-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrake.py
301 lines (252 loc) · 12.7 KB
/
rake.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# Implementation of RAKE - Rapid Automatic Keyword Extraction algorithm
# as described in:
# Rose, S., D. Engel, N. Cramer, and W. Cowley (2010).
# Automatic keyword extraction from individual documents.
# In M. W. Berry and J. Kogan (Eds.), Text Mining: Applications and Theory.unknown: John Wiley and Sons, Ltd.
#
# NOTE: The original code (from https://github.com/aneesha/RAKE)
# has been extended by a_medelyan (zelandiya)
# with a set of heuristics to decide whether a phrase is an acceptable candidate
# as well as the ability to set frequency and phrase length parameters
# important when dealing with longer documents
#
# NOTE 2: The code published by a_medelyan (https://github.com/zelandiya/RAKE-tutorial)
# has been additionally extended by Marco Pegoraro to implement the adjoined candidate
# feature described in section 1.2.3 of the original paper. Note that this creates the
# need to modify the metric for the candidate score, because the adjoined candidates
# have a very high score (because of the nature of the original score metric)
from __future__ import absolute_import
from __future__ import print_function
import re
import operator
import six
from six.moves import range
from collections import Counter
debug = False
test = False
def is_number(s):
try:
float(s) if '.' in s else int(s)
return True
except ValueError:
return False
def load_stop_words(stop_word_file):
"""
Utility function to load stop words from a file and return as a list of words
@param stop_word_file Path and file name of a file containing stop words.
@return list A list of stop words.
"""
stop_words = []
for line in open(stop_word_file):
if line.strip()[0:1] != "#":
for word in line.split(): # in case more than one per line
stop_words.append(word)
return stop_words
def separate_words(text, min_word_return_size):
"""
Utility function to return a list of all words that are have a length greater than a specified number of characters.
@param text The text that must be split in to words.
@param min_word_return_size The minimum no of characters a word must have to be included.
"""
splitter = re.compile('[^a-zA-Z0-9_\\+\\-/]')
words = []
for single_word in splitter.split(text):
current_word = single_word.strip().lower()
# leave numbers in phrase, but don't count as words, since they tend to invalidate scores of their phrases
if len(current_word) > min_word_return_size and current_word != '' and not is_number(current_word):
words.append(current_word)
return words
def split_sentences(text):
"""
Utility function to return a list of sentences.
@param text The text that must be split in to sentences.
"""
sentence_delimiters = re.compile(u'[\\[\\]\n.!?,;:\t\\-\\"\\(\\)\\\'\u2019\u2013]')
sentences = sentence_delimiters.split(text)
return sentences
def build_stop_word_regex(stop_word_list):
stop_word_regex_list = []
for word in stop_word_list:
word_regex = '\\b' + word + '\\b'
stop_word_regex_list.append(word_regex)
stop_word_pattern = re.compile('|'.join(stop_word_regex_list), re.IGNORECASE)
return stop_word_pattern
#
# Function that extracts the adjoined candidates from a list of sentences and filters them by frequency
#
def extract_adjoined_candidates(sentence_list, stoplist, min_keywords, max_keywords, min_freq):
adjoined_candidates = []
for s in sentence_list:
# Extracts the candidates from each single sentence and adds them to the list
adjoined_candidates += adjoined_candidates_from_sentence(s, stoplist, min_keywords, max_keywords)
# Filters the candidates and returns them
return filter_adjoined_candidates(adjoined_candidates, min_freq)
# return adjoined_candidates
#
# Function that extracts the adjoined candidates from a single sentence
#
def adjoined_candidates_from_sentence(s, stoplist, min_keywords, max_keywords):
# Initializes the candidate list to empty
candidates = []
# Splits the sentence to get a list of lowercase words
sl = s.lower().split()
# For each possible length of the adjoined candidate
for num_keywords in range(min_keywords, max_keywords + 1):
# Until the third-last word
for i in range(0, len(sl) - num_keywords):
# Position i marks the first word of the candidate. Proceeds only if it's not a stopword
if sl[i] not in stoplist:
candidate = sl[i]
# Initializes j (the pointer to the next word) to 1
j = 1
# Initializes the word counter. This counts the non-stopwords words in the candidate
keyword_counter = 1
contains_stopword = False
# Until the word count reaches the maximum number of keywords or the end is reached
while keyword_counter < num_keywords and i + j < len(sl):
# Adds the next word to the candidate
candidate = candidate + ' ' + sl[i + j]
# If it's not a stopword, increase the word counter. If it is, turn on the flag
if sl[i + j] not in stoplist:
keyword_counter += 1
else:
contains_stopword = True
# Next position
j += 1
# Adds the candidate to the list only if:
# 1) it contains at least a stopword (if it doesn't it's already been considered)
# AND
# 2) the last word is not a stopword
# AND
# 3) the adjoined candidate keyphrase contains exactly the correct number of keywords (to avoid doubles)
if contains_stopword and candidate.split()[-1] not in stoplist and keyword_counter == num_keywords:
candidates.append(candidate)
return candidates
#
# Function that filters the adjoined candidates to keep only those that appears with a certain frequency
#
def filter_adjoined_candidates(candidates, min_freq):
# Creates a dictionary where the key is the candidate and the value is the frequency of the candidate
candidates_freq = Counter(candidates)
filtered_candidates = []
# Uses the dictionary to filter the candidates
for candidate in candidates:
freq = candidates_freq[candidate]
if freq >= min_freq:
filtered_candidates.append(candidate)
return filtered_candidates
def generate_candidate_keywords(sentence_list, stopword_pattern, stop_word_list, min_char_length=1, max_words_length=5,
min_words_length_adj=1, max_words_length_adj=1, min_phrase_freq_adj=2):
phrase_list = []
for s in sentence_list:
tmp = re.sub(stopword_pattern, '|', s.strip())
phrases = tmp.split("|")
for phrase in phrases:
phrase = phrase.strip().lower()
if phrase != "" and is_acceptable(phrase, min_char_length, max_words_length):
phrase_list.append(phrase)
phrase_list += extract_adjoined_candidates(sentence_list, stop_word_list, min_words_length_adj,
max_words_length_adj, min_phrase_freq_adj)
return phrase_list
def is_acceptable(phrase, min_char_length, max_words_length):
# a phrase must have a min length in characters
if len(phrase) < min_char_length:
return 0
# a phrase must have a max number of words
words = phrase.split()
if len(words) > max_words_length:
return 0
digits = 0
alpha = 0
for i in range(0, len(phrase)):
if phrase[i].isdigit():
digits += 1
elif phrase[i].isalpha():
alpha += 1
# a phrase must have at least one alpha character
if alpha == 0:
return 0
# a phrase must have more alpha than digits characters
if digits > alpha:
return 0
return 1
def calculate_word_scores(phraseList):
word_frequency = {}
word_degree = {}
for phrase in phraseList:
word_list = separate_words(phrase, 0)
word_list_length = len(word_list)
word_list_degree = word_list_length - 1
# if word_list_degree > 3: word_list_degree = 3 #exp.
for word in word_list:
word_frequency.setdefault(word, 0)
word_frequency[word] += 1
word_degree.setdefault(word, 0)
word_degree[word] += word_list_degree # orig.
# word_degree[word] += 1/(word_list_length*1.0) #exp.
for item in word_frequency:
word_degree[item] = word_degree[item] + word_frequency[item]
# Calculate Word scores = deg(w)/frew(w)
word_score = {}
for item in word_frequency:
word_score.setdefault(item, 0)
word_score[item] = word_degree[item] / (word_frequency[item] * 1.0) # orig.
# word_score[item] = word_frequency[item]/(word_degree[item] * 1.0) #exp.
return word_score
def generate_candidate_keyword_scores(phrase_list, word_score, min_keyword_frequency=1):
keyword_candidates = {}
for phrase in phrase_list:
if min_keyword_frequency > 1:
if phrase_list.count(phrase) < min_keyword_frequency:
continue
keyword_candidates.setdefault(phrase, 0)
word_list = separate_words(phrase, 0)
candidate_score = 0
for word in word_list:
candidate_score += word_score[word]
keyword_candidates[phrase] = candidate_score
return keyword_candidates
class Rake(object):
def __init__(self, stop_words_path, min_char_length=1, max_words_length=5, min_keyword_frequency=1,
min_words_length_adj=1, max_words_length_adj=1, min_phrase_freq_adj=2):
self.__stop_words_path = stop_words_path
self.__stop_words_list = load_stop_words(stop_words_path)
self.__min_char_length = min_char_length
self.__max_words_length = max_words_length
self.__min_keyword_frequency = min_keyword_frequency
self.__min_words_length_adj = min_words_length_adj
self.__max_words_length_adj = max_words_length_adj
self.__min_phrase_freq_adj = min_phrase_freq_adj
def run(self, text):
sentence_list = split_sentences(text)
stop_words_pattern = build_stop_word_regex(self.__stop_words_list)
phrase_list = generate_candidate_keywords(sentence_list, stop_words_pattern, self.__stop_words_list,
self.__min_char_length, self.__max_words_length,
self.__min_words_length_adj, self.__max_words_length_adj,
self.__min_phrase_freq_adj)
word_scores = calculate_word_scores(phrase_list)
keyword_candidates = generate_candidate_keyword_scores(phrase_list, word_scores, self.__min_keyword_frequency)
sorted_keywords = sorted(six.iteritems(keyword_candidates), key=operator.itemgetter(1), reverse=True)
return sorted_keywords
if test and __name__ == '__main__':
text = "Compatibility of systems of linear constraints over the set of natural numbers. Criteria of compatibility of a system of linear Diophantine equations, strict inequations, and nonstrict inequations are considered. Upper bounds for components of a minimal set of solutions and algorithms of construction of minimal generating sets of solutions for all types of systems are given. These criteria and the corresponding algorithms for constructing a minimal supporting set of solutions can be used in solving all the considered types of systems and systems of mixed types."
# Split text into sentences
sentenceList = split_sentences(text)
# stoppath = "FoxStoplist.txt" #Fox stoplist contains "numbers", so it will not find "natural numbers" like in Table 1.1
stoppath = "data/stoplists/SmartStoplist.txt" # SMART stoplist misses some of the lower-scoring keywords in Figure 1.5, which means that the top 1/3 cuts off one of the 4.0 score words in Table 1.1
stopwordpattern = build_stop_word_regex(stoppath)
# generate candidate keywords
phraseList = generate_candidate_keywords(sentenceList, stopwordpattern, load_stop_words(stoppath))
# calculate individual word scores
wordscores = calculate_word_scores(phraseList)
# generate candidate keyword scores
keywordcandidates = generate_candidate_keyword_scores(phraseList, wordscores)
if debug: print(keywordcandidates)
sortedKeywords = sorted(six.iteritems(keywordcandidates), key=operator.itemgetter(1), reverse=True)
if debug: print(sortedKeywords)
totalKeywords = len(sortedKeywords)
if debug: print(totalKeywords)
print(sortedKeywords[0:(totalKeywords // 3)])
rake = Rake("data/stoplists/SmartStoplist.txt")
keywords = rake.run(text)
print(keywords)