-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_iterative_model.py
103 lines (91 loc) · 3.35 KB
/
train_iterative_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import sys
import os
import numpy as np
import torch
sys.path.insert(0, '../../')
sys.path.insert(0, '../')
import detectron2.utils.comm as comm
from detectron2.utils.logger import setup_logger
from detectron2.engine import default_argument_parser, default_setup, launch
from detectron2.config import get_cfg
from detectron2.checkpoint import DetectionCheckpointer
from SpeaQ.engine import JointTransformerTrainer
from SpeaQ.data import VisualGenomeTrainData, register_datasets, DatasetCatalog, MetadataCatalog
from SpeaQ.configs.defaults import add_dataset_config, add_scenegraph_config
from SpeaQ.modeling import Detr
from detectron2.data.datasets import register_coco_instances
from glob import glob
import pathlib
from shutil import copyfile
parser = default_argument_parser()
def backup_source_codes(cfg):
if comm.is_main_process():
output_dir = cfg.OUTPUT_DIR
source_files = glob('**/*', recursive=True)
for file in source_files:
filedir_split = file.split('/')
if filedir_split[0] == 'wandb':
continue
filename_split = file.split('.')
if len(filename_split) == 1:
continue
extension = filename_split[-1]
if extension == 'pth' or extension == 'pkl':
continue
else:
target_dir = os.path.join(output_dir, 'code_backup', file)
os.makedirs(os.path.dirname(target_dir), exist_ok=True)
copyfile(file, target_dir)
def setup(args):
cfg = get_cfg()
add_dataset_config(cfg)
add_scenegraph_config(cfg)
assert(cfg.MODEL.ROI_SCENEGRAPH_HEAD.MODE in ['predcls', 'sgls', 'sgdet']), "Mode {} not supported".format(cfg.MODEL.ROI_SCENEGRaGraph.MODE)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
register_datasets(cfg)
# register_coco_data(cfg)
default_setup(cfg, args)
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="LSDA")
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = JointTransformerTrainer.build_model(cfg)
# from thop import profile
# input = torch.randn(1, 3, 800, 1333)
# macs, params = profile(model, inputs=(input, ))
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = JointTransformerTrainer.test(cfg, model)
# if comm.is_main_process():
# verify_results(cfg, res)
return res
backup_source_codes(cfg)
trainer = JointTransformerTrainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == '__main__':
args = parser.parse_args()
try:
# use the last 4 numbers in the job id as the id
# default_port = os.environ['SLURM_JOB_ID']
# default_port = default_port[-4:]
#
# # all ports should be in the 10k+ range
# default_port = int(default_port) + 15000
default_port = args.dist_url
except Exception:
default_port = 30050
args.dist_url = 'tcp://127.0.0.1:'+str(default_port)
print(args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)