forked from naver-ai/vidt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
engine.py
278 lines (223 loc) · 10.7 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# ------------------------------------------------------------------------
# DETR
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
# Additionally modified by NAVER Corp. for ViDT
# ------------------------------------------------------------------------
"""
Train and eval functions used in main.py
"""
import math
import sys
from typing import Iterable
import torch
import util.misc as utils
from datasets.coco_eval import CocoEvaluator
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, max_norm: float = 0,
n_iter_to_acc: int = 1, print_freq: int = 100):
"""
Training one epoch
Parameters:
model: a target model
criterion: a critetrion module to compute training (or val, test) loss
data_loader: a training data laoder to use
optimizer: an optimizer to use
epoch: the current epoch number
max_norm: a max norm for gradient clipping (default=0)
n_iter_to_acc: the step size for gradient accumulation (default=1)
print_freq: the step size to print training logs (default=100)
Return:
dict: a log dictionary with keys (log type) and values (log value)
"""
model.train()
criterion.train()
# register log types
metric_logger = utils.MetricLogger(delimiter=", ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = print_freq
batch_idx = 0
# iterate one epoch
for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
samples = samples.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
# inference
outputs = model(samples)
# compute loss
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {f'{k}_unscaled': v
for k, v in loss_dict_reduced.items()}
loss_dict_reduced_scaled = {k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if k in weight_dict}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
# backprop.
losses /= float(n_iter_to_acc)
losses.backward()
if (batch_idx + 1) % n_iter_to_acc == 0:
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
optimizer.zero_grad()
# save logs per iteration
metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
metric_logger.update(class_error=loss_dict_reduced['class_error'])
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
batch_idx += 1
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def train_one_epoch_with_teacher(model: torch.nn.Module, teacher_model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, max_norm: float = 0,
n_iter_to_acc: int = 1, print_freq: int = 100):
"""
Training one epoch
Parameters:
model: a target model
teacher_model: a teacher model for distillation
criterion: a critetrion module to compute training (or val, test) loss
data_loader: a training data laoder to use
optimizer: an optimizer to use
epoch: the current epoch number
max_norm: a max norm for gradient clipping (default=0)
n_iter_to_acc: the step size for gradient accumulation (default=1)
print_freq: the step size to print training logs (default=100)
Return:
dict: a log dictionary with keys (log type) and values (log value)
"""
model.train()
teacher_model.eval()
criterion.train()
# register log types
metric_logger = utils.MetricLogger(delimiter=", ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = print_freq
batch_idx = 0
# iterate one epoch
for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
samples = samples.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
# inference
outputs = model(samples)
teacher_outputs = teacher_model(samples)
# collect distillation token for matching loss
distil_tokens = (outputs['distil_tokens'], teacher_outputs['distil_tokens'])
# compute loss
loss_dict = criterion(outputs, targets, distil_tokens=distil_tokens)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {f'{k}_unscaled': v
for k, v in loss_dict_reduced.items()}
loss_dict_reduced_scaled = {k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if k in weight_dict}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
# backprop.
losses.backward()
if (batch_idx + 1) % n_iter_to_acc == 0:
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
optimizer.zero_grad()
# save logs per iteration
metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
metric_logger.update(class_error=loss_dict_reduced['class_error'])
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
batch_idx += 1
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(model, criterion, postprocessors, data_loader, base_ds, device):
"""
Training one epoch
Parameters:
model: a target model
criterion: a critetrion module to compute training (or val, test) loss
postprocessors: a postprocessor to compute AP
data_loader: an eval data laoder to use
base_ds: a base dataset class
device: the device to use (GPU or CPU)
Return:
dict: a log dictionary with keys (log type) and values (log value)
"""
model.eval()
criterion.eval()
# register log types
metric_logger = utils.MetricLogger(delimiter=", ")
metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
header = 'Test:'
# return eval. metrics
iou_types = tuple(k for k in ('segm', 'bbox') if k in postprocessors.keys())
coco_evaluator = CocoEvaluator(base_ds, iou_types)
# iterate for all eval. examples
for samples, targets in metric_logger.log_every(data_loader, 256, header):
samples = samples.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
# inference
outputs = model(samples)
# loss compute
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_scaled = {k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if k in weight_dict}
loss_dict_reduced_unscaled = {f'{k}_unscaled': v
for k, v in loss_dict_reduced.items()}
metric_logger.update(loss=sum(loss_dict_reduced_scaled.values()),
**loss_dict_reduced_scaled,
**loss_dict_reduced_unscaled)
metric_logger.update(class_error=loss_dict_reduced['class_error'])
# compute AP, etc
orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
results = postprocessors['bbox'](outputs, orig_target_sizes)
if 'segm' in postprocessors.keys():
target_sizes = torch.stack([t["size"] for t in targets], dim=0)
results = postprocessors['segm'](results, outputs, orig_target_sizes, target_sizes)
res = {target['image_id'].item(): output for target, output in zip(targets, results)}
if coco_evaluator is not None:
coco_evaluator.update(res)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
if coco_evaluator is not None:
coco_evaluator.synchronize_between_processes()
# accumulate predictions from all images
if coco_evaluator is not None:
coco_evaluator.accumulate()
coco_evaluator.summarize()
panoptic_res = None
stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
if coco_evaluator is not None:
if 'bbox' in postprocessors.keys():
stats['coco_eval_bbox'] = coco_evaluator.coco_eval['bbox'].stats.tolist()
if 'segm' in postprocessors.keys():
stats['coco_eval_masks'] = coco_evaluator.coco_eval['segm'].stats.tolist()
if panoptic_res is not None:
stats['PQ_all'] = panoptic_res["All"]
stats['PQ_th'] = panoptic_res["Things"]
stats['PQ_st'] = panoptic_res["Stuff"]
return stats, coco_evaluator