format.
# 自定义数据集的注解转换成coco的注解格式。生成的json注解文件在annotation_json目录下。
#
# ================================================================
import os
import cv2
import json
import copy
import shutil
from tools.cocotools import get_classes
if __name__ == '__main__':
# 自定义数据集的注解转换成coco的注解格式。只需改下面5个即可。
train_path = 'annotation/voc2012_train.txt'
val_path = 'annotation/voc2012_val.txt'
classes_path = 'data/voc_classes.txt'
train_pre_path = '/dataset/VOC0712/VOC2012/JPEGImages/' # 训练集图片相对路径
val_pre_path = '/dataset/VOC0712/VOC2012/JPEGImages/' # 验证集图片相对路径
# 创建json注解目录
if os.path.exists('annotation_json/'): shutil.rmtree('annotation_json/')
os.mkdir('annotation_json/')
anno_name = train_path.split('.')
val_anno_name = val_path.split('.')
print('Convert annotation files (txt format) into coco json format...')
info = {
'description': 'My dataset',
'url': 'https://github.com/miemie2013',
'version': '1.0',
'year': '2020',
'contributor': 'miemie2013',
'date_created': '2020/06/01',
}
licenses_0 = {
'url': 'https://github.com/miemie2013',
'id': 1,
'name': 'miemie2013 license',
}
licenses = [licenses_0]
categories = []
class_names = get_classes(classes_path)
num_classes = len(class_names)
for cid in range(num_classes):
cate = {
'supercategory': 'object',
'id': cid,
'name': class_names[cid],
}
categories.append(cate)
base_json = {
'info': info,
'licenses': licenses,
'categories': categories,
}
train_json = copy.deepcopy(base_json)
val_json = copy.deepcopy(base_json)
# train set
with open(train_path) as f:
train_lines = f.readlines()
images = []
annos = []
im_id = 0
anno_id = 0
for line in train_lines:
anno_list = line.split()
ndarr = cv2.imread(train_pre_path + anno_list[0])
img_h, img_w, _ = ndarr.shape
image = {
'license': 1,
'file_name': anno_list[0],
'coco_url': 'a',
'height': img_h,
'width': img_w,
'date_captured': 'a',
'flickr_url': 'a',
'id': im_id,
}
images.append(image)
for p in range(1, len(anno_list), 1):
bbox = anno_list[p].split(',')
x1 = float(bbox[0])
y1 = float(bbox[1])
x2 = float(bbox[2])
y2 = float(bbox[3])
cid = int(bbox[4])
w = x2 - x1
h = y2 - y1
anno = {
'segmentation': [[]],
'area': w*h,
'iscrowd': 0,
'image_id': im_id,
'bbox': [x1, y1, w, h],
'category_id': cid,
'id': anno_id,
}
annos.append(anno)
anno_id += 1
im_id += 1
train_json['annotations'] = annos
train_json['images'] = images
with open('annotation_json/%s.json' % anno_name[0].split('/')[1], 'w') as f2:
json.dump(train_json, f2)
# val set
with open(val_path) as f:
val_lines = f.readlines()
images = []
annos = []
im_id = 0
anno_id = 0
for line in val_lines:
anno_list = line.split()
ndarr = cv2.imread(val_pre_path + anno_list[0])
img_h, img_w, _ = ndarr.shape
image = {
'license': 1,
'file_name': anno_list[0],
'coco_url': 'a',
'height': img_h,
'width': img_w,
'date_captured': 'a',
'flickr_url': 'a',
'id': im_id,
}
images.append(image)
for p in range(1, len(anno_list), 1):
bbox = anno_list[p].split(',')
x1 = float(bbox[0])
y1 = float(bbox[1])
x2 = float(bbox[2])
y2 = float(bbox[3])
cid = int(bbox[4])
w = x2 - x1
h = y2 - y1
anno = {
'segmentation': [[]],
'area': w*h,
'iscrowd': 0,
'image_id': im_id,
'bbox': [x1, y1, w, h],
'category_id': cid,
'id': anno_id,
}
annos.append(anno)
anno_id += 1
im_id += 1
val_json['annotations'] = annos
val_json['images'] = images
with open('annotation_json/%s.json' % val_anno_name[0].split('/')[1], 'w') as f2:
json.dump(val_json, f2)
print('Done.')